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BLOCK MOTION AT ITS BOTTOM

(in connection with the interpretation of recent movements)
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ABSTRACT

Grigoi-yev, A.S.. Volovich, I. M., Mikhailova, A. V., Rebetsky, Yu. L. and Shakhmuradova, Z. E., 1988.
Relationships between the kinematics of the top of a layer and the state of stress within it due to block
motion at its bottom (in connection with the interpretation of recent movements). /n: Yu. D. Boulanger,
S. Holdahl and P. Vyskocil (Editors), Recent Crustal Movements. Journal of Geodynamics, 10: 127-138.

The equilibrium of an infinite linearly viscous layer overlying a rigid basement which is separated into
blocks by a narrow plane slit is considered. The state of stress in the layer is caused by slow translational
motions of the basement blocks. This spatial problem is shown to separate into problems of plane and
anti-plane strain; their solutions are constructed in analytic form. The theoretical study was accom-
panied by modelling experiments. The results arc applied to a kinematic interpretation of recent
movements in sediments,

Consider an infinite horizontal layer of constant thickness consisting of a
linearly viscous material which overlies a rigid half-space diveded by a
narrow plane slit into two semi-infinite blocks. We assume complete or par-
tial cohesion between the layer and the basement. Our goal is to determine
the state of stress and velocity of displacement due to translation of the
basement blocks relative to one another occurring parallel to the middle
plane of the slit. The motion is assumed to be so slow that the state of the
layer can be regarded as being in equilibrium. The time under consideration
is restricted to such an interval that the displacements of the layer are small
compared with its thickness. We assume the original plane of contact
between the layer and the basement to be a fixed set of coordinates, the
z-axis pointing along the middle slit plane (see Fig. 1). Let B denote the
angle between the vertical plane and the middle plane, varying within the
range — (/2 < fi < (m/2).
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Fig. 5. Determination of the position of the zj-axis from the derivatives of vertical velocity along two
arbitrarily chosen directions &') and &2,

Having found the fault position and orientation, one can determine V, and
W, from formules requiring the values of “measured” rates V and W only,
such as

o~

ov av

0_121}{(“);{_0 w(ﬁzn(ax> x=0, or (15)

V, = 1,48[V(0,5H) — V(—0,5H)]; W, =22[W(0,5H)— W(—0,5H)];
(16)

Vo= LUIVH)=V(—H)];  W,=1,35[{W(H)- W(-H)].

For the case a single fault at distances that exceed approximately 2H to the
right and left of the z;-axis, the surface velocity components, let us label
them U, and U, Vi and Vi, Wi, and Wi, can be considered
equal to the bottom velocity, which leads to

-~ ~ ~ -~

Uo = Urighl - Ulcﬁ; Vo = rlgh! Vlcft s Wo = Wright - chn- (17)

Formulas (14)—(17), as well as information on u(x), can be used as a check
on the results. In cases in which “basic” geologic and geophysical informa-
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tion for a region provides enough evidence to concider the basement of the
sedimentary cover as a system of several blocks separated by active faults,
one can directly apply the above technique of data analysis, provided the
‘mutual effect of adjacent faults on the surface kinematics can be disregar-
-ded. Each fault can be considered as a “single” one, if there are distances of
‘the order 4H or more between adjacent faults. We shall only need a unified
choice of the constant V, and the connection of all data to a unified system
of coordinates during the final determination of the kinematics of basement
blocks.

