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Abstract: This contribution presents the first detailed oxygen and carbon isotope record from the latest

Jurassic–early Cretaceous interval of the Yatria River, subpolar Urals, Siberia. Isotopic compositions have

been determined on well-preserved belemnite samples from the genera Lagonibelus, Cylindroteuthis and

Acroteuthis. These new data indicate a shift to lower temperatures from the late Volgian into the late

Valanginian, with some warmer phases recognized within the Ryazanian and earliest Valanginian. The lowest

temperatures of the late Valanginian, consistent with subfreezing polar temperatures, are coincident with an

inferred eustatic sea-level fall. A late Valanginian positive shift in carbon isotopes correlates with the carbon

isotope excursion recorded from Tethyan successions. The most positive carbon isotope values correspond to

the most positive oxygen isotope values (and hence lowest palaeotemperatures). In the absence of widespread

Valanginian organic-rich black shale deposition, the carbon isotope excursion may point to increased storage

of organic carbon in coastal areas and/or enhanced preservation within stratified waters in high-latitude basins.

At these higher latitudes, where rates of weathering were presumably much lower because of the prevalent

cold climate, the isotopic data may point to pulses of productivity being brought about by increased riverine

nutrient transfer and also by nutrients being released by the melting of ice. The correlation between positive

carbon isotopes and cool climates may indicate the effectiveness of these high-latitude carbon sinks and their

ability to draw down atmospheric CO2, resulting in an ‘inverse greenhouse’ effect.
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Subfreezing polar temperatures during the Jurassic and Cretac-

eous are considered incompatible with widely accepted palaeo-

climate data. This period is commonly viewed as a time of warm

global climates with a low global temperature gradient, giving

rise to weakly defined climatic zonation and warm polar regions

(e.g. Frakes 1979; Hallam 1993). Particularly compelling evi-

dence for polar warmth is provided by physiognomic analysis of

mid- and late Cretaceous floras from Alaska and northeastern

Asia (e.g. Herman & Spicer 1997) and has also been provided by

oxygen isotope derived temperature determinations (e.g. Pirrie &

Marshall 1990; Huber 1998).

A feature of the early Cretaceous is a series of positive carbon

isotope excursions (e.g. the late Valanginian) identified within

Tethyan and Atlantic areas (e.g. Lini et al. 1992; Wortmann &

Weissert 2001) and also from sediments from the Pacific Ocean

(e.g. Bartolini 2003). Positive carbon isotope excursions within

the early Cretaceous have been attributed to greenhouse climate

conditions (e.g. Lini et al. 1992; Föllmi et al. 1994; Weissert et

al. 1998). A number of palaeoclimatological studies (e.g.

Kemper 1987; Frakes & Francis 1988; Weissert & Lini 1991;

Price 1999; Alley & Frakes 2003) indicate at least seasonally

low ocean temperatures and the possibility of limited polar ice

during the early Cretaceous. Such data are, however, not widely

distributed in the Cretaceous (Bennett & Doyle 1996; Price

1999) and hence other palaeoproxies are required to lend support

to glacial phases in a Jurassic–Cretaceous greenhouse Earth.

A number of workers, including Ditchfield (1997) and Pucéat

et al. (2003), have postulated, on the basis of oxygen isotopic

analyses, that seasonally low ocean temperatures and limited polar

ice caps were present within the early Cretaceous. Decreases in

carbon isotope values from the marine record across the Jurassic–

Cretaceous boundary (e.g. Weissert 1989; Weissert & Mohr 1996;

Ruffell et al. 2002) have also been interpreted as evidence of a

transition from a warm and humid greenhouse climate to increas-

ing aridity and possibly cooler conditions within the earliest

Cretaceous. These published marine isotope records have often

been constructed from outcrop exposures within Europe using a

composite of different localities with varying diagenetic histories

and sometimes poor sample resolution. This contribution presents

a late Jurassic (Volgian)– early Cretaceous (early Hauterivian)

carbonate (belemnite) isotope record from Western Siberia. A

number of studies (e.g. Pirrie & Marshall 1990; Ditchfield 1997;

Podlaha et al. 1998; Price et al. 2000; van de Schootbrugge et al.

2000) have demonstrated that, with appropriate constraints placed

upon the isotopic composition of seawater, credible palaeotem-

perature trends can be derived from the isotopic analysis of

belemnites. With respect to the early Cretaceous, isotopic data are

derived largely from mid- to low latitudes and may therefore not

necessarily reflect ambient climatic conditions at higher latitudes.

Hence our understanding of Cretaceous climate has been ham-

pered by a lack of data from northern high latitudes. It is the

purpose of this contribution to provide robust, biostratigraphically

constrained, oxygen and carbon isotopic data from high latitudes

that contribute to the debate on whether the early Cretaceous was

at times characterized by sub-freezing polar temperatures. A

concurrent analysis of the belemnite fauna will also be undertaken

to provide important information regarding the palaeoecological

and palaeoceanographic setting.

 at Cornell University on July 26, 2012http://jgs.lyellcollection.org/Downloaded from 



Geological setting

Samples were obtained from the Yatria River, exposed on the

eastern slope of the sub-Arctic Ural Mountains (Fig. 1a). Two

sections were examined: Location One is 30 km south and

Location Two c. 20 km south of the village of Saranpaul (Fig.

