ГЕОЛОГИЯ И МЕТОДИКА ПОИСКОВ И РАЗВЕДКИ МЕСТОРОЖДЕНИЙ

УДК 553.061.11

© Неволько П.А., Борисенко А.С., 2009

Неволько П.А., Борисенко А.С.(Институт геологии и минералогии CO PAH)

СУРЬМЯНАЯ МИНЕРАЛИЗАЦИЯ НА ЗОЛОТО-СУЛЬ-ФИДНЫХ МЕСТОРОЖДЕНИЯХ ЕНИСЕЙСКОГО КРЯЖА

Приведена характеристика и минеральный состав сурьмяного оруденения, проявленного на разных типах месторождений Енисейского кряжа. Определены физикохимические условия формирования руд Ведугинского месторождения. Показана пространственная и временная разобщенность ранних золото-сульфидных ассоциаций и позднего сурьмяного парагенезиса в рудных полях золотосульфидных и золото-сурьмяных месторождений. Ключевые слова: металлогения, рудные поля, Аи-сульфидные и Аи-Sb отложения.

Results of investigations of mineral composition, geological and geochemical features of antimony mineralization in the deposits of different types of the Yenisey ridge are given in this article. Physic-chemical conditions of ore formation are determined for the Veduginskoe deposit. It has been show that there are no spatial and temporal link of earlier gold-sulfide and later antimony mineralization in the ore fields of Au-sulfide and Au-Sb deposits. **Key words:** metallogenite, ore fields, Au-sulfide and Au-Sb deposits.

Красноярский край на сегодняшний день – лидер по добыче коренного золота. Это в основном обусловлено большим количеством крупных и уникальных золоторудных месторождений, расположенных в пределах Енисейского кряжа. Ведущими промышленными типами золотого оруденения здесь являются золотокварцевый (Советское, Васильевское, Эльдорадо и др.), золото-сульфидный (Олимпиадинское, Ведугинское, Боголюбовское) и золото-сурьмяный (Удерейское, Раздольнинское) [2]. Особый интерес представляет сурьмяная минерализация, проявленная на всех типах золоторудных месторождениях района. Интенсивность ее развития различна - от локальных секущих жил и отдельных зон метасоматитов с антимонитом (Ведугинское) до самостоятельных золото-сурьмяных (Удерейское) и собственно сурьмяных (Раздольнинское) месторождений. Проблема ее генезиса на этих месторождениях остается еще во многом нерешенной. Неясно, является ли она поздней наложенной и не связанной с основным золоторудным процессом или является продуктом заключительной стадии единого процесса формирования золото-сурьмяного оруденения. В последнее время с применением современных изотопно-геохронологических методов были определены основные этапы формирования оруденения различного типа, получены возрасты формирования гранитных [3], щелочных и дайковых комплексов [4, 8] и проведена оценка возраста коллизионного магматизма [6], что позволило обосновать модели многоэтапного развития Енисейского кряжа как региона с неоднократным проявлением процессов коллизии и рифтогенеза, которые сопровождались соответствующими типами магматизма и метаморфизма. В статье приведены новые данные об условиях образования сурьмяной минерализации на золоторудных месторождениях Енисейского кряжа, возрасте золотого и сурьмяного оруденения, особенностях проявления сурьмяной минерализации на золото-сульфидных месторождений и ее физико-химические условия формирования.

Сурьмяная минерализация с разной интенсивностью проявлена на разных типах золоторудных месторождений Енисейского кряжа. Наиболее широко она развита на золото-сульфидных месторождениях, таких как Олимпиадинское, Ведугинское, Попутнинское и Боголюбовское, которые расположены в пределах Центрально-Ангарского золотоносного пояса (рисунок).

По известным геологическим данным и полученным нами результатам изотопно-геохронологических исследований последних лет (Ar-Ar метод) устанавливается, что процессы формирования золото-сульфидных руд и наложенной сурьмяной минерализации разделены во времени. Однако в виду того, что на этих месторождениях в ассоциации с минералами сурьмы калийсодержащие сингенетичные минералы, подходящие для датирования Ar-Ar методом (мусковит, серицит), распространены крайне редко, существует некоторая сложность в определении абсолютного возраста формирования наложенного парагенезиса. Так, например, возраст формирования ранних арсенопирит-кварцевых жил с самородным золотом на Ведугинском месторождении, определенный Ar-Ar методом в ЦКП «Аналитический Центр» ИГиМ CO РАН, составил 805,0±6,3 млн. лет, что согласуется с данными Новожилова Ю.И. [7], по Rb-Sr датированию ранних золото-арсенопиритовых метасоматитов на месторождении Олимпиадинское – 792 млн. лет, а время формирования сурьмяного оруденения — 615 млн. лет.