In natural conditions, one encounters active faults that are spaced at
intervals of the order of H to 2H, and the problem of interpretation
becomes much more complicated. It is important to point out, however,
that the first stage should again involve only data on vertical velocities of
the surface, and one should begin by plotting V(¢) and 6V/¢ and analysing
‘these curves. Zones of closely spaced faults will show in these curves as
‘Stationary points with no intervening segments within which V(&) = const.
‘A method of successive approximations may be suggested to determine fault
position and orientation in such zones. Calculations (see Grigoryev et. al.
'(1979b)) for the cases of a three-block basement as well as for the cases in
which the angle between fault plane and the vertical plane does not exceed
10-15", have shown that the stationary point with ordinate M, on the
‘curve dV/0x lies directly above the fault, even with closely spaced faults. As
a first approximation, one can thus assume that an active basement fault
corresponds to each stationary point in the plot of aV/o&, and determine
the position and direction of the intersections of the faults with the layer
bottom. Further, one should turn to the analysis of the character of curves
V(x) and 8V/ox along segments containing two adjacent stationary points.
One should make use of the method of superposition of solutions to con-
struct a theoretical solution for each segment and then join them onto one
another, arriving at theoretical results that describe the movements of the
surface and the layer bottom in the region as a whole. A full kinematic pic-
ture of basement block motion will be found when one adds information on
the velocity of block motion “along” the faults, that is, W(x) data, in the
case that this is available. It should be pointed out, however, that the spatial
problem requires referring W(x), as well as V(x)and U(x) to a single origin.

In addition to theoretical investigations, modelling experiments have been
carried out in which we studied the kinematics of the layer surface, the
strain field within the layer, and the initiation and development of fractures.
A joint analysis of the results has revealed some persistent characteristics of
deformation that can have prognostic value: the correlation between isolines
of stress and strain, the occurrence of fractures in theoretical zones of
increased stress etc. Data on the gradients of vertical velocities observed at
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Fig. 6. Relation of vertical surface velocity gradient in superfault zones to fracture regions in the layer
and to the orientation of the fault itself. (1) theorctical gradient curve for the initial stage, (2) the
gradient curve for the initial stage as found from experimental data, (3, 4) the same for subsequent stage,
(5) crack zone, (6) large fractures in the layer.

the surface of a layer in experiments for the three cases of deformation
shown in Fig. 6 are in satisfactory agreement with the theoretical results.
This provides additional corroboration for the use of theoretical rela-
tionships that have formed the basis of the above technique for the
kinematic interpretation of recent movements.
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Fig. 1. Statement of the problem illustrated.

From the formulation of the problem it follows that the components of
the stress tensor and of the displacement velocity vector at any point within
the layer will not depend on z, even though the problem is in three dimen-
sions as ordinarily understood. The original set of equations separates into
two sets. We write them down in dimensionless variables, assuming a
massless layer

p.  Op dpy  Op 1 50U
L X’VZO, Xy _Y:()’ _ ‘ _;’_, 1
ax T dy ax T oy P =5 (PP o (1)
1 30V 1 1/ou oV
T 5 1+ z7 X y :Oa Xy — A0 A T A |
Py —5 (P, + P, )lﬂy P.—5 (Px+py) Py 4(6y_kﬁx>
0P 0Py, 1 ow 1ow
+ =0, "= e Z AT
ox | dy Pn=40x" P agy @)

Here x, y, z are the coordinates divided by H, the layer thickness; p,, p,,
P., Pxy» P, are stresses divided by 4nV,/H where 7 is the viscosity, Vi is
a constant having the dimension of velocity; 1, ¥, W are the velocities U, V,

in the x, y, z directions divided by V. The set (1) is the resolving one
in the problem of plane strain for an incompressible linearly viscous body,
and can, after introducing the stress function ¢, be reduced (see, for exam-
ple, Grigoryev et. al. (1979a), Grigoryev et. al. (1979b)) to a biharmonic
equation

Vép =0. (3)
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The set (2) is the resolving one for the problem of antiplane strain and can
be reduced to a harmonic equation

Viw=0. (4)

The boundary conditions correspond to no stress at the top of the layer,
while at the bottom we have the fixed conditions of contact between the
bottom of the layer and the basement. Since we must have the possibility of
motion at the bottom, these conditions are conveniently written in the rate
of displacement, even though this is quite formal.

