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Data and model uncertainty estimation for linear inversion
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S U M M A R Y
Inverse theory concerns the problem of making inferences about physical systems from indirect
noisy measurements. Information about the errors in the observations is essential to solve any
inverse problem, otherwise it is impossible to say when a feature ‘fits the data’. In practice,
however, one seldom has a direct estimate of the data errors. We exploit the trade-off between
data prediction and model or data structure to determine both model-independent and model-
based estimates of the noise characteristics from a single realization of the data. Noise estimates
are then used to characterize the set of reasonable models that fit the data, for example, by
intersecting prior model parameter constraints with the set of data fitting models. This prior
information can also be used to set bounds on the bias. We illustrate our methods with synthetic
examples of vertical seismic profiling and cross-well tomography.
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1 I N T R O D U C T I O N

The goal of geophysical inversion is to make quantitative infer-
ences about the Earth from a finite number of indirect and noisy
observations. Information about the data uncertainties is required
to determine which earth models are consistent with the observa-
tions. In practice the issue of data uncertainty is often ignored, with
the problem of data fitting being replaced by the optimization of
a data misfit function. Of course, this begs the question of when
to terminate the optimization. Beyond this, it is common to simply
assert a noise variance a priori.

With multiple realizations of the experiment, the distribution of
random fluctuations could be directly quantified, but in geophysics
this is seldom the case. If the data are sufficiently redundant they can
be binned so as to approximate the situation of multiple realizations
(Van Wijk et al. 1998). A clever variation of this theme exploits ray
path redundancy in refraction tomography (Docherty 1992). If the
(binned) data are not truly redundant it is necessary to model their
systematic variations. These variations can be first modelled with-
out solving the inverse problem. In principle the estimation of the
data uncertainties begins with an analysis of the error budget of the
experiment, along with background noise recordings; for example
see Gouveia & Scales (1998). The error budget for any geophys-
ical field experiment is quite complicated and also involves many
unknowns. Our goal here is to develop techniques which, if not as
objective as an error budget analysis, will be easier to apply and
nevertheless provide reasonable results.

We propose the following practical algorithm for estimating data
uncertainties and checking model fits in geophysical inverse prob-
lems. First, we use a nonparametric regression method based on
Tikhonov regularization to obtain a model-independent estimate

of the data uncertainties. These error estimates may be used to
determine sets of data fitting models that also satisfy other prior
constraints. Alternatively, a second Tikhonov regularization can be
used to estimate an earth model. But without information of the
data uncertainties, we do not know if the model provides an ade-
quate fit to the data, and thus it cannot be regarded as a solution
of the inverse problem. However, the residuals of this model also
provide estimates of the data uncertainties that can be compared to
the model-independent estimates to check goodness of fit. Once we
have a reasonable Earth model we use prior information to construct
bias-corrected confidence intervals for the true model.

2 T H E I N V E R S E P R O B L E M

In inverse theory a model is a mathematical parametrization of those
properties of a physical system that are required to predict the data.
In the Earth sciences, models are usually functions of space and are
therefore elements of an infinite dimensional space, known as the
model space, a generic element of which we denote by x. In contrast,
an experiment always results in a finite number of observations d.
Data prediction involves mapping elements from the model space
into the data space. In addition, the data are contaminated by random
errors e and systematic errors s(x):

d = g(x T) + e + s(x T), (1)

where g is the forward modelling operator and x T is the true model.
Among the many contributors to the uncertainty in the data, the sys-
tematic errors consist primarily of unmodelled physics and effects
of model discretization. The random errors are, by definition, those
variations in the data that are not deterministically reproducible. A
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practical definition of noise is: that part of the data which we choose
not to fit (Scales & Snieder 1998).

In practice, models are often approximated by discretizing to a
finite dimensional vector of parameters. Choosing too coarse a dis-
cretization may result in discretization artifacts and a limited ability
to fit the data. Another, more subtle, consequence of discretization is
that uncertainty estimates may be artificially small (Stark 1992a,b).
In Section 5 we adopt a practical approach by comparing the fits of
different discretizations with model-independent fits to the data.

