LARGE IGNEOUS PROVINCES AND MASS EXTINCTIONS
- DSpace Home
- →
- Геология России
- →
- ELibrary
- →
- View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
dc.contributor.author | Wignall P.B. | |
dc.date.accessioned | 2021-04-05T02:40:10Z | |
dc.date.available | 2021-04-05T02:40:10Z | |
dc.date.issued | 2001 | |
dc.identifier | https://www.elibrary.ru/item.asp?id=14003157 | |
dc.identifier.citation | Earth-Science Reviews, 2001, 53, 1-2, 1-33 | |
dc.identifier.issn | 0012-8252 | |
dc.identifier.uri | https://repository.geologyscience.ru/handle/123456789/27274 | |
dc.description.abstract | The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capitanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always sufficient recovery time between individual eruptions to negate any cumulative effect of successive flood basalt eruptions. Instead, the environmental and climatic damage must be attributed to single-pulse gas effusions. It is notable that the best-constrained examples of death-by-volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinction scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. Intriguingly, many voluminous large igneous province eruptions, especially those of the Cretaceous oceanic plateaus, are not associated with significant extinction losses. This suggests that the link between the two phenomena may be controlled by a range of factors, including continental configuration, the latitude, volume, rate, and duration of eruption, its style and setting (continental vs. oceanic), the preexisting climate state, and the resilience of the extant biota to change. | |
dc.subject | Frasnian | en |
dc.subject | Jurassic | en |
dc.subject | Permian | en |
dc.subject | Cretaceous | en |
dc.subject | Famennian | en |
dc.subject | Toarcian | en |
dc.subject | Devonian | en |
dc.subject | Triassic | en |
dc.title | LARGE IGNEOUS PROVINCES AND MASS EXTINCTIONS | |
dc.type | Статья | |
dc.subject.age | Палеозой::Пермская | ru |
dc.subject.age | Paleozoic::Devonian::Upper::Famennian | en |
dc.subject.age | Палеозой::Девонская::Верхний::Франский | ru |
dc.subject.age | Mesozoic::Jurassic::Lower::Toarcian | en |
dc.subject.age | Палеозой::Девонская::Верхний::Фаменский | ru |
dc.subject.age | Paleozoic::Devonian | en |
dc.subject.age | Палеозой::Девонская | ru |
dc.subject.age | Mesozoic::Triassic | en |
dc.subject.age | Мезозой::Юрская | ru |
dc.subject.age | Мезозой::Меловая | ru |
dc.subject.age | Mesozoic::Jurassic | en |
dc.subject.age | Мезозой::Юрская::Нижний::Тоарский | ru |
dc.subject.age | Paleozoic::Permian | en |
dc.subject.age | Мезозой::Триасовая | ru |
dc.subject.age | Mesozoic::Cretaceous | en |
dc.subject.age | Paleozoic::Devonian::Upper::Frasnian | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
ELibrary
Метаданные публикаций с сайта https://www.elibrary.ru