УДК [550.42:552.323.6](571.56)

МОДЕЛИРОВАНИЕ ЭТАПОВ ИЗОТОПНОЙ МОДИФИКАЦИИ МАНТИИ

А.И Зайцев

Институт геологии алмаза и благородных металлов СО РАН, г. Якутск

В работе рассмотрен новый методический подход к моделированию параметров Rb-Sr системы мантийных пород для идентификации возрастных этапов модификации мантийного вещества. Приведена схема расчетов. На примере кимберлитов и мантийных пород из ксенолитов в кимберлитовых трубках Куойкского поля Якутской кимберлитовой провинции установлены этапы модификации мантии в регионе — 2200, 716—780 и 360 млн лет назад и формирование протолитов для кимберлитовых магм поля 650—600 млн лет назад.

Ключевые слова: модель, Rb-Sr изотопная система, кимберлиты, мантия, Якутия.

ВВЕДЕНИЕ

Процессы, протекающие в глубинах недр, и в первую очередь в мантии, играют важную роль в геологической истории Земли. Они определяют многие важные черты ее геологического развития, особенности геодинамического режима регионов и их металлогении. Геологическая история регионов в первую очередь прослеживается по возрасту геологических образований, выведенных на поверхность. Однако им предшествуют с некоторым разрывом во времени процессы в более глубоких горизонтах планеты, и прежде всего в мантии, которые и приводят к образованию пород земной коры независимо от их генезиса и источника.

Возраст проявлений мантийных процессов обычно устанавливается при изучении производных мантии, зафиксированных на современной поверхности Земли, или ксенолитов глубинных пород, вынесенных мантийными магмами (кимберлитами, щелочными базальтами и др.). К сожалению, возраст пород ксенолитов не может быть установлен достаточно достоверно геологическими методами, и для его определения необходим комплекс изотопных методов датирования, которые имеют свои ограничения и требования к этому материалу, выполняемые не всегда достаточно полно. Кроме того, в связи со спецификой физико-химических условий, имеющих место в мантии, интерпретация изотопных датировок ее производных имеет свои нюансы и очень затруднительна.

В настоящее время для мантийных пород накоплено достаточно много материала по различным их

изотопным систематикам, нередко сопровождающегося данными по различным типам модельных и изохронных датировок. Модельная обработка этих данных позволяет выявить некоторые гипотетические параметры мантии [6, 7]. В качестве основных параметров протолитов мантийных магм рассматриваются величины отклонения изотопного состава того или иного элемента (є) и отношения дочернего к материнскому элементу в породах (f) относительно таковых в примитивных мантийных резервуарах на период времени их формирования. Формализация этих понятий и способы нахождения величин приведены в работах [6, 7]. Нами сделана попытка на примере Rb-Sr систематики предложить новый прием моделирования этих параметров с целью установления возможности идентификации возрастных этапов модификации мантии. Этот подход вполне применим и для других изотопных систем (Sm-Nd, Re-Os, Lu-Hf и т.д.).

МЕТОДИКА РАССЧЕТОВ

Предлагаемый модельный подход предполагает полистадийную эволюция Rb—Sr системы пород в их источнике. Поэтому все решения проводятся относительно параметров этого предполагаемого протолита и возраста событий его образования или модификации, что предшествовали времени формирования изучаемых пород. Принятая нотация и уравнения для модели заимствованы из работы [7].

Сущность предлагаемого приема моделирования заключается в следующем.

Отбираются образцы с определенного объекта с известными значениями отношений ${}^{87}{
m Rb}/{}^{86}{
m Sr}$ и

138 Зайцев

 87 Sr/ 86 Sr и возраста. Для каждого образца определяются первичные параметры системы: первичное изотопное отношения стронция (I_0) и современные значения $f_{\rm Rb/Sr}$ и $\varepsilon_{\rm Sr(0)}$. Их расчеты проводятся по следующим уравнениям:

 $I_0 = I_{_{\rm H3M}} - {}^{87}{\rm Rb}/{}^{86}{\rm Sr} \cdot ({\rm e}^{\lambda {\rm T}} - {\rm I})$, где $I_{_{\rm H3M}}$ – измеренный изотопный состав стронция в образце, ${\rm T}$ – возраст образца, млн лет, а λ – константа распада ${}^{87}{\rm Rb}$, равная $1,42\cdot 10^{-11}$ лет $^{-1}$.