If the forward operator is linear, (1) reduces to

d = AxT + e + s(xT), (2)

where d ∈ Rn , the discrete version of the true model is xT ∈ Rm , and
the discretized forward operator is A ∈ Rn×m . From this point on, we
ignore the systematic error term s(xT), assuming the forward mod-
elling operator is accurate. The goal is then to find models that fit the
systematic variations in the data. In practice the separation between
systematic and random variations is not easy to make. Certainly, if
the errors in the data are correlated and overlap the bandwidth of
the data, it is impossible to separate the noise from the signal.

If the errors e are uncorrelated and have known statistical char-
acteristics we could define sets of data-fitting models in a variety
of ways. For example, a criterion that is useful for independent,
normally-distributed errors is the normalized χ 2:

χ 2 = 1

n

n∑
i=1

(∑
j Ai j x j − di

σi

)2

, (3)

where σi is the standard deviation of the ith datum. For example,
any model x such that χ 2(x) < 1 fits the data on average to one stan-
dard deviation. But in practice how do we determine σi ? In many
published examples of inverse calculations involving real data the
issue is side-stepped by either making a particular a priori choice of
the data errors (e.g. Scales 1987; Oldenburg et al. 1997) or avoid-
ing the problem altogether by simply optimizing the difference be-
tween the observed and predicted data. Obviously the latter strategy
begs the question of when to terminate the optimization. Once again
various ‘rules of thumb’ are used (e.g. 95 per cent variance reduc-
tion). These approaches are unsatisfactory, since subtle, apparently
inconsequential choices can lead to misinterpretations of the data
(Scales & Tenorio 2001). Eq. (3) can be readily generalized to l p

norm measures of data misfit. For p ≈ 1, the l p norm is robust in
the presence of long-tailed noise (Scales et al. 1988).

In recent years methods such as Tikhonov regularization, with
the regularization parameter chosen by the L-curve or general-
ized cross validation (GCV), have become popular methods (Li &
Oldenburg 1999) to find stable solutions of ill-posed inverse prob-
lems. Estimates of the noise variance are based on the residual sum
of squares of the fitted model. In this paper we concentrate on this
last point; understanding the random fluctuations in the data. We use
Tikhonov regularization methods but other approaches such as trun-
cated SVD or conjugate gradient could also be used to regularize
the optimization process.

3 E S T I M A T I N G D A T A
U N C E R T A I N T I E S

Estimating the variance σi of the ith datum di means estimating the
variability of di about its mean

µi = (AxT)i .

Let us assume that the variance is constant σ 2
i = σ 2. We consider

the following two complementary ways of estimating σ 2:

(i) Tikhonov regularization to obtain an estimate µ̂λ of µ by
minimizing

min
µ

(‖µ − d‖2 + λ‖Rµ‖2), (4)

for some operator R. The variance of the residual vector µ̂λ − d
is used as an estimate of σ 2. This is a model-independent estimate
because it does not require the solution of the inverse problem. Also,
since it is independent of the data mapping, (4) can be applied to
problems with a non-linear forward operator. If the variance is not
constant we can use a sliding window along the residual vector (Van
Wijk et al. 1998).

(ii) Tikhonov regularization to obtain a model estimate x̂λ by
minimizing

min
x

(‖Ax − d‖2 + λ‖Rx‖2). (5)

We set µ̂λ = Ax̂λ and estimate σ 2 as in (i).

Both methods require the selection of a regularization operator
R and a regularization parameter λ. In either (4) or (5), R is used to
damp (if R is the identity matrix) or penalize roughness (if R is a
derivative operator) of µ or x. For the latter, R also has to regularize
A. This means that the null spaces of R and A cannot overlap.

