—— ГЕОЛОГИЯ —

УДК 553.81(571.62)

МАЛИНОВСКАЯ ЗОЛОТОРУДНАЯ МАГМАТИЧЕСКАЯ СИСТЕМА ЦЕНТРАЛЬНОГО СИХОТЭ-АЛИНЯ: ГЕОХРОНОЛОГИЯ, ПЕТРОГЕОХИМИЧЕСКИЙ СОСТАВ И ИЗОТОПНАЯ ХАРАКТЕРИСТИКА МАГМАТИЧЕСКИХ КОМПЛЕКСОВ (ПРИМОРЬЕ, РОССИЯ)

© 2013 г. Член-корреспондент РАН В. Г. Сахно, В. А. Степанов, В. И. Гвоздев, К. Н. Доброшевский

Поступило 06.03.2013 г.

DOI: 10.7868/S0869565213260174

В Центральной части Сихотэ-Алиня широко развиты мезозойские осадочно-вулканогенные и терригенные породы, прорванные серией интрузий различного состава и возраста. Среди них выделяются две серии — более ранняя (135—125 млн лет) хунгарийская, представленная габбро, пироксенитами, гранитами, и более поздняя (115—105 млн лет) татибинская, в составе которой широко развиты габброиды, адамеллиты и граниты [1].

Эти серии сопряжены с Центрально-Сихотэ-Алинской сдвиговой системой, формирование которой связано с встречным движением Азиатского континента и Тихоокеанской плиты. В условиях сжатия и последующего левостороннего движения блоков возникают сосдвиговые растяжения, являющиеся сквозными структурами ("окнами"), уходящими глубоко в мантию, для которых свойственно движение восходящих глубинных флюидов и генерация расплавов [2–4]. С Сихотэ-Алинской сосдвиговой структурой связаны Лермонтовская, Востоковская (Восток-2, Си–W), Малиновая (W–Cu), Лазурная (Cu + Au) и другие рудно-магматические системы (PMC).

К такому типу относится и Малиновская золоторудная РМС [5]. Она расположена в верховьях р. Малиновка и занимает площадь около 30 км², представляя собой интрузивно-купольную структуру.

Золотоносные зоны располагаются в приядерной и периферийной частях купольного поднятия,

Дальневосточного отделения

сложеного габбро-монцонитами, габбро-монцодиоритами. Интрузивный массив прорван дайками трахибазальтов и трахиандезито-базальтов мощностью 1—6 м и протяженностью до 200—250 м. Дайки выполняют крутонаклонные извилистые трещины, вдоль которых расположены и рудные тела, представленные линейными штокверками и жилами кварц-сульфидного или сульфидного составов, сопровождающимися зонами метасоматических пород и прожилково-вкрапленной минерализацией. Жилы северо-восточного простирания, близкого к субмеридиальному, и крутого восточного или западного падения. Все изученные рудные тела расположены в пределах юго-западного фланга интрузивного массива габброидов (рис. 1).

Монцонитоидные габбро представлены двупироксен-амфибол-плагиоклазовыми разностями иногда с биотитом. Для них характерны широкие вариации соотношений минералов: плагиоклаза, пироксенов, роговой обманки и биотита. Но, как правило, в породах преобладает плагиоклаз, который по составу относится к андезину и часто соссюритизирован и карбонатизирован. Темноцветные минералы частично, а в некоторых случаях, особенно вблизи рудных жил, замещены актинолит-хлоритовым агрегатом. Редкие зерна до 5 мм калиевого полевого шпата пелитизированы и содержат мельчайшие кристаллы плагиоклаза и роговой обманки. Акцессорные минералы представлены мелкими зернами магнетита, сфена, апатита и циркона. Порода рассечена тонкими прожилками кварца и актинолита. Наибольшим изменениям габброиды подвержены вблизи рудоносных жил, где они замещены и ожелезнены агрегатами актинолита, хлорита и окислами железа.

Габбро-монцо-диориты встречаются как фациальные разности в пределах массива значительно реже. За пределами рудных зон они наибо-

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

Научно-исследовательский геотехнологический центр

Российской Академии наук, Петропавловск-Камчатский

ЗАО "ПриморЗолото", Владивосток

Рис. 1. Малиновское золоторудное месторождение. *1* – габбро и габбро-монцо-диориты Водораздельной интрузии; *2* – дайки трахибазальтов; *3*, *4* – рудные тела и их номера: *3* – выходящие на поверхность, *4* – слепые; *5* – зоны милонитизации; *6* – разрывные нарушения; *7* – канавы, расчистки и их номера; *8* – места заложения скважин и их номера; *9* – горизонтали рельефа; *10* – район исследований (на врезке).