$$\begin{split} &f_{_{Rb/S}}{_{r}}^{}={^{87}}Rb/^{86}Sr_{_{(06p)}}/\,\,^{87}Rb/^{86}Sr_{_{(UR)}}{-}1;\\ &\epsilon_{_{Sr(0)}}^{}=({^{87}}Sr/^{86}Sr_{_{(0)}}/\,^{87}\,Sr\,\,/^{86}Sr_{_{(UR)}}{-}1)\cdot 10^{4}. \end{split}$$

Параметры f_{Rb/Sr^7} ε_{Sr} — характеризуют величину отклонения $^{87}Rb/^{86}Sr$ и изотопного состава стронция пород от таковых в однородном примитивном мантийном резервуаре (UR) на определенный период его времени. Современные значения этих параметров Rb—Sr системы в UR: $^{87}Sr/^{86}Sr = 0.7045$, $^{87}Rb/^{86}Sr = 0.0827$ [7].

Далее все расчеты производятся относительно источника пород. Параметр $f_s(T_s)$ ($f_{Rb/Sr}$ в источнике пород на определенный период времени (T_s) его существования) определяется по уравнению: $\mathbf{f}_s(T_s) = \mathbf{\epsilon}_{sr}(T_x)/\mathbf{Q}_{sr}\cdot(T_s-T_x)$. Параметр $\mathbf{\epsilon}_{sr}(T_x)$ отвечает моменту формирования пород (T_x) и находится из уравнения: $\mathbf{\epsilon}_{sr}(T_x) = \mathbf{\epsilon}_{sr(0)} - \mathbf{Q}_{sr}\cdot\mathbf{f}_{Rb/Sr}\cdot\mathbf{T}_x$. Величина \mathbf{Q}_{sr} по [7] равна 16,70 млрд лет $^{-1}$.

На этом этапе расчетов определяются значения $f_s(T_s)$ для задаваемых интервалов времени T_s и составляется корреляционная матрица пары $f_s(T_s)$ — I_o , на основе которой вычисляется коэффициент корреляции связи между ними и ее уравнение линейной регрессии. Полученные значения отсечения на оси ординат (I_o) отвечают величине первичного изотопного отношения стронция (I_o^s) в источнике на период его образования или модификации геологическими событиями. Значение угла наклона линии регрессии (b) отвечает выражению (I_o - I_o^s)/ $I_s(T_s)$.

Продолжительность жизни протолита от времени его образования или модификации до момента формирования из него пород определяется уравнением:

$$\Delta T_s = \varepsilon_{sr}(T_s) / f_s(T_s) \cdot Q_{sr}$$

Подставляя в него параметры уравнения регрессии, приводим его к удобному для решения виду:

$$\Delta T_s = T_s - \epsilon_{s_r}(T_s) \cdot b / (I_0 - I_0^s) \cdot 16,70$$

Совокупный возраст этого события равен $(T_s)=\Delta T_s+T_x$. Расчеты параметров предполагаемого протолита пород и его возраста производятся итерактивно, задавая различные значения T_s . Одновременно рассчитывается величина коэффициента вариации (T_s) для каждого заданного T_s . Далее проверяется характер распределения величин коэффициента вариации (T_s) в интервале всех значений T_s (графически

Таблица 1. Rb-Sr данные для кимберлитов Куойкского поля.

No	Трубка	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	возраст	I_0	$f_{Rb/Sr}$	ε (T _x)
1	Обнаженная	0,085	0,7060	135	0,70585	0,03	20,75
2	То же	0,0786	0,7057	135	0,7055	-0,05	16,73
3	То же	0,0859	0,7048	161	0,7046	0,039	4,11
4	То же	7,5267	0,7215	139	0,7069	90,012	36,39
5	Людмила	0,2679	0,7042	174	0,7035	2,24	-11,3
6	Первомайская	0,1687	0,7040	133	0,7037	1,040	-9,141
7	Рубин	0,1332	0,7054	141	0,7051	0,611	11,30
8	Ан-43/77	0,7083	0,2004	159	0,7078	1,423	49,51
9	То же	0,7055	0,3908	147	0,7047	3,73	5,29
10	Ан-36/77	0,7081	0,3391	159	0,7073	3,10	42,41
11	То же	0,7047	0,3704	173	0,7038	3,48	-7,05
12	AH-23/78	0,7104	0,044	166	0,7103	-0,64	84,85
13	Ан-30/77	0,7075	0,3595	153	0,7067	3,35	33,79
14	То же	0,7049	0,4009	148	0,7040	3,85	-4,63
15	Серая	0,70387	0,1072	140	0,70366	0,296	-9,59
16	Дьянга	0,7062	0,1365	240	0,7057	0,651	24,05
17	То же	0,7059	0,134	249	0,7054	0,62	16,94
18	То же	0,7054	0,1466	237	0,7049	0,773	9,64
19	Гречанка	0,7054	0,1027	157	0,7052	0,242	12,56
20	Придорожная	0,7077	0,2187	338	0,7066	1,64	35,48
21	Жила-87	0,7048	0,0505	173	0,7046	-0,659	5,72
22	То же	0,7056	0,0176	173	0,7056	-0,79	18,51
23	Снежная-1 (дайка)	0,7060	0,0308	156	0,7059	-0,63	22,48
24	То же	0,7060	0,0227	159	0,7060	-0,73	23,95
25	Мгришница	0,7046	0,0716	161	0,7044	-0,13	1,27
26	Монтичеллитовая	0,7044	0,1718	148	0,70404	1,077	-4,066