The boundary conditions can also be separated into two sets

yzl:py:pxy:()a y=03ﬁ:(U(X)’ V:l//(X), (5)
y=1p,=0, y=0; w={(x). (6)
Combining (5) and the system (1) will give a biharmonic boundary value
problem for an infinite strip 0<y<1, z=0, while combining (6) and
system (2) -will give a harmonic one. The boundary conditions in both
problems dre mixed. The solution of the above problem is obtained by
superposing the solutions of (3) under the conditions (5) upon those of (4)
under the conditions (6). Then one has to add the solution of the problem
of equilibrium for the layer under the action of its own weight alone; the
basement blocks are to be regarded as fixed. If there are mixed boundary
conditions proper at some finite areas of the bottom or they are assigned in
stresses, the method of solution as outlined below can be retained, except
that integral equation techniques will have to be used in order to switch to
conditions in the rate of displacement.

We now consider one of the possible versions in the formulation of the
problem, assuming a wedged contact between the bottom and the basement
blocks and some material filling the suture between the two whose proper-
ties resemble those of the layer material. If the suture width devided by the
layer thickness, 2b, satisfies 2b < 1, then w(x), ¥(x) and {(x) in the range
|x| <2b can be obtained by retaining only linear terms in their expansions
in the vicinity of the coordinate origin and making use of continuity in the
rate of displacement at the end points of the range. The conditions (5) and
(6) will then be '

U, Vo 0, .
=0: =—X; =_— < =—5
y w(x) b X; ¥(x) 7 X for |x]<b, w(x) > sign x, (7)
Y(x)= Yo sign x for |x|>b;

2

y=0: C(x):%x for |x|<b, C(x)z%signx for |x|=b. (8)
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Here 1,, Vv,, W, are the projections of a dimensionless S, on the coordinate
axes, where S, is the rate of relative motion of the blocks, the right one
relative to the left. If V, =S| then (see Fig. 1)

U,=cos fcos vy, Vo ==sin 6 cos 7, W, =sin 7. (9)

Under the above assumptions, the problem of equilibrium for a layer under
its own weight can be written in the form

pgH?’
4nv '’
(10)

where ¢ is the density of the material and g—the acceleration due to gravity.

The solution of (3) under the conditions (7), based on a Fourier integral
representation of the stress function, will yield the desired formules for
s‘ﬁ_resses and the rate of displacement entering (1); the remaining functions
are to be determined from the solution of equation (4) under the boundary
conditions (8). This solution is constructed similarly to the preceding ones,
based on a Fourier intergral representation of w. Superposing the solutions,
we obtain as a final result

_cosy

px:py:pzrz_Kl(l_‘y)» pxy:pyz:pzxzﬁ:(]:wzo; Kl=

{sin 0 F“ @ (2, y) T(a) sin ax da

~0
—cos ) f(: @50, y) T(a) cos ax dx} —K(l —y),

cos y{ . * .
Py="5 ism 0 Jo P (o, y) T(x) sin ax do

T

~ T

—cos 0 J @(a, y) T(a) cos ax da} —K (1 —y),
0

p.=3(p.+ Py

cosy

Pxy = TP { —sin fof @3(o, y) T(x) cos ax da

+cos 6 fL @, y) T(x) sin ax da},
0

[cosh (n/2)(x —b)+cos (n/2) y]
_ sin y N [ x [cosh (n/2)(x + b)—cos (n/2) y]]
8nb [[cosh (m/2){(x—b)—cos (n/2) y] ]
x [cosh (n/2)(x + b) +cos (n/2) y]

Py.=
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sin y [tan , sinh (/2)(x +1) __,sinh (7/2)(x —b)]

P = 3b sin (ny/2) sin (ny/2)
. COS Y.