Рис. 2. Мультикомпонентные диаграммы распределения микро- и редкоземельных элементов в габбро-монцо-диоритах Малиновской РМС, нормированных к примитивной мантии. Номера анализов соответствуют табл. 1.

лее свежие с ассоциациями плагиоклаза, авгита, гиперстена, амфибола и биотита.

Соотношение минералов в габброидах таковы, %: плагиоклаза (андезина № 40–45) – 35–40, калиевого полевого шпата – 30–35, авгита – 5–7, гиперстена ≈15, биотита – 5–7, амфибола – 3. Акцессорные минералы: апатит, циркон, турмалин (редко) и магнетит. Авгит и гиперстен иногда встречаются в виде гломеропорфировых сростков. Вторичным изменениям в большей степени подвержены темноцветные минералы – они частично замещаются агрегатом сложного состава: хлоритом, актинолитом, эпидотом, вторичным чешуйчатым биотитом.

Дайковый комплекс широко развит в пределах рудной зоны, главным образом в южной половине интрузивного массива (рис. 1). Преобладают трахибазальты, которые интенсивно карбонатизированы и хлоритизированы. Они обладают мелкопорфировой структурой, иногда трахитоидной. Породы в основной массе представлены мелкими лейстами интенсивно соссюритизированного плагиоклаза, количество которого составляет 60—65% от общей массы. Промежутки между лейстами заполнены изометричными зернами карбонатизированного пироксена, рудного минерала, сфена и стекла. Порода рассечена тончайшими прожилками, выполненными карбонатами и хлоритом. Округлые пустоты часто заполнены кварцем и хлоритом.

Петрохимический и элементный состав представительных магматических пород показан в табл. 1, а основные их характеристики отражены на рис. 2.

Анализ этих данных показывает, что габброиды и дайки имеют определенные различия по сумме щелочей, отношению K/Na, магнезиальности и содержанию Ca. По сравнению с ними

САХНО и др.

Компонент	Г-2	Г-3	Γ-4	Γ-5	Г-7	Γ-8	Г-9
KOMIIOHCHT	1	2	3	4	5	6	7
SiO ₂	52.01	51.69	53.01	53.79	53.96	53.45	52.59
TiO ₂	1.35	1.04	1.37	1.08	1.06	1.40	1.03
Al_2O_3	17.04	17.32	17.96	17.98	18.43	17.30	17.97
Fe_2O_3	1.76	1.65	2.81	0.97	1.51	3.37	2.01
FeO	5.62	6.62	4.86	7.07	5.31	4.44	6.74
MnO	0.13	0.15	0.13	0.13	0.10	0.14	0.16
MgO	3.72	3.72	3.93	4.08	4.29	3.64	4.26
CaO	4.94	7.14	3.30	7.47	6.87	4.88	8.12
Na ₂ O	2.95	3.00	4.33	2.92	3.52	4.79	2.97
K ₂ O	3.70	2.65	3.77	2.39	2.56	2.55	2.67
P_2O_5	0.53	0.35	0.53	0.40	0.35	0.55	0.35
H_2O^-	0.55	0.40	0.55	0.20	0.25	0.65	0.20
П.п.п	5.97	4.48	3.38	1.40	2.00	3.08	0.80
Сумма	100.27	100.21	99.92	99.86	100.20	100.23	99.88
Be	3.25	2.76	2.48	2.56	2.81	2.91	2.45
Sc	19	24.9	19.5	23.9	27.1	19.8	26.3
V	152.8	214.4	155.6	198.1	231.1	162	228.7
Cr	96.60	115.7	71.65	119.4	60.85	76.80	90.10
Со	18.59	20.67	19.63	20.50	14.73	20.83	30.37
Ni	18.1	23.3	17.5	29.9	19	20.5	25.1
Cu	40.1	45.7	29.9	45.7	44.3	18.1	75.1
Zn	86.4	111	90.8	50.6	56	89.5	87
Ga	20.92	19.77	21.92	20.19	21.34	21.34	20.81
Rb	163.0	89.18	153.1	76.08	133.5	85.18	76.43
Sr	469.4	567.6	591.6	575.2	583	505.4	603.9
Y	25.27	25.74	28.48	23.29	32.40	27.70	24.94
Zr	266.3	84.2	279.1	106.4	133.7	268.8	126.9
Nb	16.11	8.43	17.09	13.78	12.07	16.81	11.89
Мо	2.57	7.40	0.70	4.56	2.24	0.95	3.59
Cd	0.33	0.40	0.43	0.16	0.21	0.40	0.20
Sn	0.63	1.81	0.67	0.80	5.06	0.52	0.65
Cs	21.36	6.80	2.17	1.97	2.44	1.47	2.70
Ba	850.3	558.3	1094	704.3	386.2	716.8	428.1
La	37.12	20.12	41.47	25.79	18.52	40.59	22.30
Ce	81.61	45.64	88.36	52.66	46.51	85.61	46.83
Pr	9.79	6.03	10.51	6.22	6.51	10.36	5.45
Nd	37.33	24.51	40.83	23.99	28.00	40.52	22.91
Sm	6.96	5.39	7.49	5.07	6.50	7.28	4.96
Eu	2.61	1.73	2.17	1.63	1.76	2.12	1.38
Gd	6.91	5.51	6.79	4.87	6.34	6.64	4.91
Tb	1.17	1.03	0.97	0.79	1.07	1.00	0.82