или в табличной форме). Значение \mathbf{T}_s , на которые приходятся минимумы величин коэффициента вариации (\mathbf{T}_s), интерпретируется нами как время события модификации или возраста мантийного протолита, а величина (\mathbf{T}_s) при минимуме рассматривается как возраст последнего наиболее интенсивного события преобразования Rb—Sr систем пород протолита.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Рассмотрим применение предлагаемой методики к полученным нами Rb—Sr данным по кимберлитовым породам Куойкского поля (табл. 1). Пример матрицы для расчета искомых параметров источника приведен в табл. 2 для некоторых заданных значений возраста \mathbf{T}_{s} . Данные расчетов модельных параметров источника и его возраста для различных интервалов времени суммированы в табл. 3. Сопоставление значений их коэффициентов вариации показывает, что минимум значений коэффициентов вариации вели-

чин (T_s) лежит в интервале величин T_s 600–650 млн лет (9,77-9,81%) и в нашей интерпретации определяет возраст протолита для кимберлитовых пород поля с последним событием его модификации в среднем палеозое 360 млн лет назад. В то же время, Sm-Nd модельный возраст (Т_{DM}) протолитов для кимберлитов Куойкского поля $(4\overline{50} - 540 \text{ млн лет, } [3])$ несколько моложе, чем рассчитанный нами (600 - 650 млн лет). Для источника пород рассчитанная величина первичного изотопного состава стронция (I_0^*) равна 0,7043 ($\varepsilon_{sr} = 7.17 - 8.00$). Это выше, чем в примитивной мантии на период времени 600-650 млн лет, и в совокупности с высокой величиной f(T) в источнике (2,15-2,42) подразумевает, что кимберлитовый протолит в момент своего формирования был обогащен литофильными элементами (${}^{87}\text{Rb}/{}^{86}\text{Sr} = 0.26-0.283$), а первичная природа его, идентифицированная по Sm-Nd систематике кимберлитов поля ($\epsilon_{Nd} = 2,7-4,7$), отвечает деплетированной мантии. Масштабная моди-

Таблица 2. Типовая матрица для расчета параметров источника кимберлитов Куойкского поля.

