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Abstract

Age relations for assembly ofGondwana andPangea indicate that the timing of collisional orogenesis between amalgamating continental

bodies was synchronous with subduction initiation and contractional orogenesis within accretionary orogens located along the margins of

these supercontinents. Final assembly of Gondwana occurred between c.570 and 510 Ma, amalgamating the various components of East

and West Gondwana. This was coeval with a switch from passive margin sedimentation to convergent margin activity along the Pacific

margin of the supercontinent. Timing of subduction initiation along the Pacific margin ranges from 580 to 550Ma as evidenced by the first

appearance of arc derived detrital zircons in the upper Byrd Group sediments and the oldest supra-subduction zone plutons along the

Antarctic segment of themargin.A phase of extensionmarked by supra-subduction zone ophiolite generation at 535–520Ma is preserved in

greenstone successions in eastern Australia and overlaps the onset of Ross–Delamerian contractional orogenesis between 520 and 490Ma,

inboard of the plate margin that coincides with the cessation of collisional orogenesis between the amalgamating blocks of Gondwana.

Supra-subduction zone igneous activity was continuous throughout this period indicating that subduction was ongoing.

The final stages of assembly of the Pangean supercontinent occurred between c.320 and 250 Ma. Major plate boundary

reorganization during this time was accompanied by regional orogenesis along the Pacific margin. The East Gondwana margin

segment experienced transpressional and transtensional activity from c.305 Ma until c.270 Ma, after which convergence along the

plate margin was re-established. In eastern Australia this involved a migration of arc magmatism eastward into the old subduction

complex indicating a stepping out of the plate margin. Synchronous with this phase of plate re-adjustment was the Gondwanide

Orogeny (305–230 Ma) affecting the entire Pacific margin of Pangea.

Temporal relations across supercontinents between interior collisional and marginal accretionary orogenies suggest a linked

history between interior and exterior processes perhaps related to global plate kinematic adjustments. Orogenesis in accretionary

orogens occurs in the absence of colliding bodies during ongoing subduction and plate convergence and must therefore be driven

by a transitory coupling across the plate boundary. Correspondence of coupling with, or immediately following, subduction

initiation and plate boundary reorganization, suggests it may reflect plate re-adjustments involving a temporary phase of increased

relative convergence across the plate boundary.
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1. Introduction

A fundamental question in tectonic studies of oro-

genic belts is what drives orogenesis? For classic ‘col-

lisional orogens’ (Fig. 1a), where two continents have

been brought together at the completion of a Wilson

Cycle (e.g. Wilson, 1966), orogenesis reflects the re-

sistance of a buoyant continental nuclei to subduction

resulting in significant lithospheric thickening and defor-

mation of both the upper and lower plates. However, in

the case of accretionary orogens (Fig. 1b) the driving

mechanism is less obvious because deformation, meta-

morphism and crustal growth take place in an environ-

ment of long-term subduction and plate convergence

without the collision of continental blocks or large-scale

buoyant lithosphere (Murphy and Nance, 1991; Wind-

ley, 1992; Sengör et al., 1993;Windley, 1993; Nance and

Murphy, 1994; Sengör and Natal'in, 1996a,b). The lack

of an obvious colliding body in accretionary orogens

means that the driving mechanism of orogenesis must

involve some form of transitory plate coupling which

raises the question; what mechanisms can increase cou-

pling between plates within an accretionary orogenic

system?

The aim of this study is to establish the possible

mechanisms of coupling by documenting the distribu-

tion and timing of orogenic events both across and

laterally along an entire marginal orogen and compare

these to orogenic events occurring in the same time

period associated with amalgamation of cratonic blocks

during supercontinent assembly. This will be achieved

by reviewing and comparing the large volume of pub-

lished geological, geochronological, geochemical and

tectonic data of events related to the assembly of the

supercontinents of Gondwana and Pangea with the Neo-

proterozoic to late Palaeozoic Terra Australis Orogen

(Cawood, 2005) that was active along the Pacific margin

of these supercontinents.

This study demonstrates that the final stages of col-

lisional orogenesis between the amalgamating blocks

of the supercontinents were coeval with subduction ini-

tiation and accretionary orogenesis along the Pacific

margin. Plate re-adjustments, caused by a change in

relative plate convergence following cessation of short-

ening in the internal collisional orogens of the amal-

gamated supercontinents, provide a compellingmeans of

driving increased transitory coupling across the plate

boundary resulting in orogenesis.

2. Data selection and compilation

The tectonostratigraphic data presented in this study

have been compiled from radiometric and palaeontolo-

gical age data that are freely available in the published

literature. The interpretation of the tectonic significance

of the data was made using accompanying geochemical,

structural and geological evidence. Emphasis was placed

on distinguishing between an orogen and an orogeny; the

former referring to the geographic extent of a tectonos-

tratigraphic assemblage of rock units spanning an

extended period of time that have been variably affected

by one or more short-lived tectonothermal events,

whereas an orogeny is a temporally specific tectonother-

mal event resulting in deformation, metamorphism and

crustal thickening. The data have been sourced from a

variety of isotopic techniques but, where available, U–

Pb zircon data have been used for interpretation due to

the more robust nature of this system that limits its

potential for resetting during subsequent events. In those

cases where less robust systems are the only data

available, consideration of closure temperature and the

potential for isotopic resetting by other means, such as

deformation in the 40Ar/39Ar system, has been consid-

ered. The data are compiled in an un-filtered way in order

to fully assess the level of coverage available.

Owing to the focussed nature of the current study,

compilation has been restricted to two time intervals

between 610 and 470 Ma, covering the time of Gond-

wana assembly, and 400 and 200 Ma, covering the time

of Pangea assembly. For the period between 610 and

470 Ma some data for East Gondwana were sourced

Fig. 1. Schematic diagram illustrating differences in tectonic plate

interaction in collisional (a) and accretionary (b) orogens. In collisional

orogens subduction of oceanic lithosphere will cease when the

continents collide and crustal shortening of one or both continents

takes place whereas, in accretionary orogens subduction is ongoing

throughout orogenesis and shortening in the upper plate must be driven

by coupling between the subducting and overriding plates.
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from the database of Meert (2003) that covers the age

range 800 to 400 Ma2. The data have been plotted on

time–space diagrams in order to illustrate the synchro-

neity of events across a variety of orogens located in

both the internal and external portions of the

supercontinents.

3. Gondwana related Events (610–470 Ma)

3.1. Gondwana internal assembly

The final assembly of Gondwana has generally been

considered as a simple process involving the closure of

the Mozambique Ocean separating East Gondwana

(Australia, Antarctica, India, Madagascar and Arabia)

from West Gondwana (Africa and South America). The

final suture was thought to lie along the East African

Orogen and Mozambique Belt and to have occurred at

around 600 Ma (e.g. McWilliams, 1981; Stern, 1994).

However, recently a number of studies have shown that

East and West Gondwana may not have existed as

independent and coherent continental masses in their

own right and that the final amalgamation of Gondwana

involved a more complex accretion of blocks along a

variety of orogenic belts (Fig. 2) largely between around

570 and 520 Ma (Fitzsimons, 2000a,b; Collins et al.,

2003a,b; Meert, 2003; van de Flierdt et al., 2003; Boger

and Miller, 2004; Johnson and Oliver, 2004; Collins and

Pisarevsky, 2005; Fitzsimons and Hulscher, 2005).