Таблица 1. Петрохимический (мас. %), микроэлементный (г/т) составы представительных магматических пород Малиновской золоторудной РМС Приморья

ДОКЛАДЫ АКАДЕМИИ НАУК том 452 № 1 2013

Таблица 1. Окончание

Компонент	Г-2	Г-3	Γ-4	Γ-5	Г-7	Г-8	Г-9
	1	2	3	4	5	6	7
Dy	5.71	5.14	5.54	4.70	6.65	5.66	4.73
Но	1.31	1.22	1.12	0.93	1.25	1.13	0.96
Er	3.00	3.10	3.02	2.40	3.51	2.94	2.80
Tm	0.60	0.63	0.44	0.38	0.50	0.47	0.44
Yb	2.65	3.09	2.68	2.54	3.49	2.74	2.58
Lu	0.63	0.57	0.41	0.39	0.52	0.43	0.39
Hf	6.54	2.72	6.91	3.09	4.01	6.51	3.71
Та	1.02	0.56	0.84	0.95	0.76	0.89	0.74
W	3.24	3.24	2.70	3.19	2.43	1.48	3.96
Pb	9.59	10.90	11.33	11.10	15.02	10.34	10.08
Th	7.67	6.80	6.89	6.20	6.99	6.65	6.96
U	1.58	1.88	1.31	1.14	1.84	1.32	1.55

Примечание. Определения проводили в Аналитическом центре ДВГИ ДВО РАН; содержание H₂O⁻, п.п.п, SiO₂ выполнено методом гравиметрии – аналитик В.Н. Залевская; содержание остальных элементов выполнено методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой на спектрометре ICAP 6500Duo (Thermo Scientific Corporation, США), аналитики Г.А. Горбач, Н.В. Хуркало; содержание микроэлементов выполнено методом масс-спектрометрии с индуктивно связанной плазмой на спектрометре ICAP 6500Duo (Thermo Scientific Corporation, США), аналитики Г.А. Горбач, Н.В. Хуркало; содержание микроэлементов выполнено методом масс-спектрометрии с индуктивно связанной плазмой на спектрометре Agilent 7500 с ("Agilent Technologies", США); анализ ИСП-МС выполнили М.Г. Блохин, Д.С. Остапенко; пробоподготовка – сплавление с метаборатом лития. Аналитик Ю.М. Иванова, ответственный исполнитель Н.В. Зарубина. Г-2–Г-9 – индексы проб; пробы Г-2, Г-4, Г-7 – трахибазальты; пробы Г-3, Г-5, Г-9 – монцонитоиды.

дайки базальтоидов (трахибазальтов) характеризуются большей щелочностью (особенно Na), железистостью и титанистостью, но меньшей известковистостью и магнезиальностью.

По микроэлементному и редкоземельному составу габброиды и базальтоиды также существенно разнятся по концентрациям V, Cu, Rb, б

Nb, Mo, Ba, La, Ce и другим элементам (табл. 1; рис. 2). Повышенные концентрации V, Cu, Ni, Co и Mo свойственны для габброидов, а для базальтов более высокие содержания отмечены для LREE.