1b). At Location One, 80 m of sediments of late Volgian,

Ryazanian, Valanginian and early Hauterivian age were examined

(Fig. 3). The lowermost 6 m consist of dark grey–green glauco-

nitic sands. This unit has been assigned to the Kachpurites

fulgens and Craspedites subditus ammonite zones (Golbert et al.

1975) and is hence late Volgian in age. Above these sands is a

3.8 m thick unit of gravelly sands, with phosphatic concretions

occurring at the base. This unit contains numerous fragments of

bivalve shells, internal moulds of ammonites and abundant

belemnites. Based upon the ammonite fauna (Golbert et al.

1975) this unit has been assigned to the early Ryazanian,

Hectoceras kochi ammonite zone. Overlying, the Surites analo-

gus and Tollia payeri ammonite zones are recognized, followed

by the Valanginian Temnoptychites insolutus, Polyptychus mi-

chalskii and Dichotomites ramulosus ammonite zones. The

uppermost part of the succession can be correlated with the early

Hauterivian Homolsmites bojarkensis and Speetoniceras versico-

lor ammonite zones (Golbert et al. 1975). An early Cretaceous

(Ryazanian–Hauterivian) age for these units has been confirmed

by dinoflagellate cyst investigations of the Yatria section (e.g.

Lebedeva & Nikitenko 1999).

At Location Two, 23 m of sediments of early Valanginian–

early Hauterivian age are exposed (Fig. 4). The age assignment

of this succession is also based upon the recognition of the

P. michalskii, D. ramulosus, H. bojarkensis and S. versicolor

ammonite zones (Golbert et al. 1975). This zonal scheme may be

correlated with both standard Boreal (e.g. Zakharov et al. 1997)

and Mediterranean (e.g. Hoedemaeker 1990; Hoedemaeker &

Rawson 2000) time scales. For example, the Valanginian P.

michalskii ammonite zone is correlatable with the Busnardoites

campylotoxus zone, and the D. ramulosus zone is the equivalent

of the Saynoceras verrucosum–Himantoceras trinodosum ammo-

nite zones (see Sahagian et al. 1996; Baraboshkin 2002).

Although the biostratigraphical data indicate a complete succes-

sion from the Ryazanian to lowermost Hauterivian, the exposure

of the Lower Valanginian succession at Location One was

particularly poor.

In the late Jurassic (latest Kimmeridgian–early Volgian) with-

in Western Siberia, a major subsidence episode coincided with a

eustatic highstand that induced an extensive marine transgression

(Haq et al. 1987; Sahagian et al. 1996; Pinous et al. 1999). The

large deep-marine basin covered an area of more than

2 3 106 km2 (Krylov & Korzh 1984; Gavshyn & Zakharov

1996). The outcrops examined in this study were located, during

the earliest Cretaceous, on the western margin of this epiconti-

nental marine basin (Fig. 2) at a palaeolatitude of c. 60–658N

(see Smith et al. 1994; Pinous et al. 2001). This area was

separated from the Moscow and Pechora basins by the (palaeo)

Urals and formed a southern extension of the Boreal–Arctic sea

(Baraboshkin et al. 2003), but without any direct connection with

seaways towards the Tethys in the south. The accommodation

that developed during the late Jurassic was subsequently filled

during the early Cretaceous regression. Sediment supply rates
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Fig. 1. The Yatria River sections on the eastern slope of the sub-Arctic

Ural Mountains (Western Siberia), 20 and 30 km south of the village of

Saranpaul.
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Fig. 2. The palaeogeographical setting of Europe and Western Siberia

during Valanginian times (modified from Smith et al. (1994) and

Baraboshkin (2002)), showing the position of the Yatria River outcrops

located on the western margin of a large epicontinental marine basin, a

southern extension of the Boreal–Arctic sea.
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dramatically increased during the Ryazanian and were supplied

from the East Siberian Highlands and the Urals (Pinous et al.

2001). Within the Yatria River area these marine units, of early

Cretaceous age, are overlain by continental strata deposited in

coastal plain environments such as lagoons and lakes (Golbert et

al. 1975; Lebedeva & Nikitenko 1999).

