Abstract:
Kriging-based geostatistical models require a semivariogram model. Next to the initial decision of stationarity, the choice of an appropriate semivariogram model is the most important decision in a geostatistical study. Common practice consists of fitting experimental semivariograms with a nested combination of proven models such as the spherical, exponential, and Gaussian models. These models work well in most cases; however, there are some shapes found in practice that are difficult to fit. We introduce a family of semivariogram models that are based on geometric shapes, analogous to the spherical semivariogram, that are known to be conditional negative definite and provide additional flexibility to fit semivariograms encountered in practice. A methodology to calculate the associated geometric shapes to match semivariograms defined in any number of directions is presented. Greater flexibility is available through the application of these geometric semivariogram models.