АКАПЕМИЯ НАУК СССР

труды минералогического музея

Выпуск 3

Редакторы: акад. Д. С. Белянкин и д-р геол.-мин. наук Г. П. Барсанов

Ив. Ф. ГРИГОРЬЕВ и Е. И. ПОЛОМАНОВА

ГЕАРКСИТ (НОВЫЙ ВОДНЫЙ АЛЮМО-КАЛЬЦИЕВЫЙ ФТОРИД)

При исследовании минералогии одного из месторождений Забайкалья в зоне окисления был встречен белый, каолиноподобный минерал, названный нами впоследствии геаркситом. Этот минерал является одним из членов ряда сложных водных алюмо-кальциевых фторидов и неизвестен еще в литературе. В этом ряду водных алюмо-кальциевых фторидов до настоящего времени был известен только геарксутит. В 1946 г. Н. А. Смольянинов и Е. Н. Исаков опубликовали статью (1946) о парагеарксутите, открыв и исследовав таким образом новый член этого ряда — минерал, близкий к геарксутиту. В настоящем сборнике помещена статья М.Д. Дорфмана, в которой автор излагает результаты открытия и изучения еще одного минерала, относящегося к тому же ряду, названного им белянкитом, в честь академика Д. С. Белянкина. И, наконец, нами из ряда водных алюмо-кальциевых фторидов открыт еще один новый член — геарксит.

Геологическая обстановка нахождения геарксита следующая. Месторождение сложено нижнеюрскими ороговикованными алевролитами, глинистыми сланцами и песчаниками. Минеральные жилы приурочены к трещинам скалывания северо-западного простирания в песчано-сланцевой толще. Среди гипогенных минералов, которые нас интересуют в связи с генезисом геарксита, широкое распространение в жилах имеют топаз, циннвальдит, амазонит, флюорит и сульфиды. Главная масса геарксита встречена в пострудных тектонических трещинах того же самого простирания и падения, что и минеральные жилы, вместе с галлуазитом, монтмориллонитом, селлаитом и др. Все эти минералы в виде каолиноподобных масс заполняют тектонические трещины, образуя прожилки, мощностью от 0,5 до 2 см. По трещинам циркулируют поверхностные воды, из которых, повидимому, и выпадают указанные минералы. Геарксит встречается не только в пострудных тектонических трещинах, сопряженных, как правило, с минеральными жилами, но и в самих жилах, развиваясь по топазу и флюориту, в связи с их разложением.

Рентгеноструктурный анализ обнаружил кристаллическое строение минерала. В результате пересчета химического анализа выяснилось, что мы имеем дело с новым водным алюмо-кальциевым фторидом, отличающимся от членов этого ряда: геарксутита, парагеарксутита и белянкита.

В основной массе минерал снежнобелого цвета в виде тончайших волокон и иголочек, собранных в мелкие комочки. Под микроскопом он представляет собой также тонковолокнистый агрегат с двупреломлением не

выше 0,009; средний показатель преломления 1,458. Качественные испытания с помощью паяльной трубки показали, что минерал плавится, вспучивается и пузырится; в закрытой трубке выделяет много воды, при этом стенки (стекло) трубки сильно разъедаются фтором, становятся матовыми.

В табл. 1 приводится химический анализ геарксита. Мономинеральность материала, взятого для анализа, проверялась под микроскопом.

Таблица 1

Компоненты	Весов. %	Молекул. колич.	Атомн. колич.	Пересчет формулы		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,63 Не обнар. 44,42 0,33 16,76 0,19 15,39 37,86	0,015 	15 870 4 290 4 1710 1990	$CaF_2 \rightarrow 290 \times 2 = 580 \text{ F}$ Octator F = 1990 - 580 = 1410 $AIF_3 \rightarrow 435 \times 3 = 1305 \text{ F}$ Octator F = 1410 - 1305 = 105 $AI(F, OH)_3 \rightarrow 105 + 1200 = 1305$ Octator OH = 1710 - 1200 = 510 $H_2O = 510$; $2 = 255$		
Сумма	115,58	_	_	$\mathrm{CaF_2}\!\cdot\!\mathrm{Al_2}(\mathrm{F,\ OH})_{6}\!\cdot\!\mathrm{H_2O}$		
$O=F_2 $	15,94		_			
Сумма	99,64	_	_	290 870 235		
Уд. вес	2,72	_	_	1 1,5 0,9		

Анализ произведен в геохимической лаборатории МГРИ М. О. Степпан. Расчет анализа геарксита приводит к формуле:

2CaF₂·3Al₂(F, OH)₆·2H₂O

или

 $Ca_2Al_6(F, OH)_{22} \cdot 2H_2O$,

где отношение $F \kappa OH$ в группе $Al(F,OH)_6$ равно 1,2:1.

