УДК 502.55:622(571.6)

В.П. Зверева, А.В. Савченко, А.М. Костина, О.В. Коваль ОЦЕНКА И ПРОГНОЗ ВОЗДЕЙСТВИЯ ГОРНОПРОМЫШЛЕННОЙ ТЕХНОГЕННОЙ СИСТЕМЫ МЕСТОРОЖДЕНИЙ КОМСОМОЛЬСКОГО РАЙОНА НА ГИДРОСФЕРУ

ловорудная промышленность в Комсомольском районе развивается около шестидесяти лет. Ее развитие привело к появлению многочисленных канав, расчисток, карьеров, штолен и способствовало хвостохранилищ, что созданию горнопромышленной техногенной системы площадью десятки тысяч гектар. Так как при развитии горнорудной промышленности в районе санитарные нормы не были соблюдены, то жилые зоны пос. Горный и пгт. Солнечный оказались расположены в пределах горнопромышленной техногенной системы, гипергенные процессы активизируются. Главными сульфидными минералами, которые в процессе гипергенеза интенсивно окисляются, являются сульфиды: пирит, пирротин, арсенопирит, халькопирит, галенит, сфалерит и др. Окисление сульфидов и появление гипергенных растворов, видимо, правильнее описывают уравнения, относящиеся к условиям среды с рН ≤ 3 [1]. Процесс окисления сульфидов начинается в микропорах и микротрещинах, где образуется растворы с повышенной концентрацией кислых ионов, в том числе и НЅ04, в связи с чем первыми продуктами окисления сульфидов, скорее всего, будут комплексные катионы типа $[AHSO_4]^+$, где A — Fe^{+2} , Fe^{+3} , Cu, Pb, Zn — в зависимости от окисляющегося минерала, и соответствующие комплексные катионы $[FeHSO_4]^+$, $[FeHSO_4]^{+2}$, $[CuHS0_4]^+$, которые в дальнейшим при разбавлении растворов могут испытывать гидролизные превращения по схеме $[AHSO_4]^{+2}$ + H_2O $[A(OH)S0_4]^+$ $2H^{+}$. В результате пределах горнопромышленной техногенной системы возможна кристаллизация широкого спектра гипергенных и техногенных минералов Fe, Cu, Pb и Zn [2], главным образом класса сульфатов. Проведенные одним из авторов минералогические исследования [1, 3] позволили в рассматриваемой горнопромышленной техногенной системе установить более 80 гипергенных и техногенных минералов (табл. 1).

часть обнаруженных гипергенных минералов Большая относится к классу сульфатов — это купоросы — водные сульфаты Fe^{2+} или их разности с изоморфной примесью Cu, Zn, Mg и Mn. Среди них в техногенной системе данного района отмечаются роценит, сидеротил, мелантерит и др. К числу водных сульфатов Fe³⁺ относятся ярозит, фиброферрит и глоккерит. Большинство сульфатов являются купоросами, которые характерны для начального этапа гипергенеза. Купоросы в большинстве своем образуются исключительно как сезонные или техногенные минералы в засушливую погоду, а в период дождей могут растворяться и исчезать. Это легко растворимые в воде нормальные водные сульфаты, среди которых наиболее обычен халькантит. К числу широко распространенных сульфатов относятся также основные соли меди - антлерит и брошантит. Часто встречаются и такие редкие сульфаты меди, как познякит, ктенасит, серпиерит, вудвардит и роуволфит. Среди сульфатов свинца обнаружен только англезит. Самостоятельных сульфатов цинка не установлено. Цинк входит в состав серпиерита или изоморфно замещает медь в других сульфатах.

Техногенные сульфаты белого, желтого, коричневого и зеленого цвета разных оттенков отмечаются в виде выцветов, налетов и порошковидных корочек на стенках горных выработок, в карьерах, на рудных отвалах, на поверхности и в толще хвостов. Они могут быть как моно-, так и полиминеральными, т. е. одновременно содержать два и более минералов.

Наличие карбонатных вмещающих пород позволило раскристаллизоваться минералам Fe, Cu, Pb и Zn — сидериту, малахиту, азуриту, церусситу, смитсониту и др. (табл. 1).

Кремнистые минералы и вмещающие породы привели к образованию в техногенной системе гипергенных минералов класса силикатов, главным образом нонтронита, гизингерита и хризоколлы. Присутствие в рудах арсенопирита и его окисление способствовало образованию многих минералов Fe^{+3} , Cu и Pb класса арсенатов — оливениту, бедантиту, клиноклазу, церулеиту, дюфтиту, байлдониту, питтициту и др.