Обобщение имеющихся изотопно-геохронологических данных по месторождениям золота Енисейского кряжа (табл. 1) позволяют предложить следующую схему последовательности проявления рудно-метасоматических процессов [3, 4, 6, 8, 10]:

890–850 млн. лет — метаморфизм, формирование дорудных метасоматитов;

830—775 млн. лет — образование и преобразование основной массы кварцево-жильных месторождений и отложение раннего золото-арсенопирит-кварцевого парагенезиса на золото-сульфидных и золото-сурьмяных месторождениях;

720–711 млн. лет — образование золото-пиритпирротин-арсенопиритовой ассоциации золотосульфидных прожилково-вкрапленных руд;

676-643 млн. лет — формирование золотоарсенопиритового и сурьмяного парагенезисов на

2 ♦февраль ♦ 2009

Таблица 1 Пробы серицита из руд золоторудных месторождений Енисейского кряжа

Место- рождение	Тип оруденения	Положение Описание пробы в общей стадийности		Возраст, млн. лет.
Советское	Золото- кварцевый	Серицит из кварцевой жилы с золотом	Ранние золото- кварцевые жилы	820,3±8,2
		Мусковит из прожилка с крупным золотом в сланце	Ранние золото- кварцевые жилы	775,8±8,1
Ведугинское	Золото- сульфидный	Серицит из жилы с арсенопиритом и зо- лотом	арсенопиритом и зо- арсенопирит-	
Удерейское	Золото- сурьмяный	Серицит из ранних квар- цевых жил с пиритом и халькопиритом и золотом	Ранние золото- сульфидные жилы	711,6±3,4
		Серицит из сурьмяных руд	Поздние сурьмя-	676,6±2,8
		руд	ные жилы	643,2±3,8
		Прожилок со сфалеритом, антимонитом и халькостибитом	Поздние прожил- ки с сурьмяными минералами	659,1±5,7
		Серицит из основной массы сланца с мелким арсенопиритом	Золото- содержащие вме- щающие породы	670,1±5,6

Примечание: Определение выполнено Ar-Ar методом в АЦ ИГиМ СО РАН г. Новосибирск. Аналитик Травин А.В.

Таблица 2 Физико-химические условия формирования Олимпиадинского, Ведугинского и Удерейского месторождений (по данным [5, 7] и собственным определениям)

	Золото-сульфидный этап		Сурьмя		
Месторождение	Темпе- ратура гомогени- зации, °С	Концентрация раствора, масс.% NaCl-экв.	Темпе- ратура гомогени- зации, °С	Концентра- ция раство- ра, масс.% NaCl-экв.	Состав газовой фазы
Олимпиадин- ское	365-210	7,4-11,4	230-150	10,4-11,1 (до 40)	CO ₂ , CH ₄ , N ₂
Ведугинское	270-220	7-9	170-120	13-16 (до 23)	CO ₂ , CH ₄ , N ₂
Удерейское	350-200	5-7	180-120	10-12 (до 31)	CO ₂

Таблица 3 Результаты хроматографического анализа кварца Ведугинского месторождения, мг/кг

Образец	T°, C	CO ₂	H ₂ O	H ₂	N ₂	CH₄	СО	C ₂ H ₂	C ₂ H ₄ +C ₂ H _{4,6}
ВК-1 Рудный	600	70	490	2	180	90	1	Сле- ды	Следы
ВК-2 Рудный	600	100	740	2	100	20	1	Сле- ды	Следы
ВК-3 Неруд- ный	600	80	400	4	5	3	2	Сле- ды	0
ВК-4 Неруд- ный	600	30	420	2	2	2	3	Сле- ды	0

золото-сурьмяных месторождениях и их частичное преобразование за счет наложения поздних гидротермальных растворов.

Это согласуются с геологическим положением сурьмяных руд, которые в виде секущих жил и жильных

зон, локализованных, как правило, пространственно обособлено от более раннего золотоносного золотопирит-арсенопиритового парагенезиса.