Отличием геарксита от других членов ряда (от геарксутита, парагеарксутита и белянкита) является повышенное содержание алюминия, пониженное содержание кристаллизационной воды. Кроме того, отношение F к OH в геарксите, как мы указали, 1,2:1, в геарксутите 1:0,8, в парагеарксутите 1:1,25.

Спектроскопический анализ, произведенный в лаборатории ИГН АН СССР младшим научным сотрудником Л. Н. Индиченко, обнаружил хорошую химическую чистоту материала. В качестве примесей обнаружены в слабых линиях только Fe, Sr, As, Mn, Ni и в следах линий Pb, Zn, Na, Co, Ti.

Расчет дебаеграммы геарксита (табл. 2) также отличается от указанных сходных с ним минералов.

Таблица 2

Интенсивность линий	γ°	d	Интенсивность линий	γ°	d
Оч. сильная Оч. слабая Слабая "" Сильная Оч. слабая "" Сильная деойная Сильная Сильная Сильная Сильная Средния Слабая Оч. слабая Оч. слабая Оч. сильная Средняя Слабая Средняя Слабая Слабая Слабая	12°24′ 14°54′ 15°57′ 16°54′ 17°57′ 20°57′ 21°30′ 25°0′ 26°36′ 27°18′ 28°0′ 28°51′ 29°24′ 30°12′ 30°33′ 32°0′ 33°48′ 34°45′	4,499 3,757 3,516 3,324 3,135 2,702 2,636 2,286 2,158 2,107 2,058 2,002 1,968 1,920 1,901 1,823 1,737 1,695	Слабая Оч. слабая Слабая шпрокая Оч. слабая » » Средняя Слабая Средняя Слабая Средняя Слабая Средняя Слабая Средняя Оч. слабая Следняя Оч. слабая Средняя Оч. слабая Слабая Слабая Слабая Оч. слабая Слабая Оч. слабая	35°18′ 35°51′ 37°30′ 38°15′ 38°45′ 40°24′ 41°30′ 42°18′ 44°51′ 49°45′ 51°12′ 52°0′ 53°12′ 54°42′ 59°12′ 63°12′ 66°24′ 66°24′	1,672 1,649 1,587 1,560 1,544 1,491 1,458 1,436 1,388 1,370 1,266 1,240 1,266 1,207 1,184 1,125 1,099 1,082 1,063 1,055

Анализ произведен в лаборатории ИГН АН СССР Н. Н. Слудской.

В заключение приводим термическую кривую геарксита, полученную Ф. В. Сыромятниковым (рис. 1).

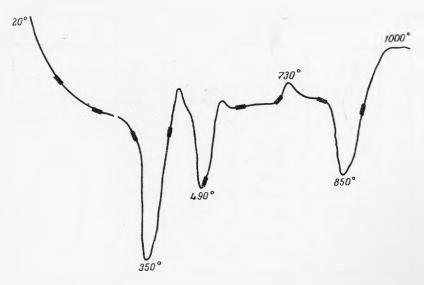


Рис. 1. Кривая нагревания геарксита (4798, обр. 902/э).

Термическая кривая геарксита значительно отличается от термических кривых геарксутита, парагеарксутита и белянкина.

Генезис геарксита, по нашему мнению, гипергенный. Геарксит возникает как вторичный минерал, в связи с процессами химического выветривания фторсодержащих минералов — топаза, флюорита и др. Появление его, как устойчивого минерального вида в ряду превращений продуктов разложения цинивальдита, амазонита, топаза, глинистых сланцев и алевролитов, происходит под воздействием фторсодержащих растворов.

Открытие геарксита и других новых минералов ряда водных алюмокальциевых фторидов в зоне окисления некоторых месторождений имеет большое значение для понимания поведения фтора в зоне гипергенеза. Ранее эти минералы при исследовании оставались, повидимому, незамеченными и поэтому вопрос о том, куда уходил фтор при разложении фторсодержащих минералов, оставался невыясненным.

Авторы выражают благодарность докторам геолого-минералогических наук Н. А. Смольянинову и И. Д. Борнеман-Старынкевич за их ценную консультацию по затронутым в статье вопросам и М. О. Степпан, про-

изведшей химический анализ геарксита.

ЛИТЕРАТУРА

Н. А. Смольянинов и Е. Н. Исаков. Сб., посвященный акад. Д. С. Белянкину к 70-летнему юбилею. Изд. АН СССР, 1946.