Г. П. БАРСАНОВ и Ю. Ф. ПОГОНЯ

самородный висмут как геологический термометр

Металлический висмут плавится при температуре 264° С [1]. Акад А. Е. Ферсман [2] дает более высокую температуру—544° абс. или 271° С, наконец Ф. Турнор [4], работа которого использована в нашей статье, указывает, что она равна 269° С.

Таким образом, несмотря на несколько разноречивые данные, можно полагать, что температура плавления металлического висмута лежит в пределах 265—270° С, что соответствует геофазам I — K по A. E. Ферс

ману.

В геохимических диаграммах, помещенных в «Геохимии», тт. II в IV [2], и в «Пегматитах» [3], которые по существу являются образдами для других авторов, составляющих подобные схемы, предел кристаллизации самородного висмута лежит в геофазах F - G, т. е. между 500 в 400° С. А в двух случаях: в геохимической диаграмме, приложенной к тому же труду А. Е. Ферсмана [2], он лежит в геофазах D - E (т. е. влже 600° С и выше 500° С) и в главе «Висмут» [2] находится в пределах геофаз E - F, что также соответствует температуре выше 500° С.

К сожалению, в последней из указанных глав «Геохимии» вопрос о возможности кристаллизации висмута при температуре выше 271° С ве

разобран.

Не вступая в полемику, необходимо отметить, что висмут является одним из немногих веществ Земли, которые в твердом состоянии имеют плотность меньшую, чем в жидком, и, следовательно, по принципу Ле-Шателье при повышении давления он будет кристаллизоваться при более низкой температуре.

Приводим некоторые соображения по этому вопросу применительно

к геологическим процессам, высказанные Ф. Турнором [4].

«Самородный висмут редко появляется в Ллаллагуа и мало известны взгляды на его парагенезис, исключая то, что он сопутствуется бисмутинитом. Тем не менее показательно, что его точка плавления равна 269°С, т. е. много ниже температуры, обычно принимаемой для оловорудных месторождений, в которых висмут встречается. Объяснить эту ассоциацию, обращаясь к помощи давления, нельзя, ибо металл расширяется при застывании, и всякое увеличение давления понизит его точку плавления. Многие авторы рассматривают самородный висмут как гипогенный, но Е. Куттль [5], сравнивая его с самородной медью, относит образование самородного висмута к супергенным изменениям бисмутинита.

В Ллаллагуа самородный висмут гипогенного происхождения, и его наличие указывает, что на стадии процесса рудообразования, следующей за выделением бисмутинита, температура была ниже чем 269° С».

Из сказанного ясно, что положение самородного висмута на геохимических диаграммах не соответствует действительному его месту в природных процессах и должно быть перенесено в область более низких температур; возможно, что мы должны отодвинуть в область более низких температур и фазы кристаллизации наиболее обычных сопутствующих самородному висмуту минералов.

Таким образом самородный висмут можно рассматривать как геологический термометр, дающий возможность проградуировать процесс

минералообразования, лежащий ниже критической точки воды.

ЛИТЕРАТУРА

1. Д. И. Менделеев. Основы химии. Изд. 3-е. ОНТИ, 1936. 2. А. Е. Ферсман. Геохимия, т. III, 1937, и т. IV, 1939. Госхимиздат. 3. А. Е. Ферсман. Пегматиты, т. I. Изд. 3-е. АН СССР, 1941.

4. F. S. Turneaure. The Tin deposits of Llallagua, Bolivia. Part II. Econom. Geol., v. XXX, № 2, 1935. 5. E. K u t t l. Revisita Minera (Buenos Aires), v. 2, 1930.

в. А. КОРНЕТОВА

о причине окраски синего кварца С УРАЛА

Летом 1945 г. во время работ экспедиции СОПС АН СССР на Урале была встречена кварцево-гематитовая жила альпийского типа. Жила залегает согласно с вмещающими породами в зоне рассланцованных кварцитовых конгломератов и филлитовидных кварцито-серицитовых сланцев (возраста S₄ по В. В. Меннеру), падая на 3СЗ 290° × 85°. Тело жилы представлено молочно-белым кварцем, в котором иногда встречаются участки кварца индигово-синего цвета размером от 1—3 до 25 см в диаметре. Эти участки имеют расплывчатые контуры. В пустотках встречаются и синие кристаллы. Вместе с синим кварцем встречается гематит.

Необыкновенная окраска кристаллов, имеющих типичный облик кристаллов кварца, заставила специально заняться выяснением причины

их окраски.

Кристаллы располагаются под углом к стенке трещины; кристаллов, растущих перпендикулярно к стенке, не встречено. Размер кристаллов $1-2\,\mathrm{cm}$ по главной оси. Цвет индигово-синий глубокого тона, иногда кристаллы полупрозрачны. Обычно хорошо развита одна головка, но встречено и несколько двуконечных. Развита призма т (1010) с характерной штриховкой, параллельной ребру между основным ромбоэдром и призмой. Развитием граней призмы обладают кристаллы небольших размеров, 0.5 см по главной оси и менее. На больших кристаллах призма обычно короткая, и преобладающее развитие имеют основные ромбоэдры. Доминирует положительный ромбоэдр г (1011), второй же ромбоэдр р (0111), судя лишь по правилу Розе, развит весьма незначительно или совсем не развит (рис. 1). Некоторые грани ромбоэдра г (1011) блестящи и гладки, но некоторые покрыты видинальными бугорками округлых контуров,

Одна прекрасная друза таких синих кристаллов была любезно передана автору Л. А. Смирновым. Ныне она хранится в Минералогическом музее АН СССР.