Различны и условия формирования собственно золото-сульфидных руд и сурьмяного парагенезиса. На примере одного из типовых золото-сульфилных месторождений с наложенной сурьмяной ассоциацией (Ведугинское) был проведен комплекс термобарогеохимических исследований флюидных включений в кварце, образовавшемся на различных этапах формирования оруденения. Так, в кварце из ранних золотосульфидных ассоциаций были обнаружены газовые однофазовые и двухфазные флюидные включения, содержащие раствор невысокой концентрации. В кварце, образовавшемся одновременно с минералами сурьмы были отмечены трехфазные высококонцентрированные включения содержащие раствор, газовый пузырек и кристаллик соли. Результаты исследования включений в жильном кварце приведены в табл. 2. Установлено, что на фоне понижения температуры отмечается повышение концентрации флюида, достигающего по отдельным замерам методом криометрии до 31 мас. % NaClэквивалента. Полученные данные согласуются с параметрами формирования Олимпиадинского золотосульфидного и Удерейского сурьямного месторождения, на котором проявлен ранний золото-сульфидный тип оруденения [5, 7].

Интересные данные были получены с помощью газовой хроматографии в кварце Ведугинского месторожде-

ния. В рудном кварце, ассоциирующем с золотым оруденением, фиксируются повышенные содержания метана и азота, которые практически отсутствуют в кварце безрудном. Данные эти хорошо коррелируются с результатами, полученными А.А. Томиленко для

Советского месторождения [9] и Н.Н. Барановой [1] для Олимпиадинского месторождения. Этот критерий может приниматься для разбраковки кварцевых жил на рудные и безрудные на основе валового газового состава (табл. 3).

Важное значение для выяснения пространственно-временных и генетических соотношений сурьмяного и золотого оруденения имеет изучение их минералого-геохимических особенностей. Минеральный состав руд золотых и золото-сурьмяных месторождений довольно сложный и включает в себя порядка 50 рудных минералов. Золото-арсенопирит-кварцевый парагенензис представлен кварцем, арсенопиритом и золотом; золото-полисульфидный - пирротином с примесью никеля и кобальта (до п %) и развивающимся по нему пентландитом и ульманитом, а также пиритом, халькопиритом, арсенопиритом, галенитом, сфалеритом, тетраэдритом, самородным золотом.

Для месторождений всех типов золотого оруденения с той или иной полнотой проявлены три главные минеральные ассоциации: золотоарсенопирит-кварцевая, золотополисульфидная и сурьмяная.

Парагенезисы сурьмяных минералов по условиям их образования можно разделить на три главные группы: 1) сурьмяные минералы, образовавшиеся в золото-полисульфидный этап и ассоциирующие с пирротином, пиритом, халькопиритом; сурьмяные минералы в пространственно обособленных рудных жилах; 2) сурьмяные парагенезисы обособленных антимонитовых жил; 3) реакционные парагенезисы минералов сурьмы, образовавшиеся за счет замещения ранних сульфидов при наложении на них поздних растворов, содержащих сурьму.

К первой группе относятся тетраэдрит, джемсонит, буланжерит и ульманит первой генерации, содержащий в составе примесь кобальта до n %. Ко второй группе — антимонит, бертьерит и редко халькостибит. Ассоциация сурьмяных минералов в пространственно совмещенных золото-арсенопиритовых и антимонитовых рудах включает в себя широкий спектр минералов сурьмы: антимонит, бертьерит, тетраэдрит и ульманит второй генерации, джемсонит, гудмундит, халькостибит, брейтгауптит, самородную сурьму

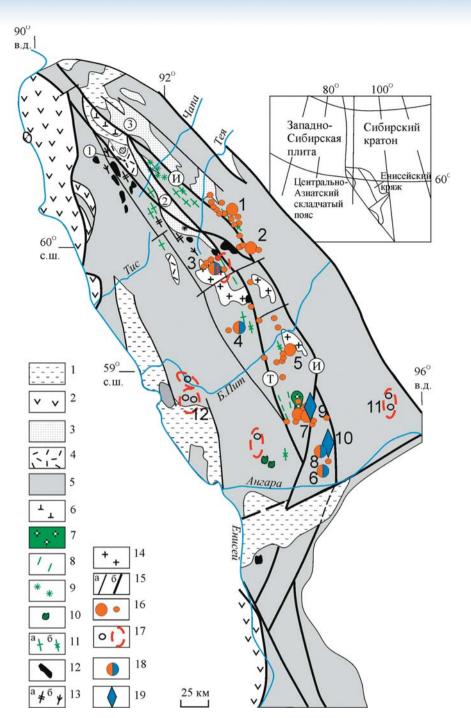


Схема распространения поздненеопротерозойских рифтогенных и внутриплитных комплексов и золоторудных месторождений на Енисейском кряже (по данным [8] с дополнениями автора).