Эти особенности составов можно объяснить более высокой степенью дифференциации для

Точка анализа ²⁰⁶ Рb _с ,		U	Th	232Th /238I I	²⁰⁶ Рb*, г/т	Возраст, млн лет					
		Г	/ _T			²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²³⁵ U	²⁰⁶ Pb*/ ²³⁸ U	10	
1.1	0.61	429	402	0.97	5.94	102.3 ± 1.8	0.0461 ± 7.8	0.1016 ± 8	0.016 ± 1.7	0.218	
2.1	0.56	628	487	0.80	8.98	105.7 ± 1.7	0.0435 ± 7.8	0.0992 ± 7.9	0.01654 ± 1.6	0.204	
3.1	0.13	537	425	0.82	7.58	104.9 ± 1.7	0.0498 ± 4.7	0.1126 ± 5	0.01641 ± 1.6	0.327	
4.1	0.00	1050	1383	1.36	14.9	105.6 ± 1.6	0.0491 ± 2.8	0.1119 ± 3.2	0.01652 ± 1.5	0.468	
5.1	0.81	1073	987	0.95	15.1	104.1 ± 1.6	0.0445 ± 8	0.0999 ± 8.2	0.01628 ± 1.5	0.189	
6.1	0.73	364	290	0.82	5.09	103.2 ± 1.8	0.0433 ± 9.7	0.0962 ± 9.9	0.01614 ± 1.7	0.174	
7.1	0.00	503	440	0.90	7.21	106.6 ± 1.7	0.0487 ± 4	0.1119 ± 4.3	0.01668 ± 1.6	0.380	
7.2	0.46	416	246	0.61	5.81	103.4 ± 1.7	0.0469 ± 6.5	0.1045 ± 6.7	0.01617 ± 1.7	0.246	
8.1	0.00	826	1079	1.35	11.7	105.5 ± 1.6	0.0471 ± 3.2	0.1072 ± 3.6	0.0165 ± 1.5	0.428	
9.1	0.24	1098	1266	1.19	15.4	104.4 ± 1.5	0.0475 ± 3.7	0.1071 ± 4	0.01633 ± 1.5	0.375	

Таблица 2. Изотопное U-Pb-датирование цирконов габбро-монцо-диоритов Г-9

Примечание. Рb_c и Рb* – общий и радиогенный свинец соответственно.

Рис. 3. Катодолюминесцентные изображения цирконов (а), и их диаграмма конкордий (б) для всех совокупных анализов цирконов габбро-монцо-диоритов (Г-9), размер эллипсов соответствует величине 2σ, средневзвешенный результат показан утолщенным (прерывистым) эллипсом; в – диаграмма распределения РЗЭ в цирконах из габбро-монцонитов (Г-9), концентрация элементов, нормированных к хондриту [14]. Условные обозначения соответствуют точкам анализа. Построение проведено по JSOPLOT [9].

габброидов — резким повышением содержания плагиоклаза, темноцветных минералов и т.д.

Одной из важных задач предполагалось определение возраста магматических пород и прежде всего габброидов, с которыми связано золотое оруденение.

Изотопное датирование U–Pb (SHRIMP)-методом по цирконам проводили в Центре изотопных исследований (ЦИИ) ВСЕГЕИ. Кроме того, в цирконах были определены концентрации REE с целью установления модальности популяции дат, а также определения природы рудоносных расплавов и степени метасоматических изменений цирконов [7]. Цирконы из габбро-монцодиоритов изучены по методике, разработанной ЦИИ ВСЕГЕИ (табл. 2; рис. 3). Изотопные измерения велись с использованием стандартных процедур по методике, описанной в [8, 9]. В табл. 2 представлены результаты измерения, а на рис. 3 они отображены графически. Установлено, что конкордантный средневзвешенный возраст монцо-габбро-диоритов равен 105.3 \pm \pm 1 млн лет, при разбросе дат от 102.3 \pm 1.8 до 106.6 \pm 1.7 млн лет, что, возможно, связано с небольшой потерей Рb. Это было подтверждено катодолюминесцентным исследованием цирконов, которое показало небольшие метасоматические изменения по краям кристаллов.

