COPPER PARTITIONING IN A MELT-VAPOR-BRINE-MAGNETITE-PYRRHOTITE ASSEMBLAGE

Show simple item record

dc.contributor.author Simon A.C.
dc.contributor.author Pettke T.
dc.contributor.author Candela P.A.
dc.contributor.author Piccoli P.M.
dc.contributor.author Heinrich C.A.
dc.date.accessioned 2024-04-20T09:00:50Z
dc.date.available 2024-04-20T09:00:50Z
dc.date.issued 2006
dc.identifier https://elibrary.ru/item.asp?id=12091610
dc.identifier.citation Geochimica et Cosmochimica Acta, 2006, 70, 22, 5583-5600
dc.identifier.issn 0016-7037
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/43736
dc.description.abstract The effect of sulfur on the partitioning of Cu in a melt-vapor-brine ? magnetite ? pyrrhotite assemblage has been quantified at 800 °C, 140 MPa, fO2 = nickel-nickel oxide (NNO), log fS2 = - 3.0 (i.e., on the magnetite-pyrrhotite curve at NNO), log fH2 S = - 1.3 and log fSO2 = - 1. All experiments were vapor + brine saturated. Vapor and brine fluid inclusions were trapped in silicate glass and self-healed quartz fractures. Vapor and brine are dominated by NaCl, KCl and HCl in the S-free runs and NaCl, KCl and FeCl2 in S-bearing runs. Pyrrhotite served as the source of sulfur in S-bearing experiments. The composition of fluid inclusions, glass and crystals were quantified by laser-ablation inductively coupled plasma mass spectrometry. Major element, chlorine and sulfur concentrations in glass were quantified by using electron probe microanalysis. Calculated Nernst-type partition coefficients (?2?) for Cu between melt-vapor, melt-brine and vapor-brine are DCuv / m = 63 ? 31, DCub / m = 240 ? 80, and DCuv / b = 0.27 ? 0.10, respectively, in the S-free system. The partition coefficients (?2?) for Cu between melt-vapor, melt-brine and vapor-brine are DCuv/ m = 316 ? 22, DCub / m = 443 ? 68, and DCuv / b = 0.69 ? 0.16, respectively, in the S-bearing system. Apparent equilibrium constants (?1?) describing Cu and Na exchange between vapor and melt and brine and melt were also calculated. The values of KCu,Nav / m are 34 ? 21 and 128 ? 29 in the S-free and S-bearing runs, respectively. The values of KCu,Nab/m are 33 ? 22 and60 ? 5 in the S-free and S-bearing runs, respectively. The data presented here indicate that the presence of sulfur increases the mass transfer of Cu into vapor from silicate melt. Further, the nearly threefold increase in DCuv / b suggests that Cu may be transported as both a chloride and sulfide complex in magmatic vapor, in agreement with hypotheses based on data from natural systems. Most significantly, the data demonstrate that the presence of sulfur enhances the partitioning of Cu from melt into magmatic volatile phases. ? 2006.
dc.subject COPPER
dc.subject FLUID COMPOSITION
dc.subject FLUID INCLUSION
dc.subject MASS TRANSFER
dc.subject PARTITIONING
dc.subject SULFUR
dc.title COPPER PARTITIONING IN A MELT-VAPOR-BRINE-MAGNETITE-PYRRHOTITE ASSEMBLAGE
dc.type Статья
dc.identifier.doi 10.1016/j.gca.2006.08.045


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record