1 - чехол (PZ-KZ); 2 - офиолитовые и островодужные комплексы Приенисейского акреционного пояса (МР-NР); рифтогенные терригенные и вулканогенные комплексы свит: 3 — чингасанской (700 млн. лет), 4 — верхневороговской (750 млн. лет); 5 - нерасчлененные комплексы докембрия; 6-12 - рифтогенные и внутриплитные комплексы: 6 - вороговский – траппы; 7 – татарский – граниты, сиениты (630 млн. лет); 8 – приразломные карбонатиты и щелочные метасоматиты (650 млн. лет); 9 - чапинский - щелочные пикриты (670 млн. лет); 10 – *среднетатарский* – фойяиты, ийолиты (700, 710, 675 млн. лет); 11 – захребетнинский – дайки щелочных сиенит порфиров и камптонитов (700 млн. лет); 12 - кутукасский — лейкограниты (690 млн. лет); 13 - ковригинский - дайки риолитпорфиров и габбро-долеритов (750 млн. лет); 14 - аяхтинский - граниты (760-750 млн. лет); 15 – разломы; 16 – золоторудные месторождения; 17 – ртутные месторождения и шлиховые ореолы киновари; 18 - золоторудные месторождения с сурьмяной минерализацией; 19 — сурьмяные месторождения. Месторождения: 1 - Советское; 2 - Эльдорадинское; 3 - Олимпиадинское; 4 - Ведугинское; 5 - Аяхтинское; 6 - Попутнинское; 7 - Васильевское; 8 - Боголюбовское; 9 - Удерейское; 10 - Раздольнинское; 11 - Мутовское; 12 – Чернореченское

Таблица 4 Минеральный состав руд золото-сульфидных месторождений Енисейского кряжа (по данным [5, 7] и собственным наблюдениям)

Мосторождонио	Рудные минералы				
Месторождение	Золото-сульфидный парагенезис	Сурьмяный парагенезис			
Олимпиадинское	Арсенопирит, пирротин, пирит, халькопирит, галенит, сфалерит, пентландит, висмутин, шеелит, самородное золото	Антимонит, бертьерит, гудмундит, джемсонит, тетраэдрит, халькостибит, буланжерит, ульманит, бурнонит, ауростибит, самородное золото, самородная сурьма			
Ведугинское	Арсенопирит, пирротин, пирит, халькопирит, галенит, сфалерит, пентландит, кобальтин, ульманит, тетраэдрит, самородный висмут, самородное золото	Антимонит, бертьерит, гудмундит, джемсонит, тетраэдрит, брейт-гауптит, буланжерит, ульманит, бурнонит, ауростибит, самородное золото, самородная сурьма			
Попутнинское	Арсенопирит, пирротин, пирит, халькопирит, самородное золото.	Антимонит, бертьерит, тетраэдрит, ульманит			
Боголюбовское	Арсенопирит, пирротин, пирит, халькопирит, галенит, сфалерит, самородное золото	Антимонит, бертьерит, тетраэдрит, бурнонит, самородный висмут			

и ауростибит. Такая полнопроявленная ассоциация сурьмяных минералов чаще всего встречается на контакте ранних золото-пирит-арсенопиритовых руд и антимонитовых жил и зон. При условии их пространственного разобщения сурьмяные жилы сложены только антимонитом и в меньшей степени бертьеритом.

Устанавливается, что минеральные парагенезисы наследуют геохимические особенности (Ni, Co, As, Au, Pb, Cu и др.) ранних золото-арсенопиритовых и золото-полисульфидных ассоциаций. Большинство сурьмяных сульфосолей Cu, Pb (гудмундит, буланжерит и др.) формируются за счет замещения ранее образованных сульфидов, содержащих Ni, Co, Pb, Cu и др. Так, одним из наиболее ярких примеров является замещение пирротина, содержащего примесь никеля до первых процентов, ульманитом при воздействии на ранние золотосульфидные руды поздних высококонцентриванных сурьмусодержащих растворов.