	I_0	-(T.)	т	$T_s = 400$ млн лет		$T_s = 600$ млн лет			$T_s = 800$ млн лет			
Νō		$\varepsilon(T_x)$	T_x	$F_s(T_s)$	ΔT_s	(T_s)	$F_s(T_s)$	ΔT_s	(T_s)	$F_s(T_s)$	ΔT_s	(T_s)
1	0,7058	20,75	135	3.7804	222	357	2,1544	202	337	1,5065	203	338
2	0,7055	16,73	135	4,6687	245	380	2,6721	219	353	1,8684	226	361
3	0,7046	4,11	161	1,0297	868	1029	0,5606	189	350	0,3851	216	377
4	0,7069	36,39	139	8,3488	256	395	4,7268	204	343	3,2966	200	339
5	0,7035	-11,3	174	-2,994	316	490	-1,5884	212	386	-1,0809	192	366
6	0,7037	-9,141	133	-2,0501	318	451	-1,1721	185	318	-0,8206	144	277
7	0,7051	11,30	141	2,6125	166	306	1,4742	194	335	1,0268	196	336
8	0,7078	49,51	159	12,3015	261	420	6,7226	200	360	4,6251	193	352
9	0,7047	5,29	147	1,2520	-1618	-1471	0,6993	210	357	0,4851	235	382
10	0,7073	42,41	159	10,5374	258	417	5,7586	200	359	3,9618	194	353
11	0,7038	-7,05	173	-1,8597	329	502	-0,9886	218	391	-0,6733	193	366
12	0,7103	84,85	166	21,7130	268	434	11,707	202	368	8,0139	194	360
13	0,7067	33,79	153	8,1917	253	406	4,5265	201	354	3,1273	196	350
14	0,7040	-4,63	148	-1,1002	340	488	-0,6138	192	340	-0,4252	134	282
15	0,7037	-9,59	140	-2,2087	317	457	-1,2484	191	331	-0,8701	155	295
16	0,7057	24,05	240	9,0007	194	434	4,0003	111	351	2,5716	64	304
17	0,7054	16,94	249	6,7177	194	443	2,8894	160	409	1,8410	140	390
18	0,7049	9,64	237	3,5414	21	258	1,5902	134	371	1,0253	113	350
19	0,7052	12,56	157	3,095	189	346	1,6977	200	357	1,1697	203	360
20	0,7066	35,48	338	34,2669	238	576	8,1090	163	501	4,5986	139	477
21	0,7046	5,72	173	1,5089	-1782	-1681	0,8012	178	351	0,5463	190	363
22	0,7056	18,51	173	4,8827	224	397	2,5957	194	367	1,7678	190	363
23	0,7059	22,48	156	5,5168	239	395	3,0318	201	357	2,0902	198	354
24	0,7060	23,95	159	5,9508	241	400	3,252	200	359	2,2373	196	355
25	0,7044	1,27	161	0,3182	440	601	0,1732	160	321	0,1190	266	427
26	0,7040	-4,066	148	-0,9666	344	492	-0,5389	190	338	-0,3736	124	272
Среднее				5,3106		297	2,4228		360	1,6164		351
Стандартное отклонение 8,0534 5					569	3,1634		35	2,1071		44	
Коэффициент вариации, % 151,64					191,7	130,57		9,77	130,38		12,5	
Коэффициент корреляции между $F_s(T_s)$ и I_0 0,75						0,758	0,97		0,99		0,99	
Величина I_0^* 0,70468						0,70432			0,70430			
Величина b				0,00146565	0146565			0,000469047		0,00071644		

140 Зайцев

Таблица 3. Рассчитанные средние значения модельных параметров источника кимберлитов Куойкского поля и коэффициентов их вариации.

T_{S}	$F_s(T_s)$	V_{f}	${ m I_0}^*$	(T _s)	V_{Ts}
400	5,3106	151,64	0,70468	397±569	191,68
500	2,7121	202,82	0,70433	375±39	10,39
550	2,7837	131,28	0,70434	362±51	14,06
600	2,4228	130,57	0,70432	360 ± 35	9,77
650	2,152	130,37	0,70431	357±35	9,81
700	1,9163	132,92	0,70433	356±44	12,52
800	1,6164	130,38	0,7043	351±44	12,48
1000	1,2148	130,82	0,7043	347 ± 54	15,69
1300	0,8875	130,92	0,70429	343±83	24,22
1700	0,6529	131,17	0,70429	318±104	32,75
2600	0,4096	131,47	0,7043	317±144	45,48
4500	0,2054	145,61	0,7043	316±261	82,38

Таблица 4. Rb-Sr параметры мантийных пород ксенолитов из кимберлитовой трубки Обнаженная.

№	№ обр	Порода	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	Возраст,	I_0	$f_{Rb/Sr}$	$\varepsilon(T_x)$
					млн лет			
1	А-4201б	Эклогит	0,3681	0,7059	397	0,70382	3,451	-3,0318
2	Pc-27	То же	0,1901	0,7100	360	0,70903	1,299	70,2987
3	Pc-28	То же	0,1688	0,7110	360	0,71013	1,041	86,052
4	Pc-29	Лерцолит	0,0120	0,7086	360	0,70854	-0,858	63,400
5	Pc-30	То же	0,0369	0,7089	360	0,70871	-0,554	65,8271
6	Pc-31	То же	0,0076	0,7092	360	0,70916	-0,908	72,221
7	A-4203a	То же	0,1419	0,7068	306	0,70618	0,716	29,003
8	A-4206a	То же	0,0558	0,7072	365	0,70690	-0,325	40,334

Таблица 5. Рассчитанные средние значения модельных параметров источника ксеногенных мантийных пород из кимберлитовой трубки Обнаженная и коэффициентов их вариации.

