Abstract:
Fitting semivariograms with analytical models can be tedious and restrictive. There are many smooth functions that could be used for the semivariogram; however, arbitrary interpolation of the semivariogram will almost certainly create an invalid function. A spectral correction, that is, taking the Fourier transform of the corresponding covariance values, resetting all negative terms to zero, standardizing the spectrum to sum to the sill, and inverse transforming is a valuable method for constructing valid discrete semivariogram models. This paper addresses some important implementation details and provides a methodology to working with spectrally corrected semivariograms.