# МИНЕРАЛЫ Ү-LN В КОЛЧЕДАННЫХ РУДАХ ПРОЯВЛЕНИЯ БРАГИНО, ЮЖНАЯ ПЕЧЕНГА, КОЛЬСКИЙ РЕГИОН

### Компанченко А.А., Волошин А.В., Базай А.В.

Геологический институт КНЦ РАН, Anamumы, komp-alena@yandex.ru

Южно-Печенгская структурная зона (ЮПСЗ) является частью нижнепротерозойской рифтогенной структуры Печенга-Имандра-Варзуга, в северо-западной части Кольского региона. Колчеданные руды развиты на участке Брагино, который расположен в осевой части на юго-восточном блоке ЮПСЗ. Центральная его часть представлена метапикробазальтами меннельской толщи. На северном и южном флангах участка развиты вулканогенно-осадочные образования брагинской свиты. В вулканитах, преимущественно за пределами участка, закартированы малые тела диоритов, гранит-порфиров, лампрофиров, сиенитов комплексов брагинских малых тел. По вулканогенноосадочным толщам широко развиты метасоматические образования – кварциты, березиты, листвениты, основные метасоматиты, альбититы [1].

Массивные руды, наиболее распространенные на участке, разделены на три типа в зависимости от содержания сульфидов и вещественного состава. Массивные пирротиновые руды I типа выделены в центральной части рудного тела, состоят на 90-95% из сульфидов, 90% из которых приходится на пирротин, остальные – марказит и пирит, халькопирит, молибденит, отсутствует сфалерит. Массивные пирротиновые руды II типа – наиболее распространены на всем участке. Они состоят на 80-85% из сульфидов, из которых 60% приходится на пирротин, по 15% на халькопирит и сфалерит, остальные - марказит, пирит, молибденит, галенит и др. В пирротиновых рудах II типа обнаружены «гнезда», размером 1×1 м, на 85% сложенные крупнокристаллическим пиритом с нерудными минералами в интерстициях – третий тип руд – массивные пиритовые. Границы перехода от пирротиновых руд II типа к пиритовым рудам резкие.

В колчеданных рудах участка Брагино, в пирротиновых рудах II типа и пиритовых рудах, были обнаружены реликты некой гидротермальной системы. Она представляет собой будинированные жилки кварц-альбитового состава, в которых локализуются многочисленные представители Cr-Sc-V минерализации (тиванит, ноланит, кульсонит, мусковит-роскоэлит, тортвейтит и др.).

Изучение минералов колчеданных руд проводилось на оптическом микроскопе Axioplan в отраженном поляризованном свете с блоком видиорегистрации. Исследование морфологии, фазовой и внутрифазовой неоднородности минералов проводились при помощи сканирующего электронного микроскопа (СЭМ) LEO-1450 с оценкой состава минеральных фаз посредством энергодисперсионного спектрометра (ЭДС) Bkuker XFlash 5010 (ГИ КНЦ РАН). Так же исследования химического состава и неоднородности проводились на СЭМ Hitachi S-3400N с ЭДС Oxford X-Max 20 (ресурсный центр (РЦ) СПбГУ «Геомодель», Санкт-Петербург). Химический анализ однородных зёрен минералов размером более 20 мкм выполнен на электронно-зондовом микроанализаторе Cameca MS-46 в Геологическом институте КНЦ РАН.

Среди минералов Y-Ln ассоциации выявлены представители разных классов: оксиды, фосфаты и силикаты.

# Оксиды Ү-Ln

Среди минералов группы кричтонита в колчеданных рудах Брагино установлены *давидит*-(*La*)  $La(Y,U)Fe_2(Ti,Fe,Cr,V)_{18}(O,OH,F)_{38}$  и *давидит*-(*Ce*)  $Ce(Y,U)Fe_2(Ti,Fe,Cr,V)_{18}(O,OH,F)_{38}$  [3]. Эти минерады крайне редко образуют индивидуализированные зерна, чаще они находятся в срастании с кричтонитом и сенаитом, иногда в виде мелких выделений сложной конфигурации в кричтонитовом агрегате. Доминирующим катионом обычно выступает La, реже – Ce, следовательно, давидит-(La) более распространен.