Распределение REE (рис. 3; табл. 3) в цирконах показало характерный спектр — обеднение LREE относительно тяжелых, свойственное магматическим породам, за исключением некоторых цирконов (№ 8.1 и 5.1), для которых отмечается высокая концентрация La относительно Ce, не согласующееся со средними La/Ce-отношениями, что, возможно, является следствием воздействия

МАЛИНОВСКАЯ ЗОЛОТОРУДНАЯ МАГМАТИЧЕСКАЯ СИСТЕМА

Точка анализа	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
1.1	0.080	5.781	0.357	5.331	8.230	0.573	31.744	11.102	139.503	49.853	190.896	37.590	323.956	60.897
2.1	0.011	4.282	0.159	2.391	3.673	0.282	18.116	6.754	69.541	25.439	116.803	23.601	219.271	43.345
3.1	0.019	7.567	0.206	3.215	6.618	0.392	28.281	9.840	108.060	37.949	153.991	31.780	258.426	47.021
4.1	0.067	5.714	0.333	5.421	9.322	1.118	62.716	21.406	256.733	93.359	389.670	75.940	610.951	108.385
5.1	0.683	11.055	0.696	7.604	9.866	0.908	34.653	11.694	153.038	58.814	271.507	56.767	508.284	87.488
6.1	0.052	7.257	0.427	6.375	9.179	0.768	34.919	10.867	124.676	44.927	178.305	35.841	299.984	52.822
7.1	0.082	6.458	0.412	5.183	8.583	0.818	45.764	14.395	174.929	66.754	289.684	55.593	458.087	77.795
7.2	0.039	7.071	0.315	4.541	6.726	0.483	31.132	10.988	126.932	46.023	188.694	39.667	349.255	65.661
8.1	4.139	9.927	1.251	5.212	6.005	0.412	25.289	8.592	106.662	43.790	196.953	37.580	305.081	51.430
9.1	0.107	8.395	0.400	4.915	8.567	0.812	41.564	14.055	179.407	72.778	311.371	62.821	488.051	80.989

Таблица 3. Концентрация REE (г/т) в цирконах габбро-монцо-диоритов (Г-9)

флюидов относительно расплавов [7]. Этот факт можно объяснить с позиции высокого флюидного режима при генерации габбромонцо-диоритового расплава. В определенной мере это подтверждается содержанием магматических флюидов: H₂O, F и Cl в роговых обманках и биотитах. Изотопные соотношения Hf дают возможность судить о генерации расплава из мантии и возможной контаминации ее породами коры [10].

Данные ¹⁸⁶Hf/¹⁸²Hf для габбро-монцо-диоритов изученной золоторудной РМС дают возможность полагать, что генерация расплавов проходила при минимальном участии пород коры.

Рис. 4. Изотопная эволюция Нf в хондритовом резервуаре [10].

а – диаграмма частичного плавления в хондритовом резервуаре во время T1, дающая жидкость и остаточные твердые фазы. Последующее плавление приводит к образованию магм с высоким 176 Hf/ 177 Hf. Плавление коровых пород (T2 – повторное плавление) порождает обеднение 176 Hf. Смешение этих расплавов определяет степень контаминированности мантийных магм, выраженную отношениями изотопов Hf; б – отношения изотопов Hf в габброидах Малиновской золоторудной PMC; в – диаграмма относительной вероятности значений Hf в породе (Г-9).

ДОКЛАДЫ АКАДЕМИИ НАУК том 452 № 1 2013

Точка анализа	Возраст, млн лет	¹⁷⁶ Yb/ ¹⁷⁷ Hf	Err	¹⁷⁶ Lu/ ¹⁷⁷ Hf	Err	¹⁷⁶ Hf/ ¹⁷⁷ Hf	Err
1.1	102	0.0547	0.0052	0.004010	0.000333	0.282914	0.000369
2.1	105	0.0269	0.0014	0.000965	0.000012	0.282931	0.000039
3.1	104	0.0107	0.0013	0.000421	0.000014	0.282915	0.000032
4.1	105	0.0620	0.0032	0.002503	0.000028	0.282957	0.000113
5.1	104	0.0520	0.0032	0.002134	0.000031	0.283053	0.000083
6.1	103	0.0261	0.0005	0.001103	0.000007	0.282812	0.000040
7.1	106	0.0247	0.0005	0.001069	0.000007	0.282837	0.000051
7.2	103	0.0204	0.0007	0.000722	0.000007	0.282899	0.000031
8.1	105	0.0401	0.0006	0.001725	0.000030	0.282945	0.000068
9.1	104	0.0407	0.0016	0.001763	0.000026	0.282930	0.000064

Таблица 4. Изотопные отношения 176 Hf/ 177 Hf в цирконах габбро-монцо-диоритов (Г-9)

Изотопные отношения характеризуются положительными значениями (єНf) (рис. 4; табл. 4) изотопной эволюции гафния [10] и предполагают, что расплавы генерировались в условиях обедненной мантии при высоком флюидном давлении. Это подтверждается и присутствием водосодержащих минеральных ассоциаций в габбро-монцо-диоритах [11].