The regularization parameter λ determines the trade-off between
the data misfit and a model or data structure penalty term (e.g.
Tikhonov & Arsenin 1977; Green & Silverman 1994). The L-curve
method optimizes that trade-off as a function of the regularization
parameter λ (Lawson & Hanson 1974). On a double logarithmic plot
this curve often takes the shape of an ‘L’. The knee in the curve is
defined as the optimal λ. GCV could also be used to determine λ

but, for the problems we have studied, GCV tends to significantly
overestimates the value of λ. The minimum of the GCV auxiliary
function of λ tends to be very broad, leading to numerical instability
of the GCV estimate.

Good estimates of xT and µ should lead, provided there are no
systematic errors, to residuals that approximate the true errors e.
Therefore there should not be a substantial difference between the
model-independent and the model-based variance estimates. But
without prior information on the errors how can we tell if an estimate
is ‘good’? This makes the argument somewhat circular but, in the
absence of a priori information on the noise, some assumptions
must be made. These assumptions may be based on the physics
and the properties of the forward operator. For example, if A is the
discretization of an integral operator that smooths the model, we
expect µ to be the discretization of a function that is at least as
smooth as the true model x T. In this case a smoothness constraint
on µ is easier to justify. This smoothness also results in estimates of
σ 2 that are better than the model-based estimates. The reason is the
following. Methods like GCV and the L-curve determine a λ that
balances the bias and variance of the regularization estimates. This
results in biases that are larger precisely where the model has the
most interesting structure (Cummins et al. 2001). The less structure
in the model, the smaller the bias in the variance estimates.

4 S O L V I N G T H E I N V E R S E P R O B L E M

Until now we have focused on estimating the variance of random data
errors. Once these uncertainties are known, the inference problem
(characterizing the range of models that fit the data) can be tackled.
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Our purpose here is not to treat the inference problem exhaustively,
but simply to illustrate several approaches that could be taken. A
key ingredient in any inverse problem is prior model information.
Since the data mapping operator is not invertible, it is usually impos-
sible to achieve finite uncertainty on the model parameters without
prior information. In practice, prior information on the true model
may come, for example, from geologic information on the correla-
tion length of layering in the region or from well-log measurements
(Gouveia & Scales 1998).

4.1 Surgery

With sufficient prior information it may be possible to construct
empirical or theoretical Bayesian probability distributions charac-
terizing the range of feasible models (e.g. Scales & Tenorio 2001;
Gouveia & Scales 1998; Moraes & Scales 2000). However, in this
paper we focus on frequentist methods of inference; we use deter-
ministic prior information to reduce the range of data fitting models.
For example, following Stark (1992a) (see also Evans & Stark 2001),
let:

d = AxT + e.

Assuming that the noise has been characterized, as in Section 3, we
can find a 1 − α confidence set 
 ∈ Rn for the data errors; i.e.

P[e ∈ 
] ≥ 1 − α.

Now let D be the set of models x such that d − Ax ∈ 
. Thus D is
the preimage of 
 under the action of the forward operator. It then
follows that D is a 1 − α confidence region for the model xT,

P[xT ∈ D] ≥ 1 − α.

Now suppose we are certain that xT is in some set C. This is an
example of deterministic prior information. Then C ∩ D is a 1 − α

confidence set for xT. Since any element of C ∩ D might be the
truth, we can try to characterize all the models in this set—this is
the inference problem.

Conceptually this approach is straightforward: we first find the
set of data fitting models, then we perform surgery on this set by in-
tersecting it with a prior constraint set. This gives us a (presumably)
smaller set of models that fit the data and are a priori feasible.

4.2 Confidence intervals and bias corrections

The surgical approach above did not require a particular estimated
model. We now use an estimator obtained by Tikhonov regular-
ization to construct bias-corrected confidence intervals for model
parameters.

To construct a confidence interval from the value of an estimator,
we must determine the bias and variance of the estimator. An estima-
tor can be stable to random perturbations of the data (small variance)
but be far from the truth (biased). On the other hand, we can have an
unbiased estimator that is very sensitive to data perturbations (large
variance).

