TELLURIUM ISOTOPIC COMPOSITION OF THE EARLY SOLAR SYSTEM - A SEARCH FOR EFFECTS RESULTING FROM STELLAR NUCLEOSYNTHESIS, 126SN DECAY, AND MASS-INDEPENDENT FRACTIONATION

Show simple item record

dc.contributor.author Fehr M.A.
dc.contributor.author Rehkämper M.
dc.contributor.author Halliday A.N.
dc.contributor.author Wiechert U.
dc.contributor.author Hattendorf B.
dc.contributor.author Günther D.
dc.contributor.author Ono S.
dc.contributor.author Eigenbrode J.L.
dc.contributor.author Rumble III D.
dc.date.accessioned 2023-11-12T04:40:07Z
dc.date.available 2023-11-12T04:40:07Z
dc.date.issued 2005
dc.identifier https://www.elibrary.ru/item.asp?id=12092056
dc.identifier.citation Geochimica et Cosmochimica Acta, 2005, 69, 21, 5099-5112
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/41683
dc.description.abstract New precise Te isotope data acquired by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) are presented for selected extraterrestrial and terrestrial materials. Bulk samples of carbonaceous, ordinary and enstatite chondrites as well as the metal and sulfide phases of iron meteorites were analyzed to search for nucleosynthetic isotope anomalies and to find evidence of formerly live 126Sn, which decays to 126Te with a half-life of 234,500 yr. None of the meteorites show evidence of mass dependent Te isotope fractionations larger than 2‰ for δ126/128Te. Following internal normalization of the data to 125Te/128Te, the Te isotope ratios of all analyzed meteorites were found to be identical to a terrestrial standard, within uncertainties. This provides evidence that the regions of the solar disk that were sampled during accretion of the meteorite parent bodies were well mixed and homogeneous on a large scale, with respect to Te isotopes. The data acquired for bulk carbonaceous chondrites indicate that the initial 126Sn/118Sn ratio of the solar system was <4 × 10−5, but this is dependent on the assumption that no redistribution of Sn and Te occurred since the start of the solar system. Five Archean sedimentary sulfides that display both mass dependent and mass-independent isotope effects for S yield internally normalized Te isotope data, which indicate that mass-independent Te isotope effects are absent. The mass dependent fractionations in these samples are constrained to be less than ∼1‰ for δ126/128Te.
dc.title TELLURIUM ISOTOPIC COMPOSITION OF THE EARLY SOLAR SYSTEM - A SEARCH FOR EFFECTS RESULTING FROM STELLAR NUCLEOSYNTHESIS, 126SN DECAY, AND MASS-INDEPENDENT FRACTIONATION
dc.type Статья
dc.identifier.doi 10.1016/j.gca.2005.04.020


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record