Таблица 1 Гипергенные минералы оловорудных месторождений Дальнего Востока

Широко распространенные	Мало распространенные			
Самородные элементы и сульфиды				
Медь самородная				
Халькозин Cu_2^S				
Ковеллин CuS				
Борнит Cu ₅ FeS ₄				
Mарказит FeS ₂				
Кермезит Sb ₂ S ₂ O				
	гидроксиды			
Куприт Cu_2^O	Пиролюзит βMnO ₂			
Тенорит CuO	Криптомелан $K(Mn^{+2},Mn^{+4})_4O_{16}$			
Гидрогётит α -FeO·OH·nH $_2$ O	Голландит $Ba(Mn^{+2},Mn^{+4})_{8}O_{16}$			
Гематит α -Fe $_2$ O $_3$	Псиломелан (Ba,Mn $^{+2}$) ₃ Mn $_{8}^{+4}$ (OH) $_{6}$ ·O $_{16}$			
Лепидокрокит γ-FeO·OH	Халькофанит $ZnMn_3O_7$: $3H_2O$			
Трипугиит $\operatorname{FeSb_2O_6}$	Бернессит (Ca,Na)Mn ₇ O ₁₄ ·2,8H ₂ O			
Кварц SiO ₂	/ 14 2			
<u>Гидраргиллит</u> $AI(OH)_3$				
Суль	фаты			
<u>Гипс</u> [CaSO ₄]·2H ₂ O	Антлерит $Cu_3[SO_4](OH)_4$			
Xалькантит Cu[SO ₄]·5H ₂ O	Англезит Pb[SO ₄]			
	Линарит PbCu[SO ₄](OH) ₂			
Ктенасит (Cu,Zn) ₅ [SO ₄] ₂ (OH) ₆ ·6H ₂ O	Биверит $Pb(Cu, Fe, Al)_3[SO_4]_2(OH)_6$			
Брошантит $Cu_4[SO_4](OH)_6$	<u>Роценит</u> Fe[SO ₄]·4H ₂ O			
$\underline{\text{Познякит}}$ $\text{Cu}_4[\text{SO}_4](\text{OH})_6 \cdot \text{H}_2\text{O}$	Сидеротил Fe[SO ₄]·5H ₂ O			
$\underline{\text{Роуволфит}}\text{Cu}_4[\text{SO}_4](\text{OH})_6\!\cdot\!2\text{H}_2\text{O}$	<u>Мелантерит</u> $Fe[SO_4]$ · 7 H_2O			
$\underline{\text{Серпиерит}} \left(\text{Cu,Zn} \right)_5 \left[\text{SO}_4 \right]_2 \left(\text{OH} \right)_6 \cdot 3 \text{H}_2 \text{O}$	Галотрихит $FeAl_2[SO_4]_4 \cdot 22H_2O$			
$\underline{\mathrm{Вудвардит}}\ \mathrm{Cu_4Al_2[SO_4](OH)_{12}} \cdot \mathrm{4H_2O}$	Пиккеренгит $MgAl_2[SO_4]_4 \cdot 22H_2O$			
	Φ иброферрит $Fe^{+3}[SO_4](OH) \cdot 5H_2O$			
Ярозит $KFe_3^{+3}[SO_4]_2(OH)_6$	Старкеит Mg[SO ₄]·4H ₂ O			