~ L T
= {—sin 0 ’ Oalo,y) x)(:os ax do
T Jo

T(x

+cos 0 jox Pa(o, y) )sin ox da},

cosy . ;o T )
V= /{sm()J (pSl(a,.y)&sm ax dx
T 0 ) o

P T
—cos ) JO @i, y) %cos ox da},

wﬁf cosh a(l —y)T(x)
T

‘ sin ax da.
O] cosh o

Here T(x)=sin ab/ab; when b—0, T(x)-1; Puila, y)(k=1,2,3,4,5;
i=1,2) are functions that were found when solving (3) under the specifica-
tion of the' boundary conditions (5) in the form (7); the expressions for
these functions can be found in Grigoryev et. al. (1979a) and Grigoryev
et. al. (1979b). It should be noted that, since the method of “superposition”
is applicable, the solution yields ready-made results also for the case of a
multiblock basement, provided the traces of the fault planes at the layer
bottom are parallel to one another. The isolines of greatest tangential stress
and “equivalent™ (in the sense of Mohr) stresses were obtained by means of
a numerical realization of the solutions for plane strain and longitudinal
shear. This has allowed us to show that the typical pattern of stress state for
each 6 is confined to a superfault zone, and to identify zones of increased
stress within the layer. There is a significant concentration of stress around
the fault suture; when one moves towards the points y =0, x = b the stresses
increase indefinitely, but the relevant singularities at b0 are integrable,
and the forces applied to the layer bottom can be calculated. If b <0.01, the
results of the asymptotic solution (b= 0) can be used for determining
stresses within the layer everywhere, except for a very small vicinity of
singular points; the same applies to the kinamatics of the free surface of the
layer. A study of this has revealed characteristic features relating the curves
of the velocity and its gradient at the surface to the position and orientation
of the slit that separates the basement blocks, as well to their relative rate
of motion.

We now briefly discuss the kinematics of the free surface of the layer. We
define an additional set of coordinates x,0,2; (see Fig. 1); obviously x, = x
and z, =z
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= E3
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Fig. 2. Dimensionless vertical velocity and its gradient at the free surface of a layer for various (shown
on the right) fault orientations and relative velocity derections of basement blocks. (1) — év/dx-gradient,

(2) v(x)-velocity.
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Fig. 2 shows curves which demonstrate the typical behaviour of the verti-
cal velocity and its the derivative with respect to x at the layer surface for
three variants of fault orientation within the whole range, where the direc-
tion of relative block motion can vary, at y # n/2 (see Fig. 1). We shall not
describle them in detail, becouse the corresponding results are partly pub-
lished in Grigoryev et. al. (1985). There are two stationary points of the
curves 0¥/dx — a maximum and a minimum, lying on the opposite sides of
the z-axis in the general case of the motion along a single inclined fault. If
the fault is vertical, there is only one extremum at x =0. When the blocks
are moving apart in horizontal direction (f =7/2), the ordinates of station-
ary points are equal in absolute value, and the inflection point of dv(x)/dx
occurs at x =0. The curves of the horizontal velocities parallel to the z-axis,
w(x) and ¢w(x)/éx, each have one characteristic point — an inflexion in
W(x) and an extremum in dw/0x occur at x =0. We note in parentheses that
'_we put V, =S, |cos y| when passing to the dimensionless velocities v(x) and
‘.V*=S0|sin 7| when passing to the dimensionless w(x). An analysis of a
family of courves similar to those given in Fig. 2, has allowed us to con-
struct a diagram showing the relationships (see Fig. 4) between B and the
quantities

m_le| % _X
M,’ T d

(12)

Here d is the distance between the projections of the stationary points on
the x-axis; obviously, d = [x,| + |x,|; x, and x, are the abscissas; M, and M,
are the ordinates of the stationary points occurring in the curves av/ex (see
Fig. 2), M, being the greater of the two in absolute value. One can deter-
mine § and then X, from known values of m and sign X, that is, find the
origin on the x-axis. The quantity 0 is found from

3
9=g—ﬁ when m>0; Hzin-ﬁ when m <O. (13)