These belts include the following; East African Orogen

and Mozambique Belt lying between the Congo Craton

and Arabian Nubian Shield, Azania and India; Kuunga

Orogen separating western Antarctica, India and the

Kalahari–Lurio–Vijayan Craton broadly following the

definition of Meert (2003), except that the Zambezi–

Damaran Orogen, between the Kalahari and Congo

cratons, is considered separately; the Pinjarra Orogen

between Australia–Mawson and India; and the Brasi-

liano Orogen (e.g. Moura and Guadette, 1993) between

the Sao-Francisco–Rio de la Plata and Amazon cratons.

Outlined below is a summary of key events related to

craton assembly in each of these orogens.

3.1.1. East African Orogen and Mozambique Belt

The earliest events related to convergent terrane

assembly in the East African Orogen occur in the

Arabian Nubian Shield, which is composed of several2 Available online at (www.clas.ufl.edu/users/jmeert).

Fig. 2. Palaeozoic to Mesozoic reconstruction of Gondwana. Outlines of the main orogens formed during assembly of the component cratons of

Gondwana are based on the following sources; East African Orogen and Mozambique Belt (Collins et al., 2003a; Johnson andWoldehaimanot, 2003;

Meert, 2003; Collins and Pisarevsky, 2005; Fitzsimons and Hulscher, 2005), Damara/Zambezi Orogen (Goscombe et al., 2000; Hargrove et al., 2003;

John et al., 2004; Johnson and Oliver, 2004), Brasiliano Orogen (Reid et al., 1991; Moura and Guadette, 1993; Trompette, 1997; Frimmel and Frank,

1998; Pedrosa-Soares et al., 2001), Kuunga Orogen (Meert and Van der Voo, 1997; Meert, 2003; Boger and Miller, 2004; Collins and Pisarevsky,

2005), and Pinjarra Orogen (Fitzsimons, 2003a,b). Inclusion of a joint Kalahari–Lurio–Vijayan Craton and Azania Cratonic block follows the new

cratonic subdivision scheme of Collins and Pisarevsky (2005). Position of the Terra Australis orogen formed along the Pacific margin of Gondwana

from the late Neoproterozoic to Mesozoic after Cawood (2005). Abbreviations: SFB — Sân Francisco block; ANS — Arabian Nubian Shield.
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Neoproterozoic arc and ophiolite terranes (c. 870 to

650 Ma) and older continental fragments (Abdelsalam

et al., 1998, 2002; Johnson and Woldehaimanot, 2003).

The various terranes of the Arabian Nubian Shield were

assembled in an intra-oceanic environment between c.

750 and 600 Ma, evidenced by syntectonic calc–

alkaline granite plutons intruded on the boundaries of

terranes (Fig. 3; Abdelsalam et al., 2002; Johnson and

Woldehaimanot, 2003) before being accreted to the

Saharan Metacraton by 580 Ma based on 40Ar/39Ar

biotite and hornblende ages from a deformed granite in

the Keraf Suture in northern Sudan that suggest rapid

uplift and cooling at this time (Fig. 3; Abdelsalam et al.,

1998; Abdelsalam et al., 2002).

In Tanzania, peak granulite metamorphism is iden-

tified between 655 and 610 Ma, (Coolen et al., 1982;

Muhongo and Lenoir, 1994; Maboko and Nakamura,

1995; Möller et al., 2000; Muhongo et al., 2001; Kröner

et al., 2003; Sommer et al., 2003) on the basis of U–Pb

dating of metamorphic zircon and monazite within

granulite facies gneisses. In southern Madagascar, de

Wit et al. (2001) reported U–Pb monazite ages of 630–

607 Ma within the Ampanihy and Vorokoftra shear

zones, which they attributed to an early high pressure

granulite event. These events correlate with similar aged

granulite terranes in southern Kenya and northern

Mozambique (Kröner et al., 1997; Meert and Van der

Voo, 1997; Collins and Pisarevsky, 2005). In Ethiopia,

Yibas et al. (2002) identified the Moyale phase of

granite emplacement (700–550 Ma) that they associated

with an active-margin setting during closure of the

Moyale oceanic basin and amalgamation of the Arabian

Nubian Shield. Yibas et al. (2002) further suggested that

granites in the region intruded after 550 Ma were post-

orogenic in nature, consistent with 40Ar/39Ar ages

interpreted as recording uplift and cooling at the end of

the East African Orogeny.

The events documented between 750 and 600 Ma

appear to be confined to the northern sections of the East

African Orogen from the Arabian Nubian Shield

through Tanzania, Ethiopia, Somalia, Kenya, northern

Mozambique and southern Madagascar, but are difficult

to trace further south suggesting a diachroneity or

discontinuity in the nature of orogenesis within the East

African Orogen. In addition, many studies have

suggested the existence of an easterly younging of

deformation and metamorphic events within the orogen

(Stern, 1994; Meert, 2003; Boger and Miller, 2004;

Collins and Pisarevsky, 2005; Fitzsimons and Hulscher,

2005). The hypothesis of easterly younging is based on

data suggesting two peaks of tectonic activity post-

dating assembly of the Arabian Nubian Shield. These

resulted in widespread high-grade metamorphism and

granite intrusion throughout the Mozambique Belt

between c. 580 and 530 Ma in Ethiopia, Malawi, central

and western Madagascar and Sri-Lanka, and a younger

event at c. 520 Ma concentrated in eastern Madagascar

and SW India (Fig. 3; Holzl et al., 1994; Kroner et al.,

1996; Ashwal et al., 1999; Kröner et al., 1999, 2000; de

Wit et al., 2001; Fernandez et al., 2003; Cox et al., 2004;

Collins and Pisarevsky, 2005; Fitzsimons and Hulscher,

2005; Fig. 3; Montel et al., 1994; Paquette et al., 1994;

Montel et al., 1996; Paquette and Nedelec, 1998; Tucker

et al., 1999; Kröner et al., 2001; Ring et al., 2002; Yibas

et al., 2002; Meert, 2003). These two events are

particularly well defined in Madagascar. Evidence for

the older event includes the presence of 560 Ma

metamorphic rims on detrital zircons of the Itremo and

Molo groups (west-central Madagascar; Cox et al.,

2004), granites within the Antananarivo block with

intrusion ages of 560–530 Ma (Kröner et al., 2000), and

widespread granulite grade metamorphism in charnoki-

tic assemblages in many granites that are dated at c.

550 Ma (Kröner et al., 2000). Conversely in eastern

Madagascar, kyanite schists of the Betsimisaraka Suture

contain zircons with metamorphic rims dated at 518

±7 Ma (Collins et al., 2003b) and monazites dated at

517±1 Ma (Fitzsimons et al., 2004) suggesting that

deformation is younger in the east. These latter events

are the youngest recorded high-grade metamorphic

events in the East African Orogen and are suggested

to mark final assembly of terranes within the orogen and

collision of the Indian Craton with the amalgamated

Tanzanian Craton, Saharan Metacraton and Arabian

Nubian Shield.

Identification of three deformation pulses in the East

African Orogen involving assembly of the Arabian

Nubian Shield between c. 750 and 600 Ma, followed by

high-grade metamorphism in the Mozambique Belt at c.

560 to 530 Ma (Fig. 3) and a final pulse at c. 520 Ma in

the eastern Mozambique Belt, has led many workers

(e.g. Meert, 2003; Collins and Pisarevsky, 2005;

Fitzsimons and Hulscher, 2005) to question the model

of Stern (1994) involving prolonged collisional assem-

bly of East and West Gondwana continents along the

East African Orogen. In addition, the localisation of the

750–600 Ma events within the northern segment of the

orogen, coupled with the lack of contemporaneous

events in India, and the widespread occurrence of

younger collision-related events elsewhere in Gond-

wana, has led to the need for models that can account

for this spatial variation and diachroneity of events.