The latest Jurassic–earliest Cretaceous is also marked by a

distinctive provincialism of marine biota. In the northern hemi-

sphere, marine floras and faunas show a clear differentiation into

two realms, Tethyan and Boreal. The Boreal Realm includes

strata in Russia, northern Europe, Greenland and Alaska. The

palaeobiogeographical patterns have been well documented for

various groups of marine organisms, in particular for calcareous

nannofossils (Mutterlose 1992; Mutterlose & Kessels 2000;

Street & Bown 2000), brachiopods (Michalik 1992), ammonites

(Hoedemaeker 1990; Rawson 1994), belemnites (Doyle 1987;

Mutterlose 1988) and bivalves (Dhondt 1992). Endemic marine

biota are typical for this interval; the restricted epicontinental

seas favoured in situ evolution of benthonic, planktonic and

nektonic organisms. The evolution of endemic boreal ammonite

taxa started in the mid- to late Jurassic and peaked in earliest

Cretaceous (Berriasian) times. This palaeobiogeographical differ-

entiation is reflected in the use of two different stage names for

the interval covering the Jurassic–Cretaceous boundary interval:

in the Tethyan Realm the stage names Tithonian and Berriasian

are used, whereas in the Boreal Realm the terms Volgian and

Ryazanian are employed.

Methods

A total of 300 Volgian–Hauterivian belemnite rostra were collected bed-

by-bed from the two locations examined and subsequently analysed (Figs

3 and 4). Where possible, multiple samples were collected from the same

stratigraphic horizon. The preservation of the belemnite rostra has been

assessed through trace element and stable isotopic analyses, backscattered

scanning electron microscopy (BSEM) and carbonate staining (following

the technique of Dickson (1966)). Prior to chemical and isotopic analysis,

areas most susceptible to diagenetic alteration as indicated by carbonate

staining (typically the exterior of each rostrum and the apical line) were

removed by drilling. The remains were fragmented (to sub-millimetre

size), washed in pure water, and dried in a clean environment. Fragments

were subsequently picked under the binocular microscope to secure those

judged to be best preserved, and were then analysed for oxygen and

carbon isotopes. Subsamples for chemical analysis (Mg, Sr, Fe, Mn) were

dissolved in concentrated hydrochloric acid and analysed by inductively

coupled plasma–atomic emission spectrometry using a Varian 200

system. Based upon analysis of duplicate samples, reproducibility was

better than �3% of the measured concentration of each element.

Stable isotope data (�18O and �13C) were generated on a Finnigan

MAT 251 mass spectrometer coupled to the Carbo Kiel online carbonate

preparation line at the Leibniz-Laboratory for Radiometric Dating and

Stable Isotope Research, Kiel, Germany. These data are given in �
notation with respect to the V-PDB standard. Replicate analyses of

standards, for both �18O and �13C, gave a reproducibility generally better

than 0.1‰. All analytical data derived from the belemnites (O and C

isotopes, Sr, Mg, Mn, Fe and trace elements) can be obtained from the

Society Library or the British Library Document Supply Centre, Boston

Spa, Wetherby, West Yorkshire LS23 7BQ, UK as Supplementary

Publication No. SUP 18210 (10 pages). It is also available online at

http://www.geolsoc.org.uk/SUP018210.

Results

The belemnites sampled in this study were mostly translucent

and retained the primary concentric banding that characterizes

belemnite rostra. A few samples exhibited particularly prevalent

areas of endolithic borings around the margins of the rostra.

Individual borings were subsequently infilled with calcite spar or

fine-grained detrital material. Carbonate staining and BSEM

analysis indicated that these areas tended to be Fe-rich and also

revealed partial replacement by pyrite preferentially along the

outermost concentric growth bands. Areas such as these were

either removed before subsampling or avoided. Because, as noted

above, even subtle diagenetic alteration can potentially destroy

any primary isotopic signal, both Mn and Fe concentrations of

the belemnites were determined to provide a further means to

verify their state of preservation. Relatively low Mn (,100 ppm)

and Fe (,150 ppm) concentrations have been measured from

modern molluscs and can be assumed to reflect well-preserved

shell material (e.g. Pirrie & Marshall 1990; Podlaha et al. 1998).

The determined elemental abundances of belemnite rostra
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Fig. 3. Sedimentary log from Location One, Yatria River, showing the

�18O and �13C stratigraphy. Biostratigraphical and lithological data from

Golbert et al. (1975).

ISOTOPIC SIGNALS FROM BELEMNITES 961
 at Cornell University on July 26, 2012http://jgs.lyellcollection.org/Downloaded from 



from Location One were as follows: Sr 358–1607 ppm, mean

1205 ppm; Mn 2–60 ppm, mean 10 ppm; Mg 333–2238 ppm,

mean 806 ppm; Fe 3–278 ppm, mean 24 ppm. Abundances for

rostra from Location Two were: Sr 775–1758 ppm, mean

1166 ppm; Mn 2–16 ppm, mean 6 ppm; Mg 253–937 ppm, mean

486 ppm; Fe 3–31 ppm, mean 6 ppm. Low Mn (,100 ppm) and

Fe (,150 ppm) values are recorded for most of the belemnites.

Trace element data (Mn and Fe) were plotted v. �18O to constrain

any diagenetic alteration (Fig. 5). The lack of any correlation

also suggests minimal post-depositional diagenetic alteration.