The results discussed above are useful in the kinematic interpretation of
recent movements at the diurnal surface in platform areas with moderate
relief at the bottom and the surface, provided the geological and geophysical
information on a specific region is sufficient to enable one to make
statements as to the thickness of the sedementary cover and to regard its
recent movements as being due to the motion of basement blocks along the
intervening faults, and to consider the traces of these latter at the layer
bottom to be close to parallel. When we have sufficiently representative
evidence relating to the kinematics of the diurnal surface, an analysis of the
experimental data will determine more precisely the position and orienta-
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tion of previously identified active basement faults, it also will identify
hidden ones, as well as determining the rate of relative block motion. We
shall consider the solution of such an “inverse” problem first in the simplest
case in which nature and the above model are supposed to be corres-
pondence, there being a single active basement fault. It is essential for con-
structing techniques useful in the interpretation of surface movements that
the character of the curves in Fig. 2 and 3 persists when we pass from the
argument x to the argument ¢, which is also measured from the z,-axis
along some straight line ¢. The functions V() and ¥(x), w(£) and w(x) and
their derivatives must be different in scale only and the ratios of both
abscissas and ordinates of the characteristic points will not depend on the
direction of ¢ This means that the angle  and the position of the z;-axis
can be determined from the diagram of Fig. 4, together with the plots of
:0v/0¢. The only thing we need to do is to adopt the convention that M, and
M, will be the ordinates of extrema in the curve 0v/é¢ and also that
X, =& =¢&,/d, where d=|¢,| +|&,| is the distance between the projections
tof stationary points on to the &-axis, &, and &, being the abscissas of these
points. The above statement remains valid irrespective of whether the
'velocities and coordinates are dimensional or dimensionless.

Solution of the interpretation problem should begin by determining the
fault position. This, as well as its orientation, can in the general case be
formally obtained from information on the vertical velocity of the surface
collected under natural conditions: we shall call these velocities “measured”
ones and mark them with a tilda above the letter. A known field of the
velocities should be used to plot vertical velocities V(&) and their derivatives
dV/e¢ along some two straight lines at the surface, that pass in an arbitrary
direction ¢; it is advisable to deal just with these curves, because they are
not dependent on the velocity origin. If a “single” fault is available in a

W)

- 0X
+0,25

L -A‘-O 0 10 20 ‘ g

M= 340 04

Fig. 3. Theoretical relationships of m and x, plotted against fault orientation.
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given region, the plots of dV/0¢ must have two stationary points, and the
z;-axis must intersect the straight lines ¢ between the projections of these
point on ¢ (see Fig. 5). Setting the origin of & at the desired point of inter-
section, one should find M, M, d, and sign &,, and determine B and &,
from the diagram of Fig. 4. One then determines the point of intersection
between the lines ¢ and the z,-axis; 0 is found from (13). Then the directions
x; and z, are to be found, hence the direction in which 6 is measured. If the
plots of dV/é¢ have only a single stationary point, then the z,-axis is the
straight line passing through the projections of these points. We shall then
have m =x, =0, the fault plane is vertical. If the vertical velocity should
prove to be constant along ¢, this would mean that the direction & coincides
with z;, the position of the z,-axis, and the angles f and 6 are determined
with the help of dV/dx curves, the diagram of Fig. 4 and formules (13). If
vertical velocities should turn out to be zero along any direction, then we
have longitudinal shear: U, =V, =0, $,=W,. Determination of fault posi-
tion requires information on horizontal velocities along straight lines pas-
sing in an arbitrary directions ¢ and ¢?'. One should plot éw/0&" and
w/eE . Each of these curves, in accordance with the plot in Fig. 4, will
have a single stationary point, and the z,-axis will be determined as a line
passing through the projections of these stationary points. The orientation
of the fault plane remains indeterminate in that case, as well as for a separa-
tion fault and a combination of longitudinal shear with a separation fault.
The S, vector can be determined from

VO st w0t "
mx,
 oles ~
i //
- '/
N pod
7 ™ = iy
é 1/ ’ R i
7 N
//(i‘ t \
I |
L V
-10 05

Fig. 4. Horizontal component of the velocity at the free surface corresponding to longitudinal shear,
and its gradient Ow/ox.


https://www.researchgate.net/publication/248515607