One such model suggests an initial collision between a

newly defined microcontinental block named Azania,
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comprising Central Madagascar and parts of the Arabian

Nubian Shield, with the Congo Craton at around c.570

to 500 Ma along the East African Orogen and then a

subsequent second collision between India and Azania

between c.530 and 510 Ma (Collins et al., 2003a,b;

Collins and Pisarevsky, 2005). An alternative model by

Fitzsimons and Hulscher (2005), suggests terrane

transfer from the Congo to India prior to final closure

of the Mozambique Ocean and prolonged collision

along the East African Orogen.

3.1.2. Damara/Zambezi, Kuunga, and Pinjarra Orogens

The term Kuunga Orogen was first used by Meert

et al. (1995) to describe the zone of collisional defor-

mation associated with amalgamation of the Antarctic/

Australian Craton with Indian and the Kalahari cra-

tons between 550 and 530 Ma based on palaeomagnet-

ic reconstructions. The orogen was later modified by

Meert (2003), based on geochronological arguments,

to include the area between the Congo and Kalahari

cratons. In this study, the Kuunga Orogen as defined by

Meert (2003) has been divided into three separate areas

(Fig. 2) that are broadly coeval in terms of the timing

of collisional activity, but are considered separately be-

cause they separate different cratonic blocks that may

have been independent of each other prior to 520 Ma.

The divisions chosen are, from west to east, the Damara/

Zambezi Orogen (van de Flierdt et al., 2003; Johnson

and Oliver, 2004) separating the Kalahari–Lurio–

Vijayan and Congo cratons, the newly defined Kuunga

Orogen separating the Antarctic craton from the Kala-

hari–Lurio–Vijayan and Indian cratons, and the Pinjarra

Orogen separating the Australian–Mawson craton

from the Antarctic and Indian cratons, as defined by

Fitzsimons (2003b), but including the suggested ex-

tension through Lake Vostok (Figs. 2 and 4) to the Trans

Antarctic Mountains (Fitzsimons, 2003a).

In models that considerWest Gondwana as a coherent

continental mass prior to Gondwana amalgamation (e.g.

Stern, 1994), the Kalahari and Congo cratons were con-

sidered to have been amalgamated since at least the

Mesoproterozoic largely based on the correlation of the

Irumide Belt with the Chomo–Kalomo block south of

the Zambezi Belt (Hanson et al., 1994; Wilson et al.,

1997). However, recent geochronological studies have

demonstrated that such a correlation is not valid (De

Waele et al., 2003). In addition, the Mesoproterozoic

Kaourera arc and Chewore ophiolite rocks of the Zam-

bezi Belt (Johnson and Oliver, 1998, 2000, 2004) along

with 595 Ma eclogites of Central Zambia (John et al.,

2003, 2004) provide evidence that an ocean basin as

well as an active subducting margin existed between the

Kalahari and Congo during the Meso-Neoproterozoic

indicating that they were still separated at this time (John

et al., 2004; Johnson and Oliver, 2004). Based on new

evidence, closure of the ocean separating the Congo and

Kalahari cratons is now suggested to have occurred

between 550 and 520 Ma (Fig. 3), resulting in high-

pressure metamorphism in the Lufilian Arc (John et al.,

2003, 2004) and Kadunguri whiteschists (Johnson and

Oliver, 2002), thrust emplacement of layered orthog-

neises in northern Zimbabwe (Hargrove et al., 2003) and

metamorphic overprinting of the Kaourerea Arc rocks

(U–Pb 517±5 Ma rims on zircons Johnson and Oliver,

2004) and the Chewore Inliers (Goscombe et al., 2000).

The final stages of this deformation are indicated by

amphibolite facies retrogression of Archaean basement

rocks in northeast Zimbabwe starting at about 510 Ma

(Fig. 3; 507.9±2.5 Ma and 491.3±2.1 Ma, 40Ar/39Ar

hornblende, Vinyu et al., 1999). Farther west in the

Damara Belt (Fig. 2), a similar convergent history is

recorded by high-grade metamorphism and migmatite

generation between 540 and 510 Ma (Fig. 3) in the

Oetmoed Granite–Migmatite Complex (Jung et al.,

2000) and intrusion of associated quartz diorites in the

Bandombaai Complex in Namibia (U–Pb 540±3 Ma

van de Flierdt et al., 2003). These new data suggest that

docking of the Kalahari and Congo cratons along the

Damara/Zambezi Orogen was broadly synchronous with

final suturing events along the East African Orogen

(Fig. 3).

Along the southwest branch of the Kuunga Orogen

(Fig. 4), high-grade metamorphism and collisional de-

formation are recorded in DronningMaud Land at c. 570

to 550 Ma (Fig. 3) overprinting Meso-Neoproterozoic

rocks under granulite conditions (Jacobs et al., 1998;

Piazolo andMarkl, 1999; Bauer et al., 2003; Jacobs et al.,

2003a). A later phase of high-temperature metamor-

phism with associated granite generation occurred 20 m.

y. later between 530 and 490Ma (Fig. 3) and is suggested

to have been caused by extensional collapse and tectonic

escape (Jacobs et al., 2003d; Jacobs and Thomas, 2004).

Along the northeastern branch of the Kuunga Orogen,

between northern Antarctica and western India (Fig. 4),

rocks in the Prydz Bay region record high-temperature

metamorphism, migmatite and anatectic leucogneiss

generation associated with compressional deformation

between c. 535 and 525 Ma (Fig. 3; Carson et al., 1996;

Fitzsimons et al., 1997; Fig. 3; Zhao et al., 1992; Henson

and Zhou, 1995; Zhao et al., 2003). Coeval granite

intrusion dated at 534±5 Ma (zircon cores), closely

followed by high-temperature metamorphism of the

granites at 529±14 Ma (zircon rims), is recorded in the

Grove Mountains east of Prydz Bay (Zhao et al., 2003).
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Fig. 3. Compilation of tectonostratigraphic data associated with assembly of Gondwana. The data indicate a correlation of events across the various orogens with initial collision of cratonic blocks

occurring at around 590 Ma, followed by a thermal peak resulting in widespread granulite grade metamorphism and magmatism associated with crustal shortening between 570–550 Ma, a second

phase of high-grade metamorphism and crustal shortening around 520 Ma and final cooling and uplift by around 490 Ma. Numbers on data points refer to the following sources: 1 (de Wit et al., 2001),

2 (Kröner et al., 2000), 3 (Montel et al., 1994), 4 (Tucker et al., 1999), 5 (Meert et al., 2003), 6 (Paquette and Nedelec, 1998), 7 (Paquette et al., 1994), 8 (Kröner et al., 1999), 10 (Cox et al., 2004), 11

(Cahen and Snelling, 1966), 12 (Kröner et al., 2001), 13 (Ring et al., 2002), 14 (Berger and Braun, 1997), 15 (Braun et al., 1998), 16 (Unnikrishnan-Warrier et al., 1995), 17 (Kovach et al., 1998), 18

(Rathore et al., 1999), 19 (Choudhary et al., 1992), 20 (Bartlett et al., 1998), 21 (Unnikrishnan-Warrier, 1997), 22 (Hansen et al., 1985), 23 (Santosh and Drury, 1988), 24 (Holzl et al., 1994), 25

(Kröner et al., 1994), 26 (Fernando and Izumi, 2001), 27 (Vinyu et al., 1999), 28 (Müller et al., 2000), 29 (Hargrove et al., 2003), 30 (van de Flierdt et al., 2003), 31 (John et al., 2004), 32 (Johnson and