	T		
$\frac{\Gamma$ локкерит $Fe_4^{+3}[SO_4](OH)_{10}(1-3)H_2^{O}$	A луноген $Al_{2}[SO_{2}]_{3}\cdot 17H_{2}O$		
	<u>Ростит</u> Al[SO ₄](OH)·5H ₂ O		
	Плюмбоярозит PbFe $_{6}^{+3}[SO_{4}]_{4}(OH)_{12}$		
Кар	бонаты		
Mалахит Cu ₂ [CO ₃](OH) ₂	Смитсонит Zn[CO ₃]		
Азурит Cu ₃ [CO ₃] ₂ (OH) ₂	Aурихальцит $(Zn,Cu)_5[CO_3]_2(OH)_6$		
Церуссит Pb[CO ₃]	Сидерит Fe[CO ₃]		
<u>Кальцит</u> Са[СО ₃]	Магнезит Mg[CO ₃]		
1 3	<u>Алюмогидрокальцит</u> CaAl ₂ [CO ₃]		
	(OH) ₄ ·3H ₂ O		
Apo	сенаты		
Оливенит Cu ₂ [AsO ₄](OH)	<u>Церулеит</u> $CuAl_4[AsO_4]_2(OH)_8$ ·4 H_2O		
Бедантит $PbFe_3^{+3}[AsO_4][SO_4](OH)$	Клиноклаз $Cu_{3}[AsO_{4}](OH)_{3}$		
<u>Скородит</u> Fe ⁺³ [AsO ₄]·2H ₂ O	Байлдонит $Cu_3^3 Pb[AsO_4]_2(OH)_2$		
43 2	Дюфтит CuPb[AsO ₄](OH)		
	<u>Лискирдит</u> (Al,Fe ⁺³)[AsO ₄](OH) ₆ ·5H ₂ O		
	Питтицит $Fe_2^{+3}[AsO_4][SO_4](OH) nH_2O$		
	Миметезит Рb ₅ [AsO ₄] ₃ ·Cl		
Ван	адаты		
	Bанадинит Pb[VO ₄]₃·Cl		
Фосфаты	, .,		
Вивианит Fe ₃ ⁺³ [PO ₄] ₂ ·8H ₂ O	Псевдомалахит $Cu_5[PO_4]_2(OH)_4 \cdot 4H_2O$		
3 42 2	Эвансит Al ₃ [PO ₄](OH) ₆ ·H ₂ O		
	Пироморфит $Pb_{5}[PO_{4}]_{3}$ ·Cl		
Силикаты			

Каламин $\operatorname{Zn}_4[\operatorname{Si}_2\operatorname{O}_7](\operatorname{OH})_2\cdot\operatorname{H}_2\operatorname{O}$ Глауконит $(K,\operatorname{Ca},\operatorname{Na})(\operatorname{Al},\operatorname{Fe}^{+3},\operatorname{Fe}^{+2},\operatorname{Mn})_2(\operatorname{OH})_2$ $[\operatorname{AlSi}_3\operatorname{O}_{10}]\cdot\operatorname{nH}_2\operatorname{O}$ Стильпномелан $(K,\operatorname{H}_3\operatorname{O})(\operatorname{Fe}^{+2},\operatorname{Fe}^{+3},\operatorname{Mg},\operatorname{Al})_3$ $[\operatorname{Si}_4\operatorname{O}_{10}](\operatorname{OH})_2\cdot\operatorname{nH}_2\operatorname{O}$ $\underline{\Gamma}$ $\underline{\mathrm{U3}}$ $\underline{\mathrm{U3}}$ $\underline{\mathrm{U3}}$ $\underline{\mathrm{U3}}$ $\underline{\mathrm{U3}}$ $\underline{\mathrm{C}}$ $\underline{\mathrm{U3}}$ $\underline{\mathrm{U3$

Примечание. Подчеркивание означает, что минерал чаще техногенный; жирным шрифтом выделены первые (авторские) находки в районе

Поровые растворы, дренажные И концентрированные рудничные кристаллизуются воды, ИЗ которых вышеперечисленные минералы, выносятся круглосуточно, ничем не сдерживаемые, и попадают в поверхностные и грунтовые воды на протяжении многих десятилетий. Они выносят огромные количества широкого спектра элементов, значительно изменяя гидрохимический фон района, и ухудшают состав поверхностных и грунтовых вод, из которых в районе проводится водозабор для населения.

Сильные ветра, характерные для данного района, способствуют загрязнению атмосферы тонкодисперсным материалом хвостов обогащения, которые, попадая в почву, окисляются. Кислые почвенные растворы, обогащенные рудными элементами, способствуют их накоплению в растениях, что приводит к изменению биохимического фона района.

Наличие горнопромышленных техногенных систем и активно протекающих в них гипергенных процессов привело к тому, что Комсомольский оловорудный район по показателям загрязнения водного и воздушного бассейнов характеризуется как территория с критической и катастрофической экологической ситуацией. Поселок Горный и пгт. Солнечный находятся в данной зоне. С каждым годом границы этой зоны расширяются, а площади увеличиваются [4].

Дорогостоящие мониторинговые работы в горнорудных районах позволяют оценить экологическое состояние экосферы в

определенный промежуток времени, а также прогнозировать процессы ее загрязнения на ближайшее время. К сожалению, они не дают количественной оценки широкого спектра элементов, выносимых из горнопромышленной техногенной системы, а именно из хвостохранилищ.

