KNICKPOINTS AND HILLSLOPE FAILURES: INTERACTIONS IN A STEADY-STATE EXPERIMENTAL LANDSCAPE

Show simple item record

dc.contributor.author Bigi A.
dc.contributor.author Hasbargen L.E.
dc.contributor.author Montanari A.
dc.contributor.author Paola C.
dc.date.accessioned 2025-03-22T08:33:36Z
dc.date.available 2025-03-22T08:33:36Z
dc.date.issued 2006
dc.identifier https://elibrary.ru/item.asp?id=22163876
dc.identifier.citation Special Paper of the Geological Society of America, 2006, 398, 398. С. 2, 295-307
dc.identifier.issn 0072-1077
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/48608
dc.description.abstract Hillslope stability depends strongly on local conditions, such as lithology and rock strength, degree of saturation, and critical slope angle. Common triggers for slope failure include severe storms, earthquakes, and removal of material from the toe of the hillslope. In this paper, we focus on the latter, in a model in which streams incise the toe and destabilize the hillslope. We investigate possible interactions between migrating knickpoints and hillslope failures in a small-scale, steadily eroding experimental landscape that experiences steady rainfall and base-level fall conditions. We monitored knickpoint propagation and hillslope failure activity with time lapse photography over a time period in which numerous knickpoints migrated through the drainage basin. We then investigated temporal and spatial relationships between hillslope failures and knickpoints and compared these results to Monte Carlo simulations of hillslope failure distributions. When focusing along a single channel, we found that, statistically (significant at the 98% confidence level), a greater number of failures occur downstream from a migrating knickpoint. These results highlight both the organized and random nature of hillslope and knickpoint interactions. ©2006 Geological Society of America.
dc.subject EVOLUTION
dc.subject HILLSLOPE FAILURE
dc.subject KNICKPOINTS
dc.subject LANDSLIDE TRIGGERING
dc.title KNICKPOINTS AND HILLSLOPE FAILURES: INTERACTIONS IN A STEADY-STATE EXPERIMENTAL LANDSCAPE
dc.type Статья
dc.identifier.doi 10.1130/2006.2398(18)


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record