Let A†
λ be the regularized pseudo-inverse for (5) associated with

a fixed λ, and x̂λ the regularized solution

x̂λ = A†
λd = (AT A + λRT R)−1AT d, (6)

where R is a regularizing operator that damps or smooths the solu-
tion. The covariance matrix of x̂λ is

cov(x̂λ) = A†
λcov(d)A†T

λ . (7)

Assuming that the covariance of the data is σ 2I, the variance of the
ith model parameter is

Var[(x̂λ)i ] = σ 2
(
A†

λA
†T

λ

)
i i
. (8)

To construct 1 − α confidence intervals for model parameters we
use the Gaussian approximation

(x̂λ)i ± zα/2σ̂

√(
A†

λA
†T

λ

)
i i
, (9)

where zα/2 is the 1 − α/2 quantile of the standard Gaussian distri-
bution, σ̂ 2 is the variance estimate obtained in Section 3 and λ is
determined by the L-curve. This interval could be shifted by a bias
in the model estimate given by

Bias(x̂λ) ≡ E(x̂λ − xT) = CRxT = BxT, (10)

where

C = −λ(AT A + λRT R)−1RT and B = CR.

B can also be written in terms of the resolution matrix A†
λA: B =

A†
λA − I. A good resolution of the estimator implies a small bias,

and vice versa.
In general the bias cannot be computed exactly because it de-

pends on the true model. We now discuss some ideas on how prior
information can be used to bound the bias of model estimates (see
Xu 1998, for related work). Such information may include bounds
on the norm and/or the smoothness of the model. To bound the bias
just note that

‖Bias(x̂λ)‖ = ‖CRxT‖ ≤ ‖C‖‖RxT‖
≤ ‖C‖‖R‖‖xT‖, (11)

where C and R are known matrices. We can bound the bias with prior
information on ‖xT‖ or ‖RxT‖. See O’Sullivan (1986) and Tenorio
(2001) for further discussions on bias assessment in more general
regularization methods.

Note that prior information on ‖RxT‖ may provide significantly
tighter bounds on the bias than prior information on ‖xT‖ since we
can choose R according to our knowledge of x. For example, if x is
known a priori to be smooth, we may want to penalize roughness
using a second derivative operator R to make ‖Rx‖ small. The bias
is zero if x is in the null space of R.

4.2.1 Convex constraint set

In the previous section, we considered prior information on model
norms. Now suppose that prior information on individual model
parameters is available. Each component of the bias is a linear func-
tional of the true model:

[Bias(x̂λ)]i = bT
i xT, (12)

where bi is the ith row of B. If we assume a priori that each com-
ponent of the true model belongs to an interval C of the form

C : li ≤ (xT)i ≤ ui , (13)

then we can find the maximum and minimum bias by solving linear
programming problems for each component:

max
xT∈C

bT
i xT, min

xT∈C
bT

i xT i = 1, 2, . . . , m. (14)

Once we have found the vectors that solve the optimization for
each bias component, the values are used to bound the bias of the
estimated model parameter. Admittedly, this will be a pessimistic
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estimate, but our goal is to be conservative in our interpretation of
the data.

Additional prior information on the smoothness of the model
parameters can be incorporated as a constraint in (14), for example,

max
xT∈C

bT
i xT with

∑
j

Li j xT j < vi i = 1, 2, . . . , m, (15)

for some vector of derivative bounds v = (vi ), where L is a second
order difference operator.

In our examples we have assumed a linear data mapping. The
confidence interval analysis can be applied approximately to mildly
non-linear problems (i.e. those amenable to iterative linearization).
For example, see Bates & Watts (1998).