The higher amounts of Mn and Fe and occasional outliers

displaying more negative �18O and �13C values (Figs 5 and 6)

noted in some of the belemnites are regarded as an artefact of

diagenetic alteration. Those samples where Fe concentrations

were .150 ppm were considered likely to have undergone some

isotopic exchange registered by the precipitation of post-deposi-

tional ferroan calcite and were excluded from any further analy-

sis.

The oxygen and carbon isotope values of Volgian–early

Hauterivian belemnites from Location One range from �2.26 to

1.25‰ and from �1.13 to 2.41‰, respectively (Fig. 3). The

belemnites sampled from the succession of Volgian age were

typical boreal species Lagonibelus cf. elongates and Lagonibelus

gustomesovi. The presence of both species is consistent with the

age determinations provided by ammonite data. Within the

Ryazanian and Valanginian–early Hauterivian part of the succes-

sion, the belemnite species have been identified as dominated by

Cylindroteuthis (Arctoteuthis) subconoidea, Cylindroteuthis (Arc-

toteuthis) cf. repentina, Cylindroteuthis (Arctoteuthis) cf. porrec-

tiformis, Acroteuthis explanatoides, Acroteuthis (Acroteuthis)

paracmonoides arctica and Acroteuthis explorata. Oxygen and

carbon isotope ratios throughout the section show both short- and

long-term variation. Oxygen isotope ratios fluctuate during the

Volgian–early Valanginian interval and show relatively negative

oxygen isotope ratios (c. �2.0‰), and by the early Valanginian

the values become more positive (c. 0.0‰). Superimposed upon

this trend, shorter-term more negative intervals are clearly

recognized in the earliest Ryazanian and the earliest Valanginian

intervals. In the upper part of the succession (P. michalskii–H.

bojarkensis zones), more positive oxygen isotope values are seen,

ranging from �0.82 to 1.25‰. The �13Ccarb ratios generally rise

from the lowest values (c. �1.15‰) in the late Volgian, before

rising during the late Valanginian (P. michalskii–H. bojarkensis

zone, Fig. 3), for which values range from 0.64 to 2.41‰. A plot

of all �18O v. �13C data from this location (Fig. 6) reveals a

significant positive correlation (at the 95% confidence level using

a Student t-test).

The oxygen and carbon isotope values of Valanginian–Hauter-

L
ow

er
 V

al
an

gi
ni

an
   

  U
pp

er
 V

al
an

gi
ni

an

  
  

 P
. 

m
ic

ha
ls

ki
i

   
  H

. b
oj

ar
k

   
  S

. v
er

si
co

lo
r

25

10

0

20

15

5

   
 L

ow
er

 H
au

te
ri

vi
an

   
  D

. r
am

ul
os

us

         -1.0            0.0            1.0

             0.0            1.0             2.0           3.0           4.0 

δ18O (V-PDB)

δ13C (V-PDB)

Fig. 4. Sedimentary log from Location Two, Yatria River, showing the

�18O and �13C stratigraphy. Biostratigraphical and lithological data from

Golbert et al. (1975).
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ivian belemnites from Location Two range from �1.55 to 1.34‰

and from 0.41 to 3.62‰, respectively (Figs 4 and 6). The

belemnites sampled from the succession consist of Acroteuthis

(A.) explanatoides, A. (Boreioteuthis) explorata, A. (B.) cf.

anabarensis, A. (A.) paracmonoides arctica, A. (A.) hauthali, A.

(A.) bojarcae and A. (A.) vnigri. Although the data show a large

amount of scatter, the most positive carbon isotope values are

again observed in the michalskii–ramulosus ammonite zones.

The oxygen and carbon isotope ratios through the section show a

degree of symmetry. Increases in �13C are mirrored by decreases

in �18O (Fig. 6). The plot of all �18O v. �13C data from this

location reveals a significant negative correlation (at the 95%

confidence level using a Student t-test).

Discussion

Palaeontological results

The belemnites observed in the Yatria River sections are clearly

of Boreal–Arctic affinities and none of these taxa has ever been

observed in Tethyan sediments of late Jurassic–early Cretaceous

age. Whereas Cylindroteuthis and Lagonibelus are typical for the

Oxfordian–Hauterivian of the Boreal–Arctic Province (Arctic,

Siberia, western North America, Pechora Basin) they are absent

from the Boreal–Atlantic Province (Russian Platform, eastern

and NW Europe) from the Tithonian onward. Acroteuthis on the

other hand is a Boreal–Atlantic genus, which migrated into the

Boreal–Arctic Province only in the Berriasian. Evolution of

endemic forms was widespread in the Tethyan and Boreal

Realms, in Tithonian–Berriasian times, as a result of palaeobio-

geographical isolation. It was the Valanginian sea-level rise (see

Fig. 8), that allowed certain marine biota (e.g. coccoliths,

ammonites) to attain gradually a more cosmopolitan distribution.