Использование же современной программы «Селектор-Windows» (разработчики И.К. Карпов, К.В. Чудненко, В.А. моделирования Бычинский) компьютерного природного процесса минералообразования позволяет рассчитать объемы элементов, выносимых из хвостохранилищ и сделать прогноз на десятилетия и даже столетия. Программа «Селектор-Windows» находит глобальный минимум того или термодинамического потенциала, т. е. минимум функции свободной энергии Гиббса, и вычисляет на этой основе минеральный парагенезис.

Таблица 2 Схема физико-химического моделирования экологической ситуации на хвостохранилищах

Тип модели		Характеристика места нахождения и состояния отходов горнорудного производства – хвостов	Факторы, учитываемые при моделировании процессов гипергенеза	
I модель		Хвосты после удаления рудного концентрата (в трубопроводе)	Состав шламовых вод	
II модель	I вариант II вариант	Действующее хвостохранилище, закрытое полностью шламовым озером, объем хвостов возрастает Не работающее хвостохранилище, закрытое частично шламовым озером, объем хвостов	Состав шламовых, дождевых и талых вод	
III модель	,	постоянный Осушенное хвостохранилище, объем хвостов постоянный	Состав дождевых и талых вод	

При этом минимизация энергии Гиббса подразумевает как равновесие водного раствора с его компонентами и минералами, выпадающими из него, так и равновесие раствора и выпадающих из него минералов с геохимическим составом пород и руд. Все

изменения, происходящие с хвостами можно представить в виде ряда физико-химических моделей (табл. 2).

Начальный процесс изменения отходов горнорудного производства — хвостов начинается на стадии переработки руд, извлечения концентрата и сброса пульпы на хвостохранилище с помощью трубопровода. Ha этой стадии происходит взаимодействие руды и хвостов с реагентами, которые используются при гравитационном методе извлечения концентрата (І модель, табл. 2). В качестве реагентов в обогатительном процессе используются (г/т): серная кислота – 825, бутиловый ксантогенат – 50, флотационное масло – 15 (сосновое, которое состоит в процентах из: пинена - 40, лимонена - 40, борнилацетата - 11 и спирта – 9), жидкое стекло – 750, Ди-2-ЭГФК (ди-2-этилгексилфосфорная кислота) – 500 и изооктиловый спирт – 550. Шламовые начальном этапе формирования воды на хвостохранилища состоят практически из выше перечисленных реагентов, в которые при переработке руды и извлечении рудного концентрата добавляется вода.

таблица 3 Схема физико-химического моделирования экологической ситуации на хвостохранилищах Комсомольского района

Характеристика хвостохранилища	Первое	Второе	Третье
и состава хвостов		_	
Тип модели	I модель	I модель	I модель
	II модель	II модель	II модель
	I и II вариант	I и II вариант	I вариант
	III модель	III модель	
Период накопления хвостов (гг.)	1963-1997 (34)	1969-2001 (32)	2001-2008 (7)
Возраст хвостохранилища (г.)	45	39	7
Хвостохранилище закрыто шламовым озером (г.)	30	24	7
Хвостохранилище осушено (г.)	15	15	осушено частично
V хвостов (млн.т) и его S (га)	10,6	6,8	24,09
	20	30,5	40,3
Минеральный состав хвостов (из расчета 100%)	Кварц – 37,5	Кварц – 35,6	Кварц – 36,6
	Кварц роговиков – 41,1	Кварц роговиков –44,1	Кварц роговиков –42,7
	Полевые шпаты – 1,84	Полевые шпаты – 1,96	Полевые шпаты – 1,88
	Слюда – 0,46	Слюда – 0,49	Слюда – 0,47
	Амфибол и др. – 2,3	Амфибол и др. – 2,45	Амфибол и др. – 2,35
	Турмалин – 12,1	Турмалин – 10,2	Турмалин – 11,2
	Пирит, марказит – 1,3	Пирит, марказит – 0,9	Пирит, марказит – 1,1
	Пирротин – 0,89	Пирротин – 1,3	Пирротин – 1,1
	Арсенопирит – 0,67	Арсенопирит – 1,3	Арсенопирит – 0,94
	Халькопирит – 0,35	Халькопирит – 1,17	Халькопирит – 0,7
	Сфалерит – 0,35	Сфалерит – 0,15	Сфалерит – 0,25
	Галенит – 0,45	Галенит – 0,05	Галенит – 0,22
	Вольфрамит – 0,4	Вольфрамит – 0,05	Вольфрамит – 0,2
	Касситерит – 0,25	Касситерит – 0,23	Касситерит – 0,24
	Станнин – 0,04	Станнин – 0,05	Станин – 0,05

Примечание. Содержание ороговикованной породы на хвостохранилищах (%): первое—45,7, второе—49, третье—47,4. Состав ороговикованной породы (%): кварц—90, полевые шпаты—4, слюда—1, амфибол и др. минералы (пироксен, гранат, андалузит, кордиерит и силлиманит)—5.