5 1 - D T R A V E L T I M E T O M O G R A P H Y

We investigate the discretized 1-D tomography problem of vertical
radar or seismic profiling (VRP/VSP). The geometry is shown in
Fig. 1. A single source of elastic or electromagnetic energy is on the
surface directly above a number of receivers that are lowered into a
borehole. The source emits a pulse of energy and the arrival times
to n receivers form the data vector d. The model vector x consists
of m layers of equal thickness. The slowness is constant in each
layer. The traveltime t along a single ray is the integral of the local
slowness s (i.e. the reciprocal of velocity v, along the ray):

t =
∫

ray

1

v
dl =

∫
ray

s dl. (16)

The discrete forward operator is an n × m matrix A whose element
Ai j is the length of the ith ray in the jth layer. For non-zero offsets,
expression 16 is non-linear in s due to refraction of the rays. In
practice this non-linearity is mild and can be overcome by iterative
linearization.

The true model has decreasing slowness down to a depth of
40 m with an isolated high slowness zone centred at 20 m depth (see

Figure 1. Geometry of the synthetic VSP experiment. The source is at zero
offset but for visual purposes is drawn at a small offset.

Fig. 2). To simulate a truly (piecewise) continuous model, the syn-
thetic data are computed with a 1000 layer approximation of this
model. The right side of Fig. 2 shows the exact data contaminated
by uncorrelated Gaussian pseudo-random noise of mean µ = 0 ms
and standard deviation σ = 2 ms.

5.1 Estimating the noise variance

From here on subscripts I and L stand, respectively, for Tikhonov
estimates that use the L-curve with the identity or a discrete deriva-
tive operator as penalty matrix. In addition, we use a variation on the
L-curve method that uses L but is based on a plot of the logarithmic
residual as a function of log(1/λ). We denote these results with the
subscript 1/λ. This variation is to point out that there are different
possible quantities to investigate model structure. The nonparamet-
ric estimate of the data uncertainty will be subscripted by µ.

Model-based estimates of σ were obtained using the three reg-
ularization schemes (RI -curve, RL -curve and R1/λ-curve). Fig. 3
shows a typical RL -curve for one realization of the noisy data. Ap-
proximate 95 per cent confidence intervals for σ are given in Table 1.

To get model independent estimates of the noise variance, we
apply the regularization scheme described in eq. (4) with a second
difference regularization operator to 100 realizations of the noisy
data to find µ that predicts the bulk of the systematic variations in
the data and leads to the following 95 per cent confidence interval
for σ : 2.02 ± 0.03 m s.

We see that model-based estimates have a larger bias than those
from the model-independent methods, but they are not too far off
from the true value. We use the model-independent estimate to ap-
proximate the variance of each model parameter estimate with (8),
which is in turn used to construct confidence intervals for the model
xT in Fig. 4. These intervals may be biased by non-zero terms in
(10). The bias could be reduced by using a local cross-validation
method that has been recently developed by Cummins et al. (2001).
But we would still want to estimate the leftover bias to correct the
confidence intervals.

Note that the model variances in Fig. 4 are relatively large near
the surface and at the maximum depth of the model. Near the sur-
face x̂λ is sensitive to the random errors in the data, because there
are several layers in the model before the first receiver is reached;
near the bottom this is caused by poor ray coverage of the deepest
layers.

5.2 The bias

Fig. 5 shows corrected confidence intervals obtained by subtracting
the exact bias, as defined by (10), from the model estimate x̂L. The
results are now consistent with the true model. Of course, the exact
bias is a function of the true unknown model, but we will show next
how to use prior information on the true model to put bounds on the
bias.

5.3 Bias corrections

First, we assume prior information in the form of upper and lower
bounds on the slowness model, only (in s km−1):

2 > si > 0, ∀ i. (17)

These constraints on the model parameters are not enough to pro-
vide bounds for the bias or to narrow the prior bounds with the
surgery approach as described in Section 4.1. A simple explanation
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Figure 2. The true slowness model (a) and synthetic data associated with this model (b). The data are contaminated with uncorrelated noise drawn from a
Gaussian distribution with µ = 0 ms and σ = 2 ms.