As the distinctive provincialism of belemnites prevailed until the

Barremian–Aptian, other factors (temperature, biology) may

have played a role as well. Mutterlose & Kessels (2000) argued

for cool polar conditions of the Berriasian and Valanginian in the

Norwegian and Barents Sea, based on observations from calcar-

eous nannofossils. The presence of bipolar floral belts in the high

latitudes of the northern and southern hemisphere lend support to

the idea of substantial temperature gradients (e.g. Crame 1993;

but see also Hallam 1994). Thus temperature may explain the

distinctive provincialism of belemnites. It is, however, also

possible that the belemnite genera discussed here were relatively

poor swimmers unable to cross larger areas of water. Sea level

and climate are ultimately linked, and their effects cannot always

be separated. Sea-level lowstands correspond to endemism,

whereas highstands allow increasing exchange and promote more

cosmopolitan assemblages.

The �18O record and palaeotemperature implications

Because of the combined effects of evaporation, precipitation,

Rayleigh distillation and atmospheric vapour transport, seawater

�18O compositions can vary by as much as 1.5‰ between low

and high latitudes in the open ocean (Broecker 1989). Isotopi-

cally depleted water vapour is transported away from the

subtropics towards the poles, elevating subtropical �18Oseawater

compositions, and lowering high-latitude �18Oseawater. Further-

more, because of the likely near proximity of a landmass (see

Fig. 2), and hence the probable influence of riverine runoff and

perhaps seasonal ice-melt, the seawater in this region may also

have been characterized by a lower salinity and decreased �18O

values. For example, Ekwurzel et al. (2001) and Polyak et al.

(2003) showed that the �18O of water from the Arctic Ocean

falls along a mixing line between Atlantic water (�18O

0.3 � 0.1‰) and Arctic River runoff (�18O �18‰), giving

Arctic Ocean waters a �18O range of c. 0.3 to �3.0‰. As the

belemnite samples were derived from a marine system (based

upon the presence of a fully marine fauna including ammonites),

a riverine influence upon oxygen isotopes is, however, likely to

be minimal. For example, Polyak et al. (2003) demonstrated that

calcite precipitated within riverine-influenced waters of the

modern Kara and Pechora Seas was likely to be characterized by

negative (�3 to �5‰) carbon isotopes reflecting the combined

effect of riverine dissolved inorganic carbon and organic remi-

neralization. The carbon isotope data recorded in this study, as

noted above, range from �1.13 to 3.62‰. Hence the observed

isotopic variation is likely to be due to long-term temperature

variation, although regional variation in �18Oseawater cannot be

excluded (see below). The temperature–salinity plot shown in

Figure 7, modified from Woo et al. (1992) after the model of

Railsback et al. (1989), can be used to estimate the temperature

range of the marine waters of the Yatria River area during the

late Jurassic–early Cretaceous.

The Railsback et al. (1989) model assumes that the �18O of

calcite precipitated in equilibrium with seawater is determined by
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Fig. 6. Cross-plot of �18O and �13C values derived from belemnite

samples of the Yatria River
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a combination of seawater temperature and �18Oseawater, which

can be related to salinity. Thus minor variation in �18Oseawater can

be incorporated into the calculations. The model assumes an ice-

free Earth with a �18Oseawater composition of �1‰ and salinity

of mean seawater of 34.0‰. The values used for salinity and

oxygen isotopic composition are those calculated by Shackleton

& Kennett (1975). The uncertainties in these values in the

volume and �18O of ice are large enough to accommodate a

modest volume of high-latitude ice during the Cretaceous (Woo

et al. 1992). Each isopleth indicates the possible combination of

temperature (calculated using the equation of Anderson & Arthur

1983) and salinity that corresponds to calcite of a given isotopic

composition and seawater. For example within the model, a

salinity value of 28‰ corresponds to a �18Oseawater value of c.

�2.8‰, which is close to the observed value of the modern

Arctic Ocean noted above. In an analysis of the transformation

of ikaite to calcite from the Aptian high latitudes of Australia,

De Lurio & Frakes (1999) provided a similar lower limit on the

oxygen isotopic composition of the pore waters of �2.6 to

�3.4‰.

The shaded areas in Figure 7 delineate the maximum range of

oxygen isotopic values derived from the belemnites from two

selected parts of the succession. Given the presence of a fully

marine fauna, the salinity for the Yatria River area, within an

ice-free Earth, is likely to have ranged within ‘normal’ marine

conditions of c. 34.0‰ to c. 30‰, if the comparison between

belemnites and modern cuttlefish (Sepia officianalis) has some

validity. Although modern cuttlefish can survive in salinities as

low as 20.0‰, the abundance and faunal diversity is greatest

where salinity is .30‰ (e.g. von Boletzky 1999). Hence the

oxygen isotopic data derived from the late Volgian K. fulgens to

basal Ryazanian H. kochi ammonite zone ranging from �2.02 to

�0.96‰, using the above limits of salinity, translate into a

temperature range of 11–21 8C. Data from the late Valanginian–

early Hauterivian D. ramulosus–H. bojarkensis zones from both

locations reveal an almost identical range (the minimum and

maximum values (�0.82 to 1.34‰) are plotted in Fig. 7). Using

the same estimated salinity range provides a temperature range

of 2–14 8C. It is of note that the study of Polyak et al. (2003)

recorded a similar annual range of temperatures: �1 to þ12 8C.