Oliver, 2004), 33 (Goscombe et al., 2000), 34 (Goscombe et al., 1998), 35 (Jacobs et al., 2003a), 36 (Jacobs et al., 1998), 37 (Jacobs et al., 2003c), 38 (Bauer et al., 2003), 39 (Mikhalsky et al., 1995),

40 (Jacobs et al., 2003b), 41 (Fitzsimons et al., 1997), 42 (Boger et al., 2001), 43 (Zhao et al., 1992), 44 (Carson et al., 1996), 45 (Zhang et al., 1996), 46 (Zhao et al., 2003), 47 (Kinny et al., 1993), 48

(Janssen pers. comm. 2005), 49 (Nelson, 1996), 50 (Nelson, 1999), 51 (Nelson, 2002), 52 (Collins, 2003), 53 (Frimmel and Frank, 1998), 54 (Seth et al., 1998), 55 (Machado et al., 1996), 56 (Heilbron

and Machado, 2003), 57 (Söllner et al., 1987), 58 (Besang et al., 1977), 59 (Söllner et al., 1991b), 60 (Siga, 1986), 61 (Söllner et al., 1989), 62 (Tassinari, 1988).
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Archean layered igneous complexes, within the Rauer

Group, Prydz Bay (Fig. 4) are overprinted by high-tem-

perature deformation at 519±8 Ma (Fig. 3; Harley et al.,

1998). Deformation on the Indian side of the Kuunga

Orogen is poorly constrained, but metamorphism as-

sociated with compressional deformation and shear

zone reactivation is documented in the Eastern Ghats

of southern India between 550 and 500 Ma (Mezger and

Cosca, 1999; Dobmeier and Raith, 2003).

Data from the Pinjarra Orogen (Figs. 3 and 4) are

limited and, due to exposure restrictions caused by the

Antarctic ice cap, are only available from the Australian

section. However, the data are of high quality and

indicate granite intrusion between c. 540 and 525 Ma

(Fig. 3; Janssen pers. comm. 2005; Nelson, 1996, 1999,

2002; Collins, 2003) and granulite–amphibolite grade

metamorphism and migmatite generation between 550

and 520 Ma (Janssen pers. comm. 2005; Collins, 2003).

The coeval history of the Pinjarra and Kuunga orogens

has led some authors to propose that they may be linked

suggesting that either the Mawson and Antarctic cratons

are in fact one body or that if an orogen separates them,

it is unrelated to the Pinjarra orogen (Fitzsimons, 2003b;

Meert, 2003; Veevers, 2004). However, Fitzsimons

(2003a) identified structural features separating the

Mawson and Antarctic cratons beneath the Antarctic

ice cap and noted similarities between features in the

Transantarctic Mountains and the Darling ranges of

Western Australia. Based on this evidence, we extend

the Pinjarra orogen through Antarctica dividing it into

the Mawson and Antarctic cratons (Fig. 4).

3.1.3. Brasiliano Orogen

The Brasiliano Orogen records deformational, mag-

matic and metamorphic events associated with the clo-

sure of the Adamaster Ocean and amalgamation of the

combined Amazon and Rio de la Plata cratons with

the Congo and Kalahari Cratons. Rift-related volcanics

(c. 900 Ma, Machado et al., 1989) and inferred ophiolite

remnants (c. 800 Ma) preserved in the Araçuaí–West-

Congo orogen (Fig. 5) provide evidence for a Neopro-

terozoic ocean basin in the northern section of the

Brasiliano Orogen (Pedrosa-Soares et al., 2001). Closure

of this ocean resulted in development of magmatic arc

related granites at c 620–570 Ma (Weidmann, 1993;

Campos-Neto and Figueiredo, 1995; Pedrosa-Soares

et al., 1999), on the Brazilian side of the orogen and

further south into the Ribeira Belt (Fig. 5; Heilbron and

Machado, 2003; Fig. 5; Machado et al., 1996). These

overlap with c. 590 to 570 Ma granites interpreted as

collision related (Fig. 3; Pedrosa-Soares et al., 2001;

Fig. 3; Weidmann, 1993) and with granulite facies

metamorphism in southernmost Brazil (Fig. 3; Leite

et al., 2000). A later suite of peraluminous granites

known as the Almenara suite is locally intruded along the

eastern side of the Araçuaí and is interpreted to mark

the end of this collisional pulse and granulite metamor-

phism in this part of the orogen at c. 580 to 560 Ma

(Fig. 3; Siga, 1986; Söllner et al., 1989). A final pulse of

magmatism between 535 and 500 Ma (Söllner et al.,

1991b;Weidmann, 1993;Machado et al., 1996; Pedrosa-

Soares et al., 1999; Noce et al., 2000; Heilbron and

Machado, 2003) is associated with charno–enderbitic

facies granites and granodiorites intruded during a phase

of strike–slip deformation, and is suggested to mark

the final amalgamation of continental blocks (Weid-

mann, 1993; Pedrosa-Soares et al., 1999; Pedrosa-

Soares et al., 2001; Schmidtt et al., 2004). A similar

magmatic and metamorphic history is recorded in the

Brasília belt of central Brazil, except that 590–500 Ma

magmatism is here related to post-collisional uplift

and extension of the Paraná Block and associated sed-

imentation in the Paraná Basin (Trompette, 1997;

Pimentel et al., 1999).

Fig. 3 (continued ).
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The Brasiliano Orogen extends into South Africa

along the Gariep and Kaoko Belts (Fig. 5). The Gariep

belt records rift-related and oceanic magmatism around

900–750 Ma (Kröner, 1975; Allsop et al., 1979; Reid

et al., 1991; Gresse and Scheepers, 1993; Frimmel and

Frank, 1998). Closure of this ocean and subsequent

continental collision resulted in granite magmatism and

amphibolite to granulite facies metamorphism through-

out the Gariep Belt between c. 570 and 540 Ma (Gresse

and Scheepers, 1993; Frimmel and Frank, 1998;

Frimmel, 2000), and a later lower grade amphibolite

to greenschist facies event at c. 530–500 Ma (Fig. 3;

Frimmel and Frank, 1998; Frimmel, 2000). Contempo-

raneous foreland basin sedimentation is recorded in the

Nama and Varhynsdorp Groups and is interpreted to be

sourced from the exhumed Gariep Belt rocks (Gresse

and Scheepers, 1993; Gresse, 1995; Hälbich and Alchin,

1995). The Kaoko Belt lies to the north of the Gariep

Belt and is though to be correlative with the West Congo

Belt in Africa and Dom Feliciano and Riberia Belts of

Brazil (Kröner and Correia, 1980; Trompette, 1997).

The magmatic history of the Kaoko Belt is more re-

stricted than that of the Gariep and records collision-

related magmatism and high-grade metamorphism be-

tween about 650 and 550 Ma (Fig. 3; Heilbron and

Machado, 2003; Fig. 3; Seth et al., 1998). A subsequent

lower grade greenschist facies event associated with

transpressional shearing along the belt is recorded by

K–Ar ages of pelitic schists at c. 550–530 Ma (Ahrendt

et al., 1983) that is related to cooling and uplift after the

main collisional phase (Dürr and Dingeldey, 1996).