Figure 3. Example of an RL -curve for the VSP data. The optimal value
of the regularization parameter λL is chosen to be the point of maximum
curvature.

of this is the following. Since there are more layers than obser-
vations in this 1-D experiment, it is possible to have highly fluc-
tuating slownesses in the layers between two successive receivers
and still have the average traveltime fit the data. Therefore, without
additional prior information on the smoothness of the model, un-
certainty estimates based on bias upper bounds cannot be smaller
than the prior bounds and are still given by (13). However, we can
narrow the range of possible model parameter values that fit the
data using information on the smoothness of the true model. For
this example we used (LxT)i < 0.001 s km−3 for all i. In fact, this
is true everywhere, except at the discontinuity of the high slowness
area.

Table 1. Approximate 95 per cent confidence intervals (in
ms) for the true standard deviation σ = 2.0 ms of the VSP
data. The first column corresponds to the model-independent
estimate, the others are model-based estimates from the three
different L-curves.

σ̂µ σ̂I σ̂L σ̂1/λ

2.02 ± 0.03 1.90 ± 0.03 1.92 ± 0.03 1.93 ± 0.03

Figure 4. 1σ confidence intervals (9) for the VSP model. Every tenth model
parameter interval is plotted. The intervals show a trend coming from non-
zero terms in the bias (10).

The confidence sets (Fig. 6) are the model parameter variance
corrected by the minimum and maximum bias from expression (15).
Finally, to be consistent with our prior assumptions, the confidence
sets are bounded by the assumed upper and lower limits as defined
in (17).

5.4 Discretization effects

Geophysical inverse problems differ from parameter estimation
problems for the simple reason that the models to be estimated
are infinite dimensional. Ignoring this fact and simply choosing an
ad hoc discretization can result in both discretization artifacts and
optimistic error estimates. This issue is thoroughly explored by Stark
(1992b) who shows how to use the theory of conjugate duality to
put bounds on discretization errors of continuous inverse problems.
We adopted a much simpler strategy by comparing the standard
deviation estimates for up to 300 layers. Table 2 shows that the
error estimation is reasonably robust to discretization. By compar-
ing model-independent and model-based variance estimates we see
that 10 layers are enough to explain the variations in the data. A
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Figure 5. Same confidence intervals as in Fig. 4 but corrected by subtracting
the exact bias from the estimator x̂L.

selection of a higher number of layers has to be justified with prior
information about the unknown Earth model.

5.5 Concluding the VSP example

All proposed error estimation methods performed within 5 per cent
of the truth, with the model-independent estimate being slightly su-
perior in accuracy. The latter does not involve model discretization,
which eliminates one more subjective choice and improves numeri-
cal efficiency. With the error estimate we compute model parameter
variances. These variances, combined with bias corrections from
prior information on the true model, lead to confidence intervals
that are in agreement with the exact solution.

Figure 6. Bias corrections for the confidence intervals in Fig. 4. The thick
lines correspond to the original biased intervals. The upper and lower limits
of the thin lines are computed by adding (subtracting) the upper (lower)
bound of the bias (see eq. 14), intersected with the hard bounds of (17). The
bias corrections are based on prior knowledge on the model.

Table 2. Standard deviation estimates (ms) for the
three different L-curves as a function of discretiza-
tion for 100 realizations. The true standard devia-
tion is σ = 2 ms, whereas the non-parametric estimate
σ̂µ = 2.02 ms.

m 10 20 50 100 200 300

σ̂I 1.92 1.87 1.87 1.89 1.90 1.89
σ̂L 1.91 1.86 1.90 1.90 1.92 1.89
σ̂1/λ 1.92 1.88 1.91 1.92 1.93 1.91

6 C R O S S - W E L L T O M O G R A P H Y

In the VSP example above all error estimation procedures provided
reasonable estimates. However, as the next example shows, there
are no guarantees that these methods work generally.

The true model, shown with the shot/receiver geometry in Fig. 7,
is a 169 cell model with a C-shaped structure centred between two
boreholes. The background slowness is 1 s km−1 and the ‘C’ has
slowness 0.5 s km−1. In both, the forward operation and the inverse
calculation, we assume straight rays, which makes this problem lin-
ear. The exact travel times from 10 receivers and 10 shots are con-
taminated by Gaussian noise with mean zero and standard deviation
σ = 0.52 ms.