This analysis reveals that the highest palaeotemperatures are

evident within the latest Volgian to earliest Ryazanian. Clearly,

isotopic values become more positive in the upper part of the

Ryazanian, before more negative values recur across the Ryaza-

nian–Valanginian boundary, interpretable as a fall followed by a

rise in palaeotemperatures (Fig. 7). The lowest temperatures, as

outlined above, are encountered from the late Valanginian–early

Hauterivian P. michalskii–H. bojarkensis zones. The develop-

ment of low temperatures in these high-latitude regions provides

adequate scope to argue for the presence of high-latitude ice and

is consistent with the abundant glendonite occurrences of mid-

Jurassic to early Cretaceous age described by Kaplan (1978)

from slightly further north in the Taymyr peninsular region. A

relatively cold Valanginian has also been proposed by Price et al.

(2000), and by Ditchfield (1997), who suggested mean palaeo-

temperatures of 8.1 8C based on the isotopic analysis of endemic

belemnites from Svalbard. Likewise, De Lurio & Frakes (1999),

in a study reassessing belemnite-derived oxygen isotope palaeo-

temperatures from the Eromanga Basin, Australia, suggested

Valanginian paleotemperatures ranging from �1 to 5 8C (which

were previously reported as 11–16 8C) and within the ikaite

stability temperature range.

The Paranà–Etendeka flood volcanism and associated intru-

sions are dated at 132 (� 1) Ma (Renne et al. 1996), coincident

with the Valanginian–Hauterivian boundary. The primary iso-

topic imprint of volcanic CO2 upon marine carbon isotope

signatures is likely to have been small. Although relatively short-

term cooling, particularly of terrestrial environments, is asso-

ciated with volcanic SO2 emissions, the Paranà–Etendeka flood

volcanism would have also released large volumes of CO2 into

the atmosphere. The cumulative effects of successive large

eruptions, typical of those encountered in flood basalt volcanism,

could have therefore released sufficient CO2 to cause significant

longer-term greenhouse warming. Given that the most positive

oxygen isotope data straddle the Valanginian–Hauterivian bound-

ary, as noted above (Fig. 8), it would appear that there was either

a decoupling of high-latitude temperatures from the intuitive

response of volcanically induced climate warming, or alterna-

tively CO2 emissions from the Paranà–Etendeka flood volcanism

were relatively low. A large temperature difference between the

Atlantic–Tethys and Western Siberia–Arctic ocean could have in

part resulted from the partial isolation of the Boreal Arctic

Ocean from warmer Tethyan waters as a consequence of restrict-

ing marginal and intrabasinal highs. However, ocean tempera-

tures inferred from the oxygen isotope compositions of fish teeth

enamel, from the western Tethyan platform, also indicate a

cooling event during the late Valanginian (verrucosum–trinodo-

sum ammonite zones) (Pucéat et al. 2003). An increase in the

relative abundance of boreal nannofossils in Romania during the

late Valanginian (e.g. Melinte & Mutterlose 2001) also supports
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low temperatures within Tethys during this time. The lack of a

warming response therefore during this interval may relate to the

effectiveness of available carbon sinks and their ability to draw

down atmospheric CO2, moderating and stifling the effects of

any volcanically induced greenhouse warming (see below).

Certainly the positive carbon isotope excursion at this interval

attests to either increased burial of organic carbon attributed to

enhanced preservation under reduced O2 conditions or changes

in surface water productivity.

The �13C record

Published marine carbonate carbon isotope (�13Ccarb) records for

the latest Jurassic–early Cretaceous have been constructed from

outcrop exposures in northern Italy, France and Switzerland (e.g.

Föllmi et al. 1994; Weissert & Mohr 1996; Weissert et al. 1998).

The overall pattern of the marine record displays a period of

decreasing carbon isotope values across the Jurassic–Cretaceous

boundary, relatively stable �13Ccarb values in the early Valangi-

nian, then a rapid excursion to more positive values in the mid-

Valanginian (campylotoxus zone), which subsequently return to

pre-excursion values in the late Valanginian (verrucosum–trino-

dosum ammonite zones) (Fig. 8).