3.2. Gondwana Pacific margin

Neoproterozoic rifting of Laurentia from Rodinia

resulted in the creation of the Iapetus and Pacific Oceans

(Cawood et al., 2001; Cawood, 2005). Whilst the

Iapetus ocean followed a Wilson cycle evolution of

ocean closure and continental collision resulting in the

Appalachian–Caledonian Orogen (Wilson, 1966), the

Pacific has never closed and has been bounded by the

margins of West Laurentia and Gondwana throughout

its life (Dalziel, 1991; Hoffman, 1991; Moores, 1991;

Coney, 1992). The Gondwana margin segment extend-

ing some 18,000 km from eastern Australia through

New Zealand, Antarctica and South Africa to the south-

west American coastline (Fig. 2) provides a remarkable

record of initiation of the Pacific and its subsequent

Fig. 4. Palaeozoic to Mesozoic reconstruction of south east Gondwana showing positions of the Kuunga (after Meert, 2003; Boger and Miller, 2004;

Collins and Pisarevsky, 2005; after Meert and Van der Voo, 1997), Pinjarra (after Fitzsimons, 2003a,b), and Terra Australis Orogens (after Cawood,

2005). Geological provinces after Collins and Pisarevsky (2005).
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history. The coeval history of this margin prior to the

breakup of Gondwana in the late Mesozoic led Cawood

(2005) to name this region the Terra Australis Orogen

(Fig. 2). Whilst East and West Gondwana may not have

existed as continental masses in their own right, for the

purposes of this discussion they will be used as

geographic subdivisions in which to present the data.

3.2.1. East Gondwana margin

The Pacific margin of East Gondwana (Fig. 4)

extends from the eastern Australian mainland, through

Tasmania and New Zealand, to the Transantarctic

Mountains and Antarctic Peninsula (Stern, 1994;

Cawood, 2005). Rift and passive margin successions

related to Rodinia breakup are preserved in the thick

Neoproterozoic to early Palaeozoic siliciclastic and

carbonate successions preserved in the Adelaide Fold

Belt, western New South Wales (NSW) and western

Tasmania, the Anakie inlier of Queensland and the

Transantarctic Mountains. The most complete record of

the marginal sequence is preserved in the Adelaide fold

belt where it accumulated in a series of rift and sag

basins between c. 830 and 500 Ma when sedimentation

was terminated during the Ross–Delamerian Orogeny

(Preiss, 1987; Drexel et al., 1993; Powell et al., 1994;

Drexel and Preiss, 1995; Preiss, 2000). In the Transan-

tarctic Mountains, rifting and deposition of the Beard-

more Group (as redefined by Goodge et al., 2004b) had

occurred by at least 668 Ma, based on U–Pb ages of

zircon from an interlayered, rift-related gabbro (Goodge

et al., 2002, 2004b), and coeval accumulation of coarse

siliciclastic rocks and limestones is evident in the

Princes Anne Glacier region (Goodge et al., 2004b).

Detrital zircon studies of early Palaeozoic sedimentary

successions of the upper Bird group of the Transantarc-

tic Mountains reveal that sandstones of the Starshot

Formation contain fresh, locally derived igneous grains

with ages in the range 580 to 520 Ma (Goodge et al.,

2002; Myrow et al., 2002; Goodge et al., 2004a,b).

These grains are interpreted to have been sourced from

voluminous, continental arc magmatism suggesting a

change from passive- to active-margin characteristics

and showing subduction was active in the Antarctic

segment of the margin by 580 Ma (Goodge et al., 2004a,

Fig. 5. Reconstruction of the Brasiliano Orogen c. 550–500 Ma showing positions of various tectonic belts and geological subdivisions (after Reid

et al., 1991; Moura and Guadette, 1993; Frimmel and Frank, 1998; Pedrosa-Soares et al., 2001; Collins and Pisarevsky, 2005; after Trompette, 1997).
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Fig. 6. Compilation of tectonostratigraphic data associated with tectonic events along the Pacific margin of Gondwana between 610–470 Ma. The data indicate a correlation of events along the margin

with initiation of subduction in the East Gondwana segment at c. 590 Ma and c. 560–530 Ma in West Gondwana followed by margin compression and resultant orogenesis along the whole margin

between around 530–500 Ma. Numbers on data points refer to the following sources: 1 (Gromet and Simpson, 1999), 2 (Pankhurst and Rapela, 1998), 3 (Rapela et al., 1998b), 4 (Durand, 1996),

5 (Fantini et al., 1998), 6 (Pankhurst et al., 1998a), 7 (Lucassen et al., 2000), 8 (Pankhurst et al., 2003), 9 (Omarini et al., 1999), 10 (Bachmann et al., 1987), 11 (von Gosen et al., 2002), 12 (Söllner et

al., 2000), 13 (Sato et al., 1999), 14 (Rapela et al., 2003), 15 (Sims et al., 1998), 16 (Krol and Simpson, 1999), 17 (Gresse et al., 1992), 18 (Da Silva et al., 2000), 19 (Chemale et al., 1998),

20 (Scheepers and Armstrong, 2002), 21 (Schoch and Burger, 1976), 22 (Jacobs and Thomas, 2001), 23 (Armstrong et al., 1998), 24 (Dunlevey, 1981), 25 (Encarnación and Grunow, 1996),

26 (Goodge et al., 1993), 27 (Parkinson, 1994), 28 (Rowell et al., 1993), 29 (Goodge and Dallmeyer, 1992), 30 (Allibone and Wysoczanski, 2002), 31 (Vincenzo et al., 1997), 32 (Pankhurst et al.,

1998b), 33 (Wysoczanski and Allibone, 2004), 34 (Goodge et al., 2004b), 35 (Cooper et al., 1997), 36 (Turner et al., 1998), 37 (Perkins and Walshe, 1993), 38 (Foden et al., 2001), 39 (Black et al.,

1997), 40 (Foster et al., 2005b), 41 (Crawford et al., 1997), 42 (Foden et al., 1999), 43 (Foden et al., 2002), 44 (Aitchison and Ireland, 1995), 45 (Bruce et al., 2000), 46 (Turner, 1996), 47 (Aitchison

et al., 1992), 48 (Watanabe et al., 1998), 49 (Maher et al., 1997), 50 (Crawford et al., 1996), 51 (Preiss, 1995), 52 (Foster et al., 1998), 53 (Fergusson et al., 2001), 54 (Van Schmus et al., 1997).
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b, 2002). There are no definitive arc related intrusions in

the Transantarctic Mountains and Victoria Land until c.

550 to 525 Ma (Fig. 6) when the Granite Harbour

intrusives (Encarnación and Grunow, 1996), Liv Group

bimodal suite (Wareham et al., 2001) and plutons of the

Dry Valleys region (Allibone and Wysoczanski, 2002)

were emplaced and calc–alkaline granites were intruded

into the high-grade metamorphic basement gneisses of

the Nimrod Group (Goodge et al., 1993). In the Queen

Maud Mountains and Skelton Glacier, calc–alkaline

igneous rocks may be as old as 550 Ma, representing

possibly the earliest preserved arc intrusives along this

part of the margin. However, the data are upper intercept

ages on a discordia line and may represent complex

inheritance and Pb loss (Rowell et al., 1993; Encarna-

ción and Grunow, 1996; Van Schmus et al., 1997).

At around the same time as the transition from pas-

sive to active-margin tectonics along the Antarctic

margin, the eastern Australian margin was reactivated

during a phase of renewed extension and rifting. This

resulted in the generation of the Mount Wright Volcanics

in western NSW, where a transitional alkaline basalt–

trachybasalt–trachyandesite–trachyte–alkali–rhyolite

suite was erupted at 586±7 Ma (U–Pb zircon) and was

subsequently overlain and intruded by a calc–alkaline

basalt–andesite–dacite suite (Crawford et al., 1997).