## Фосфаты Ү-Іп

*Ксенотим-(Y), Y(PO<sub>4</sub>)* встречается в виде ксеноморфных выделений, корродированных кристаллов и насыщенных включениями агрегатов (рис. 1 а, б) в разных типах руд. Ксенотим обладает не только фазовой, но и внутрифазовой неоднородностью, обусловленной неравномерным распределением других редкоземельных элементов. На BSE-снимках светлые участки в кристаллах соответствуют зонам с повышенным содержанием Gd, Dy, Er, Yb, Sm (в сумме до 24 мас. %) и соответствуют формуле  $(Y_{0.75}Gd_{0.08}Dy_{0.08}Er_{0.04}Sm_{0.03}Yb_{0.03})\Sigma_{1.01}(PO_4)$ . Более темные участки характеризуются меньшим содержанием этих элементов и отвечают формуле  $(Y_{0.81}Gd_{0.07}Dy_{0.07}Er_{0.03}Yb_{0.02}Sm_{0.01})$   $\Sigma_{1.01}(PO_4)$ .

Наиболее распространенными представителями данного класса являются минералы *группы монацита*, а именно *монацит-(Ce)*  $Ce(PO_4)$  и *монацит-(Nd)*  $Nd(PO_4)$ . Они встречаются во всех типах руд, в разных ассоциациях. Одной из наиболее часто встречаемых является ассоциация монацита с ванадийсодержащим мусковитом в альбите, в реликтах кварц-альбитовых жил (рис. 1 в, г; рис. 2 а-г). Могут присутствовать сидерит, шамозит, минералы группы эпидота, кричтонита, Ti-V оксиды, тортвейтит.

В химическом составе обычно доминирующим катионом является Се или Nd, La на третьем месте, что хорошо отражает тройная диаграмма видового разнообразия минералов группы монацита и эволюции их состава (рис. 1 д). Часто встречаются индивиды, в которых содержания этих элементов практически равны. Постоянно в качестве примеси, кроме других REE (Sm, Pr, Gd), присутствуют железо (до 2 мас. %  $Fe_2O_3$ ) и торий (до 3 мас. %  $ThO_2$ ). В целом, формулы монацита-(Ce) и монацита-(Nd) соответственно выглядят следующим образом:

$$(Ce_{0.40} Nd_{0.24} La_{0.19} Fe_{0.06} Pr_{0.05} Sm_{0.05} Gd_{0.02} Th_{0.02})_{\Sigma 1.04} P_{0.97} O_4 \\ (Nd_{0.42} Ce_{0.22} Sm_{0.10} La_{0.09} Pr_{0.08} Fe_{0.05} Gd_{0.04} Dy_{0.04} Th_{0.02})_{\Sigma 1.06} P_{0.96} O_4$$

Монациты не проявляют заметную фазовую или внутрифазовую неоднородность. Монацит в ассоциации с другими Y-REE минералами довольно часто встречается в колчеданных рудах Кольского региона, в том числе в Панареченской структуре [2].



Рис. 1. Морфология и ассоциация фосфатов REE в колчеданных рудах Брагино.

а – фазовая и внутрифазовая неоднородность в ксенотиме (Xn); б – пойкилитовый агрегат ксенотима с многочисленными включениями сульфидов и нерудных минералов; в, г – ванадийсодержащий мусковит (Msc), насыщенный мелкими включениями монацита (Mnz) и более крупное отдельное выделение монацита. BSE снимки. д – тройная диаграмма видового разнообразия минералов группы монацита. Ру – пирит; Po – пирротин; Crn – минерал группы кричтонита; Sid – сидерит; Ab – альбит.

### Силикаты Ү-Ln

В колчеданных рудах участка Брагино, в пиритовых рудах внутри кристаллов пирита установлены обособления, содержащие в себе ассоциацию ванадийсодержащих силикатов: алланита, мусковита и хлорита, а также монацита-(Nd) и монацита-(Ce) (рис. 2 а-г).