После попадания жидких хвостов в хвостохранилище происходит активное разбавление их атмосферными осадками — дождевыми и талыми водами. Пока горное предприятие работает и сбрасывает отходы в хвостохранилище оно сверху закрыто шламовым озером. В этот период хвосты находятся в жидком состоянии (І вариант ІІ модели, табл. 2). Шламовые воды частично дренируют и уже в виде дренажных растворов попадают в поверхностные и грунтовые водные системы. При создании критической ситуации в результате прорыва дамбы шламовые озера и хвосты частично или полностью попадают в поверхностные водотоки. Аварии во всех горнорудных районах происходят достаточно часто.

После прекращения поступления пульпы в хвостохранилище и до момента высыхания шламового озера проходят десятки лет (II вариант II модели, табл. 2). Далее хвосты десятилетиями находятся в сухом виде (III модель, табл. 2) и активно пылят. Таким образом, не рекультивированные хвостохранилища будут постоянно воздействовать на экосферу. В период с прекращения поступления пульпы в хвостохранилище до исчезновения шламового озера работают совместно вторая (II вариант) и третья модели. Каждое хвостохранилище в зависимости от продолжительности работы горного предприятия в районе и его возраста проходит все три стадии с различной длительностью (табл. 2).

В горнопромышленном районе Солнечного ГОКа накоплено три хвостохранилища, для каждого из которых приводятся этапы моделирования (табл. 3).

В таблице указывается возраст хвостохранилищ, занимаемая площадь, объем накопленных хвостов и их минеральный состав в процентном соотношении. Следует отметить, что при создании физико-химических моделей учитываются и климатические факторы: годовое количество осадков (570 мм), что составляет $0.15 \cdot 10^9$ кг воды на 1 га, средняя скорость ветра -5-10 м/сек, температура воздуха, которая посезонно изменяется от -40° С до $+40^{\circ}$ С и давление - 1 атм.

Проведенное физико-химическое моделирование, с помощью программы «Селектор-Windows», позволило рассчитать максимально возможные концентрации Cu, Pb, Zn и других элементов, выносимые из хвостохранилищ горнопромышленного района и попадающие в гидросферу в результате процессов гипергенеза, а также сделать прогноз на будущие столетия.

Работа выполнена при поддержке ДВО РАН, проекты № 09-2-СО-08-008 и № 09-III-В-08-454.

СПИСОК ЛИТЕРАТУРЫ

Коротко об авторах

Зверева В.П. – доктор геолого-минералогических наук, ведущий научный сотрудник,

Дальневосточный геологический институт ДВО РАН, г. Владивосток, zvereva@fegi. ru.

Савченко А.В. – кандидат химических наук, старший научный сотрудник, Институт океанологии ДВО РАН, г. Владивосток, mailto:alsav@poi.dvo.ru.

Костина А.М. - аспирантка, Дальневосточный геологический институт ДВО РАН,

г. Владивосток.

Коваль О.В. - аспирантка, Дальневосточный государственный университет, г. Владивосток.

^{1.} *Постникова, В.П.* Минералогия зоны гипергенеза оловорудных месторождений Комсомольского района / В.П. Постникова, Л.К. Яхонтова. - Владивосток: ДВНЦ АН СССР, 1984. – 122 с.

^{2.} *Яхонтова*, *Л.К.* Минералы зоны гипергенеза / Л.К. Яхонтова, В.П. Зверева. - Владивосток: Дальнаука, 2007. - 164 с.

^{3.} *Зверева, В.П.* Экологические последствия гипергенных процессов на оловорудных месторождениях Дальнего Востока. - Владивосток: Дальнаука, 2008. - 166 с.

^{4.} *Мирзеханова*, *3.Г*. Тенденция изменения геоэкологической обстановки в Хабаровском крае / 3.Г. Мирзеханова, И.Д. Дебелая, В.А. Булгаков // География и природные ресурсы. - 2003. - № 1. - С. 93-99. **■ДЕ**