Margin extension is also suggested by the deposition

and metamorphism of the early Palaeozoic units in the

Anakie Inlier and Charters Tower Province of eastern

Queensland. Detrital zircons from these rocks give ages

ranging from c. 3100 to 500 Ma with the majority of

grains lying between 600 and 500 Ma (Fergusson et al.,

2001, 2007). The Archaean to Mesoproterozoic ages are

interpreted to represent sources in the cratonic basement

to the west, whereas the zircons (and monazites) in the

younger 600–500 Ma range are suggested to at least

incorporate some margin rift-related sources coeval with

the magmatism in the Mount Wright volcanics (Fergus-

son et al., 2001, 2007). The onset of margin extension

can be traced further south through the Adelaide Fold

Belt where shales and basalts from below the Wonoka

Formation define a 586±30 Ma Rb–Sr isochron. Sr-

isotopic compositions of associated carbonate units in-

dicate a phase of intra-basinal fluid flow thought to have

been triggered by the onset of margin extension (Foden

et al., 2001). In Tasmania, rift-related picrites and tho-

leiitic basalts on King Island have recently been dated at

579 Ma (Sm–Nd isochron Meffre et al., 2004) and may

also be related to margin extension. It is interesting to

note that unlike the Australian section of the margin

there is no evidence in Antarctica for significant margin

extension at the onset of subduction, suggesting a pos-

sible difference in the geometry of the subducting mar-

gin between the two areas. In Antarctica, subduction

appears to have been initiated in the late Neopro-

terozoic close to the continent–ocean boundary with

development of a continental margin arc but in eastern

Australia, passive margin sedimentation continued,

overlapping with subduction along the Antarctic seg-

ment, and subduction probably initiated outboard of

the margin in an intra-oceanic setting (Fig. 7, Cawood,

2005).

The earliest occurrence of subduction related meta-

morphism along the East Gondwana margin segment is

recorded by eclogites in the Peel Fault system of the

New England Fold Belt, eastern Australia (Figs. 4 and

6). The eclogites are preserved within serpentinite

melange and have a 206Pb/238U age of 571±22 Ma

interpreted to reflect the age of peak metamorphism

(Watanabe et al., 1998). The New England Fold belt also

contains several late Neoproterozoic–early Palaeozoic

supra-subduction zone ophiolites that are interpreted to

Fig. 6 (continued ).
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have occupied a position outboard of the continental

margin in a marginal basin or proto-arc position

(Aitchison et al., 1992; Aitchison and Ireland, 1995;

Bruce et al., 2000). The oldest of these is the

Malborough ophiolite of the northern New England

Fold Belt in Queensland, which has a crystallisation age

of 562±22 Ma (Fig. 6; Sm–Nd isochron Bruce et al.,

2000). In the Peel-Manning fault system of the southern

New England Fold Belt ophiolites contain plagiogra-

nites which have yielded U–Pb zircon ages of 530±

6 Ma, 535±10 Ma and 509±30 Ma (Aitchison et al.,

1992; Aitchison and Ireland, 1995). Supra-subduction

ophiolites are also documented in Tasmania containing

boninitic mafic–ultramafic sequences suggestive of a

forearc/proto-arc environment of formation (Crawford

and Berry, 1992). The only estimate of the crystal-

lisation age of the ophiolites is provided by zircons

separated from a late stage tonalite within the Heazle-

wood River Complex dated at 514±5 Ma (Black et al.,

1997), which is close to estimates of the timing of their

emplacement onto the passive margin sequences at

515–510 Ma (Crawford and Berry, 1992; Meffre et al.,

2000; Crawford et al., 2003). In the western Victorian

section of the Adelaide Fold Belt, unexposed ophiolites

of the Dimboola Subzone discovered during borehole

drilling are dated at 524±9 Ma and are thought to be

along strike extensions of the Tasmanian ophioilites (U–

Pb zircon; Maher et al., 1997). Calc–alkaline volcanics

in the Mount Staveley Belt (500–495 Ma) provide

evidence of supra-subduction magmatism at this time

that may be associated with the Mount Read volcanic

rocks of Tasmania (495–503 Ma) and the Delamerian

and Tasmanian ophiolites (Perkins and Walshe, 1993;

Crawford et al., 1996; Foster et al., 1998). The Lachlan

Fold belt of eastern Australia contains several Cambrian

age (c. 500 Ma) ophiolite bodies that occupied an intra-

oceanic supra-subduction position before being imbri-

cated with turbidite-dominated cover sequences during

the late Ordovician to Devonian (Spaggiari et al., 2003).

Along the Antarctic section of the margin there are no

documented occurrences of ophiolite sequences senso

stricto and the only occurrences of oceanic rocks are c.

500 Ma eclogite facies rocks (Fig. 6), interpreted as

subducted oceanic crust, preserved in the Lanterman

Range of Northern Victoria Land (Fig. 4; Peacock

and Goodge, 1995; Capponi et al., 1997; Fig. 4; Ricci

et al., 1996, 1997; Vincenzo et al., 1997). The lack of

ophiolite rocks may reflect the lack of evidence of

Fig. 7. Reconstruction of Pangea at 250 Ma showing positions of the Alleghanian–Ouachita, Varscan, Urals and Terra Australis orogens. Plate

positions were reconstructed by S. A. Pizarevsky using Plates software produced by University of Texas at Austin.
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supra-subduction marginal basin extension within this

section of the margin and the predominance of

continental margin arc intrusions.

Following subduction initiation, the margin of East

Gondwana experienced compressional deformation and

mountain building during the Ross–DelamerianOrogeny.

Estimates of the onset of this orogenic pulse vary along

the margin and there is evidence that parts of the Antarctic

segment may have been affected by compressional

deformation earlier than the Australian segment. Ductile

fabrics within calc–alkaline plutons in the Transantarctic

Mountains suggest deformation at around 530 Ma

(Encarnación and Grunow, 1996; Allibone and Wysoc-

zanski, 2002) and may even have been developed as early

as 550 to 540Ma based onmetamorphic rims of zircons in

the Skelton Group (Wysoczanski and Allibone, 2004) and

intrusion of plastically deformed granites within the

Nimrod Group (Goodge et al., 1993). However, the main

pulse of Ross–Delamerian orogenesis took place along

the whole margin at c. 520 to 490Ma (Foden et al., 2006).

This main pulse was immediately preceded by basin

formation and deposition of the Kanmantoo Group in the

Adelaide Fold Belt between c. 532 and 526 Ma (Fig. 5;

Flöttmann et al., 1994; Foster et al., 2005b; Gray and

Foster, 2005; Fig. 5; Preiss, 1995). Evidence of peak

metamorphism can be found in the Forth metamorphic

complex of Tasmania, which preserve zircon metamor-

phic rims dated at 514±4.6 Ma (Black et al., 1997) and

511±4 Ma, suggesting peak metamorphic temperatures

of 700–740 °C (Meffre et al., 2000). The earliest phase of

deformation in the Adelaide Fold Belt is dated by the

emplacement of the Rathjen Gneiss igneous precursor at

514±5 Ma, which was metamorphosed at 503±7 Ma

based on metamorphic zircon rims (Fig. 5; U–Pb zir-

con Foden et al., 1999). Major changes in sedimenta-

tion are also recorded by the upper Byrd Group of the

Transantarctic Mountains, which terminated the Shackle-

ton carbonate platform succession with an influx of mud

and silt deposits and the onlap of coarse alluvial–fluvial

debris at around 515 Ma (Myrow et al., 2002; Goodge

et al., 2004b). Detrital zircon and muscovite populations

with an active-margin source in the upper Byrd Group

suggest rapid denudation of recently formed continental

arc basement during the Ross–Delamerian Orogeny

(Myrow et al., 2002; Goodge et al., 2004a,b). Emplace-

ment of the Tasmanian ophiolites at 515–510 Ma was

caused by compression of the continental margin as a

result of the Ross–Delamerian Orogeny (Crawford and

Berry, 1992; Crawford et al., 2003; Boger and Miller,

2004; Cawood, 2005; Foster et al., 2005b; Gray and

Foster, 2005). Subduction continued throughout the

Ross–Delamerian orogenesis (Fig. 6) with intrusion of

the calc–alkaline Granite Harbour suite in the Transan-

tarcticMountains (Encarnación and Grunow, 1996) and I-

and S-type granites within the Delamerian Fold Belt

(Foden et al., 2002; Turner et al., 1996) and Cambrian arc

intrusions in New Zealand (Münker and Cooper, 1995;

Münker, 2000; Münker and Crawford, 2000). Cessation

of compressional Ross–Delamerian deformation and the

onset of margin extension is indicated by the Mount Read

and Mount Stavely volcanic complexes that are inter-

preted to have been intruded in rift environments above a

west-dipping subduction zone between 505 and 495 Ma

in Tasmania and eastern Australia (Fig. 5; Foster et al.,

2005b).

