KNICKPOINTS AND HILLSLOPE FAILURES: INTERACTIONS IN A STEADY-STATE EXPERIMENTAL LANDSCAPE
- DSpace Home
- →
- Геология России
- →
- ELibrary
- →
- View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
dc.contributor.author | Bigi A. | |
dc.contributor.author | Hasbargen L.E. | |
dc.contributor.author | Montanari A. | |
dc.contributor.author | Paola C. | |
dc.date.accessioned | 2025-03-22T08:33:36Z | |
dc.date.available | 2025-03-22T08:33:36Z | |
dc.date.issued | 2006 | |
dc.identifier | https://elibrary.ru/item.asp?id=22163876 | |
dc.identifier.citation | Special Paper of the Geological Society of America, 2006, 398, 398. С. 2, 295-307 | |
dc.identifier.issn | 0072-1077 | |
dc.identifier.uri | https://repository.geologyscience.ru/handle/123456789/48608 | |
dc.description.abstract | Hillslope stability depends strongly on local conditions, such as lithology and rock strength, degree of saturation, and critical slope angle. Common triggers for slope failure include severe storms, earthquakes, and removal of material from the toe of the hillslope. In this paper, we focus on the latter, in a model in which streams incise the toe and destabilize the hillslope. We investigate possible interactions between migrating knickpoints and hillslope failures in a small-scale, steadily eroding experimental landscape that experiences steady rainfall and base-level fall conditions. We monitored knickpoint propagation and hillslope failure activity with time lapse photography over a time period in which numerous knickpoints migrated through the drainage basin. We then investigated temporal and spatial relationships between hillslope failures and knickpoints and compared these results to Monte Carlo simulations of hillslope failure distributions. When focusing along a single channel, we found that, statistically (significant at the 98% confidence level), a greater number of failures occur downstream from a migrating knickpoint. These results highlight both the organized and random nature of hillslope and knickpoint interactions. ©2006 Geological Society of America. | |
dc.subject | EVOLUTION | |
dc.subject | HILLSLOPE FAILURE | |
dc.subject | KNICKPOINTS | |
dc.subject | LANDSLIDE TRIGGERING | |
dc.title | KNICKPOINTS AND HILLSLOPE FAILURES: INTERACTIONS IN A STEADY-STATE EXPERIMENTAL LANDSCAPE | |
dc.type | Статья | |
dc.identifier.doi | 10.1130/2006.2398(18) |
Files in this item
This item appears in the following Collection(s)
-
ELibrary
Метаданные публикаций с сайта https://www.elibrary.ru