Рис. 2. а-г – ванадийсодержащие REE-минералы группы эпидота (подгруппы алланита, Aln) в колчеданных рудах участка Брагино в ассоциации с ванадийсодержащим мусковитом (Msc), роскоэлитом (Rsc), монацитом (Mnz) и альбитом (Ab) в пиритовых рудах (Py); BSE снимки; д – тройная диаграмма видового разнообразия минералов подгруппы алланита из разных месторождений.

|   | A2                                                                                                           | M1                                                                          | M2                        | M3                                                                         |
|---|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|
| 1 | $(Ce_{0.23}La_{0.19}Nd_{0.15})_{\Sigma 0.57}$                                                                | $(\mathbf{V}_{0.67} \mathrm{Al}_{0.31} \mathrm{Cr}_{0.02})_{\Sigma^{1.00}}$ | <b>Al</b> <sub>1.00</sub> | $(\mathbf{Fe}_{0.38}\mathrm{Al}_{0.24}\mathrm{Mg}_{0.14})_{\Sigma 0.76}$   |
| 2 | $(\mathbf{Nd}_{0.31}Ce_{0.19}La_{0.06}Sm_{0.09})_{\Sigma 0.65}$                                              | $(V_{1.00} Cr_{0.14} Sc_{0.02})_{\Sigma 1.16}$                              | <b>Al</b> <sub>1.00</sub> | $(\mathbf{Fe}_{0.66} \mathrm{Al}_{0.27} \mathrm{Mg}_{0.08})_{\Sigma 1.01}$ |
| 3 | $(\mathbf{Nd}_{0.33}\mathbf{Ce}_{0.23}\mathbf{Sm}_{0.08}\mathbf{La}_{0.07}\mathbf{Pr}_{0.07})_{\Sigma 0.78}$ | $(V_{0.86} Al_{0.08} Cr_{0.06})_{\Sigma 1.00}$                              | <b>Al</b> <sub>1.00</sub> | $(\mathbf{Fe}_{0.68}\mathbf{Al}_{0.17}\mathbf{Mg}_{0.15})_{\Sigma 1.00}$   |
| 4 | $(Ce_{0.35} La_{0.27} Nd_{0.21})_{\Sigma 0.83}$                                                              | $(V_{1.01}Cr_{0.04})_{\Sigma 1.05}$                                         | Al <sub>0.98</sub>        | Fe <sub>1.04</sub>                                                         |

Таблица. Распределение катионов в минералах подгруппы алланита из колчеданного проявления Брагино.

Примечание. Жирным выделены доминантные катионы в соответствующей позиции. Распределение произведено в соответствии с предположением, что наши минералы могут быть аналогами ванадоалланита-(La)  $(CaLa)(V^{3+}AlFe^{2+})(Si_2O_7)(SiO_4)O(OH)$ .

Предполагаемые формулы минералов:

1.  $Ca_{1.65}(Ce_{0.23}La_{0.19}Nd_{0.15})_{\Sigma_{0.57}}(V_{0.67}Al_{0.31}Cr_{0.02})_{\Sigma_{1.00}}Al_{1.00}(Fe_{0.38}Al_{0.24}Mg_{0.14})_{\Sigma_{0.76}}(Si_{2}O_{7})(SiO_{4})O(OH)$ 

$$2. (Ca_{1.08}Mn_{0.07})_{\Sigma 1.15} (Nd_{0.31}Ce_{0.19}La_{0.06}Sm_{0.09})_{\Sigma 0.65} (V_{1.00}Cr_{0.14}Sc_{0.02})_{\Sigma 1.16} Al_{1.00} (Fe_{0.66}Al_{0.27}Mg_{0.08})_{\Sigma 1.01} (Si_2O_7) (SiO_4)O(OH) = 0.000 (SiO_4) (SiO_4)O(OH) = 0.000 (SiO_4)O(O$$

$$3. (Ca_{1.17}Mn_{0.06})_{\Sigma 1.23} (Nd_{0.33}Ce_{0.23} Sm_{0.08}La_{0.07}Pr_{0.07})_{\Sigma 0.78} (V_{0.86} Al_{0.08}Cr_{0.06})_{\Sigma 1.00} Al_{1.00} (Fe_{0.68}Al_{0.17}Mg_{0.15})_{\Sigma 1.00} (Si_2O_7) (SiO_4)O(OH)$$