3.2.2. West Gondwana margin

The West Gondwana margin segment of the Terra

Australis Orogen extends through South Africa to South

America (Fig. 2). Events here are less well constrained

than their eastern counterparts largely due to pervasive

overprinting by Permo-Triassic and younger events.

As was the case in the East Gondwana margin

segment, the continental margin of West Gondwana

evolved into a passive margin setting with siliciclastic

and carbonate platform development following the

breakout of Laurentia from Rodinia. The first indica-

tions of a transformation to an active margin and the

onset of subduction are found in Argentina where

metaluminous calc–alkaline granites and dacite–rhyo-

lite bodies with supra-subduction chemical signatures

were intruded into the Puncoviscana passive margin

sequences in the Sierras de Córdoba at 530±4 Ma

(Fig. 6, U–Pb zircon; Rapela et al., 1998b). The mag-

matic arc was short lived with crustal thickening and

granulite grade metamorphism and deformation occur-

ring at 522±8 Ma (Fig. 6, U–Pb monazite; Rapela et al.,

1998a). This deformation was accompanied by gener-

ation of migmatites and granite intrusion dated at 523±

2 Ma (Fig. 6, U–Pb zircon), which are suggested to have

been associated with the closure of the Puncoviscan

Ocean in the Early Cambrian (Rapela et al., 1998a). The

creation and closure of the Puncoviscan Ocean are

attributed to the accretion of the previously rifted

Pampean terrane back onto the Gondwanan margin

(Rapela et al., 1998b). Following accretion of the

Pampean terrane there was a hiatus of tectonic activity

between 515 and 500 Ma, after which the Famatanian

magmatic arc was developed indicated by emplacement

of high-Al trondjemites at 496±2 Ma in the Pampean

foreland. The main arc had developed to the west by

490 Ma and was active until c. 460 Ma (Pankhurst and

Rapela, 1998; Rapela et al., 1998a,b; Ramos, 2000;

Pankhurst et al., 2001).
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Fig. 8. Compilation of tectonostratigraphic data associated with tectonic events during the amalgamation of Pangea. The data indicate a correlation of events across the various orogens with initial

collision of cratonic blocks occurring at around 360 Ma, followed by a thermal peak during the main crustal thickening episode between 320–280 Ma, followed by final suturing/cooling and uplift

between 260–230 Ma. Numbers on data points refer to the following sources: 1 (Damon, 1975), 2 (Yanez et al., 1991), 3 (Torres et al., 1999), 4 (Araujo-Gómez and Arenas-Partida, 1986), 5 (López-

Infanzón, 1986), 6 (Jacobo, 1986), 7 (Feo-Codecido et al., 1984), 8 (Grajales, 1988), 9 (Weber, 1997), 10 (Dennison et al., 1969), 11 (Carpenter, 1997), 12 (Elías-Herrera and Ortega-Gutiérrez, 2002),

13 (Hurley et al., 1960), 14 (Dallmeyer, 1982), 15 (Dallmeyer et al., 1986), 16 (Snoke et al., 1980), 17 (Fullager and Butler, 1979), 18 (Kish and Fullager, 1978), 19 (Russel et al., 1985),

20 (Weidemeyer and Spruill, 1980), 21 (Kocis et al., 1978), 22 (Fullager and Kish, 1981), 23 (Dallmeyer, 1988), 24 (Ferm, 1974), 25 (Horne et al., 1974), 26 (Secor et al., 1986b), 27 (Davis and

Ehlrich, 1974), 28 (Hatcher et al., 1989), 29 (Dallmeyer and Villeneuve, 1987), 30 (Bassot and Caen-Vachette, 1983), 31 (Dallmeyer and Lecorche, 1990), 32 (Rodriguez et al., 2003), 33 (Escuder

Viruete et al., 1998), 34 (Vavra et al., 1996), 35 (Brandmayr et al., 1995), 36 (Hegner et al., 2001), 37 (Schaltegger and Corfu, 1995), 38 (Quadt et al., 1999), 39 (Eichorn et al., 2000), 40 (Bussy et al.,

1996), 41(Vavra and Hanson, 1991), 42 (Peindl and Höck, 1993), 43 (Söllner et al., 1991a), 44 (Loth et al., 1997), 45 (Cliff, 1981), 46 (Bussy and Hernandez, 1997), 47 (Pin, 1986), 48 (Eichorn et al.,

1995), 49 (Kirsch et al., 1988), 50 (Bosse et al., 2000), 51 (Schaltegger et al., 1996), 52 (Schaltegger and Corfu, 1992), 53 (Sergeev et al., 1995), 54 (Bussy and von Raumer, 1993), 55 (Köppel and

Grünenfelder, 1978), 56 (Bussy and Cadoppi, 1996), 57 (Bussy and Raumer, 1996), 58 (Bertrand et al., 1998), 59 (Schaltegger, 1997), 60 (Lippolt and Hess, 1996), 61 (Capuzzo and Bussy, 1998),

62 (Hess et al., 1995), 63 (Friedl et al., 1996), 64 (Voshage et al., 1987), 65 (Böhm, 1996), 66 (Echtler et al., 1997), 67 (Hetzel and Glodny, 2002), 68 (Kramm et al., 1983), 69 (Montero et al., 2000),

70 (Bea et al., 1997), 71 (Matte et al., 1993), 72 (Lennykh et al., 1995), 73 (Beane et al., 1996), 74 (Friberg et al., 2000), 75 (Hetzel and Romer, 1999), 76 (Glasmacher et al., 1999), 77 (Eide et al.,

1997).
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Tectonic and magmatic activity is also recorded in

the Sierra de la Ventana fold belt in western Argentina

(Rapela et al., 2003). Here a series of granites was

intruded in large volumes beginning with the A-type

Cerro Colorado granite at 531±4 Ma (U–Pb zircon)

followed by the calc–alkaline San Mario Granite and

Cerro del Corral rhyolite at 524±5 Ma (Rapela et al.,

2003). Magmatic activity lasted for around 20 m.y.

culminating with the intrusion of the La Ermita

peralkaline rhyolite at 509±5 Ma (Fig. 6, U–Pb zircon;

Rapela et al., 2003). These events have been correlated

with the time equivalent Saldania Belt of South Africa

where a similar series of A- to I-type granites of the

Cape Granite Suite was intruded between c. 550 and

510 Ma (Armstrong et al., 1998; Rozendaal et al., 1999;

Da Silva et al., 2000; Rapela et al., 2003). The tectonic

history of both areas has been ascribed to a strike–slip

dominated continental rift setting. However Rozendaal

et al. (1999) and Rapela et al. (2003) noted that the I-

type plutons of these suites resemble shoshonitic or

high-potassium calc–alkaline volcanism typical of

island arc or active continental margin settings suggest-

ing that this rifting event may have occurred in a

marginal basin setting above an active subduction zone.