T_{S}	$F_s(T_s)$	V_{f}	${ m I_0}^*$	(T_s)	V_{Ts}
400	70,3241	88,77	0,70554	716±47	6,62
500	22,2645	58,28	0,70431	727±50	6,85
550	16,4687	57,46	0,70425	729±55	7,56
600	13,3821	58,93	0,70435	741±72	9,70
650	10,8356	56,62	0,70419	733±64	8,79
700	9,2535	56,36	0,70418	734 ± 75	9,28
800	7,1638	56,04	0,70415	738±75	10,22
1000	4,9352	55,67	0,70413	743 ± 88	11,84
1100	4,2710	55,56	0,70412	745 ± 94	12,56
1200	3,7644	55,47	0,70411	747±99	13,29
1300	3,3652	55,40	0,70411	750±104	13,90
1400	3,0426	55,35	0,70410	752±110	14,58
1500	2,7765	55,30	0,70410	754±115	15,22
1600	2,5530	55,26	0,70410	756±120	15,86
1700	2,3630	55,23	0,70410	758±125	16,48
1800	2,1993	55,20	0,70410	760±130	17,11
1900	2,0568	55,18	0,70409	763±135	17,67
2000	1,9316	55,15	0,70409	764±139	18,17
2100	1,7871	55,13	0,70411	745±176	23,69
2200	1,7221	55,12	0,70409	769±150	19,47
2300	1,6312	55,11	0,70409	768±155	20,18
2400	1,5539	55,10	0,70409	774±162	20,93
2500	1,4810	55,07	0,70409	775±164	21,18
2600	1,415	55,06	0,70408	777±169	22,00
2700	1,3456	55,05	0,70408	779±177	22,17
2800	1,2992	55,04	0,70408	781±177	22,64
3000	1,1965	54,98	0,70408	773±181	23,46

фикация мантии под Куойкским полем в среднем палеозое фиксируется Rb—Sr датировками мантийных ксенолитов в трубке Обнаженная [2]. Породы и минералы ксенолитов характеризуются неравновесностью Sr-изотопных систем, а их датировки (306–397 млн лет) определяют время преобразования ксеногенного мантийного материала. В целом это согласуется с более ранними K—Ar датировками по минералам из глубинных ксенолитов в кимберлитах Куойкского поля, которые также фиксируют эти возрастные этапы: 276–362, 600–880 млн лет [4].

Изотопное датирование ксенолитов мантийных пород в кимберлитах трубки Обнаженная показывает длительную и сложную историю формирования мантии в районе Куойкского поля. По данным Sm-Nd метода для ксеногенных пироксенитов и эклогитов определенны датировки 2600, 1690, 1320, 1237, 1070 и 674 млн лет [8, 9]. K-Ar и Rb-Sr возраста для мантийных ксеногенных пород и минералов в кимберлитах группируются в следующие интервалы значений: 270-397, 540-750, 807-880, 1327-1450,1724-1900 млн лет [1, 2, 4, 5]. Эти датировки, полученные разными изотопными методами в разных лабораториях Мира, в целом хорошо согласуются и определяют периоды проявления каких-то мантийных событий. Моделирование эволюции изотопного состава стронция мантийных пород из ксенолитов в трубке Обнаженная также позволило установить, что их региональный источник имел многостадийную историю развития. Он начал формироваться примерно 2725 млн лет назад и в истории имел ряд эпизодов фракционирования Rb-Sr системы: 1300-1000, 940-780 и 370 млн лет назад [2].