We can get a model-independent noise estimate by smoothing
the travel times in any parameterization we want. The best, spe-
cially when using a roughness penalty approach, is to use one which
leads to a smooth structure that can be easily estimated. For ex-
ample, we can apply a similar method used in the VSP example
to each of the 10 sources, and average the 10 variance estimates.
This gives the estimate σ̂µ = 0.57 ms. If, on the other hand, we use
traveltime ordered by path length, we get σ̂µ = 0.88 ms. These two
representations of the data are depicted in Fig. 8. In either case we
have penalized roughness with a second derivative but it is not clear
that this is a reasonable constraint on the µi for either of the two
orders. In the VSP case, there was a natural way of presenting the
data from the shallow to the deep receivers. However, in this 2-D ex-
ample there is not such a an obviously natural representation of the

Figure 7. The true model and the shot/receiver geometry of the synthetic
tomography problem. The ‘C’ has a slowness of the 0.5 s km−1, whereas the
background slowness is 1 s km−1.
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Figure 8. The travel times ordered by shot and ray path length. Note that the
representation by path length is smoother than the data ordered shot by shot.
This has consequences for the way we use the L-curve on the nonparametric
error estimate.

data. In cases like this, it may be better to obtain model-independent
estimates without using a roughness penalty approach, for example,
by thresholding coefficients of the data in a wavelet representation
(Donoho & Johnstone 1995).

Table 3 contains the error estimates for the different algorithms.
Especially the RL -curve, can separate the signal from the noise. It
seems that penalizing the roughness of the model is a physically
natural approach. The RI -curve method fails since there is no ‘L’,
and thus does not offer an error estimate.

6.1 Concluding the tomography example

In this 2-D example, a representation of the data that corresponds
to a smooth representation of µ is not as apparent as in the VSP
case. Finding such representation requires more physical informa-
tion. Other nonparametric regression methods can be used to obtain
noise variance estimates that do not implicitly depend on rough-
ness constraints (e.g. Green & Silverman 1994). We have not done
this here. However, penalizing the roughness of the model as in the
RL -curve seems natural and provides an accurate estimate of the
noise. In this example we merely want to tackle the error estimation
procedure. An analog analysis to the VSP problem on the confidence
intervals on the model parameters could be performed as well.

7 C O N C L U S I O N S A N D D I S C U S S I O N

In geophysics we are often faced with the challenge of estimating
earth model parameters given a single set of noisy observations,
without information on the noise. At some point we must make

Table 3. Estimates of the noise
standard deviation (in ms) from the
three algorithms for a cross-well to-
mography problem.

σ σ̂I σ̂L σ̂1/λ σ̂µ

0.52 — 0.50 0.62 0.88

subjective choices, in order to proceed quantitatively. These choices
can be made on the model xT or on the mapped model µ = AxT, but,
depending on the type of forward operator, smoothness assumptions
may be easier to justify, or may be less compromising, for µ.

We have used the L-curve to obtain regularized estimates of µ
and xT. It stands to reason that ‘good’ estimates of each should
lead to residuals with similar characteristics. A comparison of these
residuals can therefore be used as a goodness of fit check.

The L-curve can often tell us when significantly more structure is
needed to improve the data prediction. but there are no guarantees
that the L-curve method, or any other method, will always work with
a given regularization operator. We suggested some variations of the
L-curve methods with similar trade-offs between model structure
and data prediction. The methods that we have proposed, although
only demonstrated with uncorrelated noise, should be applicable to
correlated noise as well, provided the bandwidth of the noise does
not overlap the bandwidth of the data.

Once the noise variance has been estimated one can determine the
stability of the estimator via the calculation of the model covariance
matrix. However, to fully assess the model uncertainties we must
also estimate the bias. Since the bias depends on the true model, in
practice we can only put bounds on the bias using a priori bounds
on the true model. We have shown examples on how this can be
done in practice.
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