Таким образом, в ходе проведенных исследований установлено:

золото-сульфидные месторождения являются, как правило, многоэтапными образованиями, что связано с пространственным совмещением разновозрастного оруденения и преобразованием ранней золоторудной минерализации в ходе последующих тектоно-термальных процессов и гидротермальной деятельности;

временные интервалы процессов формирования золотой и сурьмяной минерализации значительно отстают друг от друга по времени образования;

геохимическая специализация сурьмяного оруденения определяется привносом сурьмы и серы и заимствованием Ni, Co, As, Pb, Zn, Fe и Au из ранее образованных руд, что находит свое отражение в сложном минеральном составе сурьмяных руд, локализованных в контурах раннего золотого оруденения, и их геохимических особенностях;

установлено, что специфика физико-химических условий формирования сурьмяного оруденения определяется более низкими температурами минералообразования относительно ранних золото-сульфидных руд и повышенным содержанием солевых компонентов в рудообразующих растворах.

ЛИТЕРАТУРА

- 1. Баранова Н.Н., Афанасьева З.Б., Иванова Г.Ф. и др. Характеристика процессов рудообразования на Аu (Sb W) месторождении Олимпиада (по данным изучения минеральных парагенезисов и флюидных включений) // Геохимия. 1997. №3. C. 282–293.
- 2. *Беневольский Б.И.* Золото России. М., 2002.
- 3. Верниковский В.А., Верниковская А.Е. Тектоника и эволюция гранитоидного магматизма Енисейского кряжа. // Геология и геофизика Т. 47. Геодинамика и петрология литосферы и верхней мантии. Новосибирск, 2006. С. 35–53.
- 4. Верниковский В.А., Верниковская А.Е., Сальникова Е.Б. и др. Позднерифейский щелочной магматизм западного обрамления Сибирского кратона: результат континентального рифтогенеза или аккреционных событий? // ДАН. 2008. –Т. 419. № 1. С. 90–94.
- 5. Дистанов Э. Г., Оболенский А.А., Кочеткова К.В., Борисенко А.С. Удерейское сурьмяное месторождение в Енисейском кряже //Геология и генезис рудных месторождений юга Сибири. Новосибирск: Наука. 1977. С. 5–32.
- 6. Лиханов И.И., Козлов П.С., Полянский О.П. идр. Неопротерозойский возраст коллизионного метаморфизма в Заангарье Енисейского кряжа (по Ar-Ar-данным) // ДАН 2007. Т. 412. №6. С. 799–803.
- 7. *Новожилов Ю.И., Гаврилов А.М.* Золото-сульфидные месторождения в углеродисто-терригенных толщах. М.: ЦНИГРИ, 1999.
- 8. Ножкин А.Д., Туркина О.М., Баянова Т.Б. и др. Неопротерозойский рифтогенный и внутриплитный магматизм Енисейского кряжа как индикатор процессов распада родия // Геология и геофизика. 2008. № 7.
- 9. Томиленко А.А., Гибшер Н.А. Особенности состава флюида в рудных и безрудных зонах Советского кварц-золоторудного месторождения, Енисейский кряж (по данным изучения флюидных включений). // Геохимия. 2001. №2. С. 167–177.
- 10. Томиленко А.А., Гибшер Н.А., Травин А.В. 40Aг/39Aг возраст серицитов из золотоносных и безрудных кварцево-жильных зон Советского месторождения, Енисейский кряж, Россия / Матер. III Российской конф. по изотопной геохронологии «Изотопное датирование процессов рудообразования, магматизма, осадконакопления и метаморфизма». М.: ГЕОС, 2006. С. 345–349.

УДК 532:622

© Сидоренко Г.А., Дойникова О.А., 2009

Сидоренко Г.А. (ВИМС), Дойникова О.А. (ИГЕМ РАН)

МИНЕРАЛЫ УРАНИЛА – ИНДИКАТОРЫ УСЛОВИЙ ФОР-МИРОВАНИЯ УРАНОВЫХ МЕСТОРОЖДЕНИЙ

Публикация привлекает внимание геологов к минералогии шестивалентного урана, что связано с решением проблем безопасного захоронения радиоактивных отходов. Краткое обзорное знакомство с минералогией уранила, в рамках данной статьи, расширит кругозор геологов-практиков; это поможет формированию обобщенного взгляда на поведение урана в гипергенных процессах. Образование минералов уранила определяется геохимией водной среды. Уранильная минерализация несет информацию о форме переноса уранила (гидроксидная, сульфатная, карбонатная) и условиях его накопления, поэтому она является для геолога источником генетической информации. Некоторые