Из приведенных выше материалов представляется возможным сделать следующие выводы.

1. Магматические образования Малиновского золоторудного месторождения формировались как единая рудно-магматическая структура, сопряженная со сдвиговой системой, представляющей собой зону скольжения и развития сосдвиговых зон растяжения, уходящих глубоко в мантию.

2. Генерация расплавов проходила в условиях обедненного мантийного резервуара при высоком флюидном давлении с одновременным проявлением кристаллизационной дифференциации и участием ликвационных процессов, способствующих расслоению, где ликвантом является Р и, возможно, S, концентрация которой возрастает в габбоидах до 0.5–0.6 мас. %, а содержание Р достигало 0.5 мас. %.

3. Можно полагать, что важную роль в магматогенном рудогенезе играла растворимость S в расплаве в широком интервале глубин верхней мантии при участии водосодержащих флюидов и Р. Повышенные концентрации P в базальтоидах могли способствовать ликвационным процессам в расплавах в глубинном очаге. Это позволяет рассматривать базальтоиды как остаточные расплавы. При высоких давлениях этот эффект усиливается [6].

4. Учитывая U-Pb-датирования магматических пород Малиновского золоторудного проявления, а также данные по другим крупнообъемным РМС (Восток-2), Малиновское – вольфрамовое и Лазурное, формирование которых также проходило в близком временном интервале [4, 12, 13], соответствующем времени проявления магматизма (татибинской магматической серии), можно полагать, что зона Центрально-Сихотэ-Алинского разлома представляет собой важнейшую структуру генерации глубинных расплавов и проявления монцонитового магматизма и многопрофильного оруденения - золотого, вольфрам-медного и медно-порфирового с золотом в зависимости от степени корового-мантийного взаимодействия. Для золотого оно было минимальным.

Работа выполнена при финансовой поддержке ОНЗ РАН и ДВО РАН (проект № 12–1–П27–01).

СПИСОК ЛИТЕРАТУРЫ

- 1. Тектоника окраины Азии. Магматизм / Под ред. С.С. Зимина, В.Г. Сахно, И.Н. Говорова. М.: Наука, 1991. 269 с.
- 2. *Ханчук А.И.* Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. С. 5–34.
- 3. Сахно В.Г. Позднемезозойско-кайнозойский континентальный вулканизм Востока Азии. Владивосток: Дальнаука, 2001. 338 с.
- 4. Сахно В.Г., Коваленко С.В., Аленичева А.А // ДАН. 2011. Т. 438. № 1. С. 82–90.
- 5. *Степанов В.А.* // Вестн. АМГУ. 2012. В. 59. С. 109–116.

ДОКЛАДЫ АКАДЕМИИ НАУК том 452 № 1 2013

- 6. *Горбачев Н.С.* Флюидно-магматические взаимодействия в сульфидно-силикатных системах. М.: Наука, 1989, 128 с.
- 7. *Hoskin P.V., Schaltegger U. //* Revs Miner. and Geochem. 2003. V. 53. P. 27–62.
- 8. Willims J.S. // Revs Econ. Geol. 1988. V. 7. P. 1-35.
- 9. *Ludwig K.R.* // Berkeley Geochronol. Center Spec. Publ. 2003. V. 4. 70 p.
- Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с.
- 11. *Saunders A.D., Rogers G., Marriner G.F., et al.* // Volcanol. Geotherm. Res. 1987. V. 32. P. 233–245.
- 12. Сахно В.Г., Гвоздев В.И., Аленичева А.А., Зарубина Н.В. // ДАН. 2012. Т. 443. № 1. С. 84–91.
- 13. Аленичева А.А., Сахно В.Г., Салтыкова Т.Е. // ДАН. 2008. Т. 420. № 1. С. 70–75.
- 14. *McDounough W.F., Sun S.S.* //Chem. Geol. 1995. V. 120. P. 223–253.
- 15. Wood D.A. // J. Geol. 1979. № 3. P. 499–503.