A positive carbon isotope excursion is also seen in the data

from this study, beginning in the P. michalskii ammonite zone

(correlatable with the campylotoxus zone). Previous concepts of

marine carbon isotope ratios have generally associated rising sea

levels with positive excursions, whereas negative excursions are

usually associated with a fall in sea level (e.g. Arthur et al. 1988;

Weissert & Lini 1991). The Valanginian positive carbon isotope

excursion has been related directly to episodes of platform

drowning within Tethys (e.g. Lini et al. 1992; Föllmi et al. 1994;

Weissert et al. 1998). Positive carbon isotope excursions have

also been attributed to increased burial of organic carbon either

owing to enhanced preservation under reduced O2 conditions

(e.g. Bralower & Thierstein 1984) or driven by changes in

surface water productivity. Models have been presented whereby

the leaching of nutrients on coastal lowlands during a rise in sea

level, possibly triggered by globally higher temperatures, resulted

in increased ocean fertilization, productivity and an expansion of

the oxygen minimum zone (e.g. Weissert 1989). As outlined by

van de Schootbrugge et al. (2000), one of the difficulties

associated with this model is that during the Hauterivian two or

more phases of platform drowning are not mirrored by positive

carbon isotope excursions, but instead a negative excursion or

stable pattern. Wortmann & Weissert (2001) suggested that it is

the transition to more positive values that coincides with a sea-

level rise and a drowning of platform carbonates. As seen in

Figure 8, the most positive carbon isotope values also coincide

with a projected sea-level fall (using the data of Sahagian et al.

(1996)). Although a late Valanginian regression is at odds with

the sea-level curve of Haq et al. (1987), Baraboshkin et al.

(2003) noted that during the late Valanginian the Russian

Platform became even shallower, leading to complete isolation

from Tethys. A number of studies do show that regressive

systems are sometimes associated with positive carbon isotope

excursions (e.g. Brenchley et al. 1994; Gröcke et al. 1999). An

increased input of nutrients with a sea-level lowstand may arise

from the exposure and erosion of a greater area of lowlands. The

oxygen isotope data from this study clearly reveal that the most

positive �18O values, indicative of the lowest temperatures,

coincide with the most positive carbon isotope values. A possible
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mechanism to account for both positive �13Ccarb values and low

temperatures could be that the burial of large amounts of organic

carbon-rich sediments depleted atmospheric CO2 sufficiently to

cause a significant drop in temperature (the ‘Monterey Hypoth-

esis’ of Vincent & Berger (1985)). Such a scenario has been

suggested for the Cenomanian–Turonian boundary event (Arthur

et al. 1988) and for the mid-Miocene cooling (Vincent & Berger

1985). Evidence seems to indicate that the Cenomanian–Turo-

nian burial event led to a 40–80% reduction in CO2 levels

(Kuypers et al. 1999), and may have caused a drop in tempera-

ture of the order of 10 8C in Europe (Arthur et al. 1988).

Evidence for widespread late Valanginian marine organic-rich

black shales is, however, somewhat limited. Many Ocean Drilling

Program (ODP) and Deep Sea Drilling Project (DSDP) sites in

the Atlantic do contain organic-rich horizons of Valanginian age

(e.g. Sites 416 and 638), although they are of dominantly

terrestrial origin (e.g. Claypool & Baysinger 1980). DSDP Site

535 contains an interval with appreciable amounts of marine

organic matter (Herbin et al. 1984), which is coincident with the

Valanginian positive carbon isotope excursion (Lini et al. 1992).

More recently, ODP Leg 198, drilled on Shatsky Rise in the West

Pacific, recovered (at Site 1213) pelagic sequences containing

two organic-rich intervals of marine origin from the Valanginian

(Shipboard Scientific Party 2002). Tethyan successions of Valan-

ginian age are also dominated by continental and amorphous

organic matter, whereas only a minor component is derived from

marine phytoplankton (e.g. Bersezio et al. 2002). The absence of

widespread organic-rich black shale deposits of Valanginian age

may be related to a number of factors: they may have been

eroded (e.g. Weissert et al. 1998) or the burial of organic carbon

might have occurred outside Tethys; for example, at high

latitudes or outside typical marine settings. Northern hemisphere

high-latitude basins with early Cretaceous organic-rich sediments

possibly include Alaska (e.g. Magoon et al. 1999) or central

Siberia (e.g. Peters et al. 1993; Baraboshkin et al. 2003). The

partial separation of Tethyan and Boreal realms during sea-level

lowstands (Fig. 8) in the Ryazanian and Valanginian could

certainly have restricted ocean circulation (e.g. Gradstein et al.

1999; Mutterlose & Kessels 2000; Mutterlose et al. 2003) and

potentially have enhanced discrete episodes of ocean stratifica-

tion, promoting the deposition and preservation of organic

carbon-rich marine sediments in these high-latitude areas. Un-

doubtedly the dynamics of high-latitude Jurassic–Cretaceous

oceans remain poorly understood, in part related to the lack of

modern analogues. In the Volgian and Hauterivian interval the

ocean circulation pattern may have changed to a more vigorous

ventilated pattern.