Rb-Sr изотопные данные этих мантийных пород (эклогиты, лерцолиты) мы использовали для моделирования предлагаемым методом эволюции параметров Rb-Sr системы их протолитов. Для расчета модели время последней модификация мантийных ксенолитов (Т_) принято условно 360 млн лет, как это следует из их Rb-Sr датировок и результатов моделирования эволюции стронция этих пород [2]. Соответственно этому была подготовлена и матрица для расчетов (табл. 4). Данные расчетов модельных параметров источника этого ксеногенного материала для различных интервалов времени суммированы в табл. 5. В отличие от кимберлитов, коэффициенты вариации величины (Т) этих глубинных пород изменяются монотонно, без ярко выраженных минимумов, и значение (Т.) при разных интервалах задаваемого расчетного времени варьируют от 716 до 781 млн лет. Этот интервал времени, вероятно, отвечает одному из этапов наиболее интенсивной модификации мантийного вещества под Куойкским кимберлитовым полем. Небольшие минимумы в распределении коэффициента вариации величины (T_s) во времени отмечаются для заданных величин T_s , равных 650 (8,79 %) и 2200 (19,47 %) млн лет, и подразумевают, что в эти периоды времени имели место некоторые события, обусловившие воздействие на Rb-Sr системы мантийных ксенолитов в трубке Обнаженная. По-видимому, изотопные метки более древних мантийных событий затушевываются более поздними процессами в мантии. Более точная идентификация времени проявления первых, вероятно, также возможна, если в предлагаемом модельном подходе принимать в расчетах другие, более ранние значения возраста последней модификации мантии (Т) (650, 750 млн лет и т.д.), но на данном этапе работ мы не проводили таких исследований.

ЗАКЛЮЧЕНИЕ

Предлагаемый нами модельный подход к обработке модельных параметров Rb-Sr систем пород позволил нам на конкретных примерах определить некоторые этапы становления литосферной мантии Куойского поля. Согласно полученным результатам, наиболее ранний этап процессов в литосферной мантии здесь, вероятно, имел место 2,2 млрд лет тому назад. Затем Rb-Sr системы некоторого объема мантии были интенсивно модифицированы – 716-781 и 360 млн лет тому назад. Кимберлитовый протолит формировался в интервале 650-600 млн лет назад, и связанные с этим процессы привели к некоторому нивелированию Rb-Sr систем мантийного вещества, а тектоно-магматическая активизация в мезозое обусловила развитие и внедрение в этом районе кимберлитовых магм.

ЛИТЕРАТУРА

- Герлинг Э.К., Матвеева И.И. Возраст основных пород, определенный калий-аргоновым методом // Докл. сов. геол. На XXII сес. МГК. М.: Наука. 1964.
- Зайцев А.И., Никишов К.Н., Ненашев Н.И., Брахфогель Ф.Ф. Геохимия изотопов рубидия и стронция в ксенолитах ультраосновных и эклогитовых пород из кимберлитовой трубки Обнаженная // Геохимия и минералогия базитов и ультрабазитов Сибирской платформы. Якутск: ЯФ СО АН СССР, 1984. С. 80–91.
- Зайцев А.И. О возрасте протолитов кимберлитовых магм Якутии // Отеч. геология. 2001. №5. С.6–9.
- 4. Мальков Б.А., Силин Ю.И., Цовбун Я.М. Радиологические доказательства ксеногенности порфировых вкрапленников оливина, пиропа, хромдиопсида в кимберлитах // Докл. АН СССР. 1979. Т. 245, №4. С. 927–929.
- Фирсов Л.В., Соболев Н.В. Об абсолютном возрасте ксенолита эклогита из кимберлитовой трубки Обнаженная // Геология и геофизика. 1964. №10. С.72–74.

142 Зайцев

- 6. Фор Г. Основы изотопной геологии. М: Мир, 1989. 590 с.
- De Paolo D. Neodymium isotope geochemistry. An Introduction. Berlin, Heidelberg: Springer-Verlag, 1988. 187 p.
- 8. McCulloch M.T. Sm–Nd systematics in eclogite and garnet peridotite nodules from kimberlites: Implications for the early differentiation of the Earth // Kimberlite and Related Rocks.1986. V.2. P. 649–686
- Snyder G.A., Keller R.A., Taylor L.A., Rembley D., Halliday A.N., Sobolev N.V. The origin of ultramafic (Group A) eclogites: Nd and Sr isotopic evidence from the Obnazhennaya kimberlite, Yakutia // Ext. Absts.,7th Int. Kimb. Conf. CapeTown, 1998. P. 823–825.

A.I. Zaitsev

Modeling of the stages of isotope modification of the mantle

This paper offers a new methodical approach to the modeling of parameters of Rb–Sr isotopic systems of mantle rocks for identification of age stages of the mantle matter modification. The calculation procedure is given. As exemplified by kimberlites and mantle rocks from xenoliths in the pipes of the Kuoyka field, the following stages of mantle modification in the region have been established: 2200, 716–780, and 360 Ma, and the formation of protoliths for the kimberlite magmas of the field is estimated at 650–600 Ma.