4.  $(Ca_{1.07}Mn_{0.03})_{\Sigma^{1.10}}(Ce_{0.35}La_{0.27}Nd_{0.21})_{\Sigma^{0.83}}(V_{1.01}\tilde{Cr}_{0.04})_{\Sigma^{1.05}}Al_{0.98}Fe_{1.04}(Si_2O_7)(SiO_4)O(OH)$ 

Химический состав минералов довольно переменчив. Содержание  $V_2O_3$  колеблется в пределах от 8.58-13.74 мас. %, редко в качестве примеси отмечается скандий. Согласно расчету кристаллохимических формул (табл.), как и в ванадоалланите-(La),  $V^{3+}$  в наших минералах может являться доминирующим в позиции M1, A1 - в M2, а Fe<sup>2+</sup> - в M3. Распределение катионов по позициям A2, M1, M2, M3 в формулах минералов дано в табл. Минералы могут быть аналогами ванадоалланита-(La), с доминирующими Се или Nd в структурной позиции A2 – ванадоалланит-(Ce) и ванадоалланит-(Nd). Как видно из тройной диаграммы распределения катионов в позиции A2 (рис. 2), в химическом составе алланита из Брагино наблюдается тренд от Ce к Nd, тогда как в большинстве других подоб-

ных минералах существенную роль играет La. Подобный тренд находит свое отражение и в химическом составе монацита – доминирующими чаще всего являются Ce или Nd, a La на третьем месте.

В качестве примеси Y и ряд REE (Sm, Nd, Gd, Dy, Er, Yb) установлены так же в *тортвейтиme*  $Sc_2Si_2O_7$ . Наибольших концентраций достигают Y (до 6 мас. % Y<sub>2</sub>O<sub>3</sub>), Yb (до 3.5 мас. % Yb<sub>2</sub>O<sub>3</sub>), содержания остальных не превышают 1 мас. %.

Присутствие Y-REE минералов и их приуроченность к реликтам кварц-альбитовых жил могут указывать на гидротермальное происхождение подобных образований. Так же прослеживается явная генетическая и пространственная связь данного типа минерализации с Cr-Sc-V типом, ранее установленным в колчеданных рудах Кольского региона [3].

Работа выполнена в рамках Госзадания ГИ КНЦ РАН (тема НИР № 0231-2015-0001) при частичной поддержке программы Президиума РАН № 19.

#### Литература

- 1. Ахмедов А.М., Вороняева Л.В., Павлов В.А. и др. Золотоносность Южно-Печенгской структурной зоны (Кольский полуостров): типы проявлений и перспективы выявления промышленных содержаний золота // Региональная геология и металлогения. 2004. № 20. С. 143-165.
- Волошин А.В., Чернявский А.В., Войтеховский Ю.Л., Савченко Е.Э. Ү-REE минералы и минералы группы циркона из рудных зон Панареченской вулкано-тектонической структуры // Золото Кольского полуострова и сопредельных регионов. Тр. Всероссийской (с международным участием) научной конф., посвящённой 80-летию Кольского НЦ РАН. Апатиты. 2010. С. 11-13.
- 3. Карпов С.М., Волошин А.В., Компанченко А.А., Савченко Е.Э., Базай А.В. Минералы группы кричтонита в колчеданных рудах и рудных метасоматитах протерозойских структур Кольского региона // Записки РМО. 2016. № 5. С. 39-56.
- 4. Canet C., Alfonso P., Melgarejo J-C., Jorge S. V-rich minerals in contact-metamorphosed Silurian sedex deposit in the Poblet area, Southwestern Catalonia, Spain // The Canadian Mineralogist. 2003. V. 41. P. 561-579.
- 5. Nagashima M., Nishio-Hamane D., Tomita N., Minakawa T., Inaba S. Vanadoallanite-(La): a new epidotesupergroup mineral from Ise, Mie Prefecture, Japan // Mineralogical Magazine. 2013. V. 77(6). P. 2739-2752.
- 6. Pan Y., Fleet M.E. Vanadian allanite-(La) and vanadian allanite-(Ce) from the Hemlo gold deposit, Ontario, Canada // Mineralogical Magazine. 1991. N. 55. P. 497-507.