As noted above, the Valanginian positive carbon isotope

excursion from Tethyan successions has been interpreted in terms

of increased burial of organic carbon attributed to increased

productivity brought about through upwelling or accelerated

weathering and riverine nutrient transfer, increasing ocean fertili-

zation (e.g. Föllmi et al. 1994; Weissert et al. 1998). In compari-

son with these relatively low-latitude settings, a number of

pertinent differences exist at higher latitudes; for example, rates

of weathering are much lower because of the prevalent cold

climate and reduced rates of weathering in the sediment source

area (e.g. Summerfield & Hulton 1994; Potter et al. 2001). The

shift in mode from warmth in the Volgian to cooler climates in

the late Valanginian–Hauterivian observed at Location One is

independent of any observed changes in �13C, whereas there is a

degree of symmetry seen in the data from location Two. In-

creases in �13C are mirrored by decreases in �18O as evidenced

by the cross-plots (Fig. 6). These relatively short-term trends

appear therefore superimposed upon the longer-term patterns

described above. The isotopic pattern may therefore be explain-

able by shorter-term pulses of increased productivity brought

about by warming and periods of accelerated weathering and

associated riverine nutrient transfer, and possibly the seasonal

melting of ice releasing further nutrients (e.g. Smith & Nelson

1985; Wollenburg et al. 2001). These processes offer a concei-

vable explanation for the isotopic trends, whereby positive �13C

values reflect increased productivity, whereas decreases in �18O

relate to warming and possibly the input of isotopically depleted

melt waters.

It has been suggested that in the absence of obvious ‘global’

marine black shales associated with positive �13C excursions

(e.g. Shackleton 1987), burial of carbon may have occurred in

terrestrial settings. Likewise, isotopic investigations have shown

that early Cretaceous pelagic black-shale deposition does not

necessarily coincide with positive carbon isotope values (e.g.

Menegatti et al. 1998), and hence coupled changes in both the

marine and terrestrial organic and carbonate flux may therefore

contribute to excursions in the carbon isotope record (e.g.

Weissert et al. 1998; Erba et al. 1999). Given the absence of

widespread marine black shales of late Valanginian age so far

identified, and because the most positive carbon isotope values

are also coincident with a projected sea-level fall (Fig. 8), the

possibility exists that during the Valanginian organic carbon was

stored in terrestrial environments. A regression would have

presumably resulted in the emergence of vast areas along the

margins of the epicontinental seaways characterizing Europe and

Siberia (Fig. 2), thus allowing lakes and coastal marshes to

develop on newly formed coastal plains. Some models have

suggested that coal is stored in paralic zones within both mid-

and late lowstand and early and mid-highstand system tracts (e.g.

Bohacs & Suter 1997).

Conclusions

The new isotopic data presented in this detailed study of Boreal

belemnites from the latest Jurassic–early Cretaceous (Volgian–

Valanginian) interval from the Yatria River reveal a shift to lower

temperatures from the Volgian to the late Valanginian. Warmer

phases are recognized within the late Volgian, earliest Ryazanian

and earliest Valanginian. The lowest temperatures as outlined

above are encountered from the late Valanginian–early Hauter-

ivian P. michalskii–H. bojarkensis zones. The evidence points

strongly to the conclusion that low ocean temperatures are

consistent with limited polar ice and suggest that the region was

at times considerably colder than previously thought. The ob-

served distribution patterns of marine faunas across the Jurassic–

Cretaceous boundary can be best explained though endemic

evolution in the Tethyan and Boreal Realms, as a result of

palaeobiogeographical isolation in Tithonian–Berriasian times.

Because distinctive provincialism of belemnites prevailed until

the Barremian–Aptian, other factors such as temperature may

have also played an important role. Thus low polar temperatures

and hence substantial temperature gradients may in part explain

the observed distinctive provincialism of belemnites.

A positive shift in carbon isotope values during the late

Valanginian is identified and considered correlatable with carbon

isotope records from Tethyan successions. In the absence of an

obvious ‘global’ marine black shale associated with the positive

�13C excursion, burial of carbon may have occurred in terrestrial

settings. Surprisingly, the most positive carbon isotope values

correspond to the most positive oxygen isotope values (and

hence lowest palaeotemperatures) and to a period characterized
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by inferred eustatic sea-level fall. This relationship, contrary to

some models of carbon cycling, may indicate the effectiveness of

available carbon sinks and their ability to draw down atmo-

spheric CO2, the ‘inverse greenhouse’ effect. The partial separa-

tion of Tethyan and Boreal realms during sea-level lowstands in

the Ryazanian and Valanginian could have restricted ocean

circulation and this is clearly indicated by the distinctive

provincialism of marine biota for this interval, resulting in the

absence of Tethyan elements in the Yatria River area or basin.

Because of the prevalent cold climate, at these higher latitudes

where rates of weathering were presumably much lower, pulses

of productivity may be related not only to riverine nutrient

transfer but also to melting of seasonal ice releasing further

nutrients into the ocean.
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