4. Pangea events (400–200 Ma)

4.1. Pangea assembly

Pangea was the last supercontinent to have existed on

Earth prior to the opening of the Atlantic, which heralded

the development of the plate configuration seen today.

Pangea formed by the amalgamation of Gondwana,

Laurentia/Baltica and a continental mass comprising

combined Siberia–Kazakhstan–Asia (Fig. 7). Amal-

gamation of these continental masses took place along:

(i) the Alleghanian–Ouachita (Appalachian) Orogen in

Mexico, North America and northwest Africa, suturing

Laurentia and West Gondwana, (ii) the continuation of

this orogen into the Variscan Orogen of Europe, suturing

Europe and northwestern Gondwana, and (iii) the Urals

Orogen, suturing the East European Craton and Siberia–

Khazakhstan–Asia. The tectonic evolution of these

orogens is complicated by later overprinting during the

Alpine–Himalayan Orogeny in Europe and Asia and the

opening of the Atlantic between South America and

Africa. A full discussion of detailed events in the

amalgamation of Pangea is available in Echtler et al.

(1997), Li and Powell (2001), Stampfli and Borel (2002),

and von Raumer et al. (2003). This section aims to

summarise tectonostratigraphic data relating to temporal

changes in the evolution of the Alleghanian–Ouchita,

Variscan and Urals orogens.

4.1.1. Alleghanian–Ouachita Orogen

The Alleghanian–Ouchita Orogen stretches from the

western margin of present day Mexico through Texas

and along the eastern seaboard of the USA to Atlantic

Canada.Its opposing margin is found in the Maurita-

nide–Basseride–Rokelide orogen and the Reguibat

uplift of northwestern Africa (Figs. 7 and 9). The

rocks within these regions record events related to late

Palaeozoic collision of northwestern Gondwana with

Laurentia.

In North America, Alleghanian–Ouchita events are

most pronounced in the southeast section of the

Appalachians in the Cumberland Plateau, Valley and

Ridge and Piedmont provinces (Fig. 9; Hatcher et al.,

Fig. 8 (continued ).
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1989; Secor et al., 1986b), decreasing in intensity to the

north into the Canadian Appalachians (van de Poll et al.,

1995; Fallon et al., 2001; Gibling et al., 2002; Jutras

et al., 2003). Events associated with the Alleghanian

orogeny (c. 340–265 Ma) were first documented in the

foreland basin in the Valley and Ridge Province and

Cumberland Plateau of the southeast Appalachians

(Fig. 8; Woodward, 1957), where a series of clastic

wedges was deposited starting in the Late Mississippian

(c. 320 Ma) and continuing to the youngest deformation

affecting formations in the Dunkard Group in Ohio in

the Late Pennsylvanian (ca. 285 Ma, Fig. 9; Davis and

Ehlrich, 1974; ca. 285 Ma, Fig. 9; Rodgers, 1970; Ferm,

1974; Horne et al., 1974; Ross, 1986; Secor et al.,

Fig. 9. Reconstruction of the Alleghanian–Ouachita Orogen showing tectonic terrane subdivisions in Mexico (after Dickinson and Lawton, 2001;

Elías-Herrera and Ortega-Gutiérrez, 2002; after Yanez et al., 1991; Ortega-Gutierrez et al., 1995; Grajales-Nishimura et al., 1999), the United States

of America (after Hatcher et al., 1989, 2004), and northwest Africa (after Dallmeyer and Lecorche, 1990; after Pique et al., 1987).
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1986b). The Alleghanian orogeny is epitomised by

successions in the Carboniferous Pocahontas basin

that record a classic progressive unroofing sequence of

emerging source terranes in the Piedmont to the east

during the Namurian and Westphalian (Davis and

Ehlrich, 1974; Ferm, 1974). The earliest deformation

events are recorded by amphibolite to greenschist fa-

cies metamorphism and isotopic resetting of originally

high-grade eastern Blue Ridge and western Piedmont

province gneisses at around 362 Ma (Dallmeyer, 1988),

slightly earlier than events in the lower grade Carolina

Slate Belt (Fig. 9) to the east, which began around

340 Ma and continued until around 240 Ma (Fig. 9;

Dallmeyer, 1982; Fig. 9; Hurley et al., 1960; Farrar,

1985; Dallmeyer et al., 1986; Secor et al., 1986a). In the

northern Appalachians, in the Narragansett Basin of

Rhode Island (Fig. 9), Pennsylvanian age sediments

record a localised Barrovian style metamorphic event

between 260 and 240 Ma thought to relate to

Alleghanian deformation (Dallmeyer, 1982). During

the main phase of deformation and metamorphism, a

series of calc–alkaline granites was intruded in an

arcuate belt stretching from Maryland to Georgia (Sinha

and Zietz, 1982) that is dated between c. 325 and

280 Ma and is variably deformed as a result of the

ongoing deformation (Kish and Fullager, 1978; Fullager

and Butler, 1979; Snoke et al., 1980; Weidemeyer and

Spruill, 1980; Fullager and Kish, 1981; Russel et al.,

1985; Dallmeyer et al., 1986; Wintsch et al., 2003).

In Atlantic Canada, the Alleghanian period is

represented by deposition and deformation of sedimen-

tary sequences within fault bound sub-basins of the

Maritimes Basin complex (van de Poll et al., 1995).

Deformation was less intense than that experienced in

the southern United States region and was dominated by

transpressional strike–slip deformation resulting in

folding of Carboniferous strata during the Late Palaeo-

zoic (Nance, 1987; Fallon et al., 2001; Gibling et al.,

2002; Jutras et al., 2003).

Contemporaneous events are recorded in the Maur-

itanide Orogen of western Africa (Fig. 9), where

Neoproterozoic basement gneisses were overprinted

Fig. 10. Reconstruction of the European Variscan Orogen showing tectonic subdivisions (after Warr, 2000; von Raumer et al., 2003).
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by amphibolite to greenschist facies fabrics between

300–280 Ma (Fig. 9; Dallmeyer and Lecorche, 1990;

Fig. 9; Dallmeyer and Villeneuve, 1987). Drilling of

subsurface gneisses in the Florida Peninsula and Gulf of

Mexico has indicated that this area represents an ex-

tension of the Rokelides basement of Africa and records

a similar Alleghanian deformation history to that of the

Mauritanides exposures (Schlager et al., 1984; Dall-

meyer et al., 1987; Dallmeyer and Villeneuve, 1987).

In the Mexican segment of the Ouachita belt (Fig. 9),

the Laurentia–Gondwana collision is recorded by the

amalgamation of several blocks interpreted as being

sourced from both Gondwana and Laurentia prior to

final collision of the two main continental bodies (An-

derson and Schmidt, 1983; Ortega-Gutierrez et al., 1995;

Carpenter, 1997; Ortega-Gutierrez et al., 1999; Dickinson

and Lawton, 2001; Elías-Herrera and Ortega-Gutiérrez,

2002; Harry and Londono, 2004). The associated

deformation and magmatic events are most clearly de-

fined on the margins of the Proterozoic Oaxaca

and Palaeozoic Acatlán complexes (Fig. 8 and 9; Yanez

et al., 1991; Elías-Herrera and Ortega-Gutiérrez, 2002).

The Acatlán complex consists of multiply deformed

metasedimentary rocks, granites and eclogites that

are often compared to units in the Appalachians (Yanez

et al., 1991). Although these metasedimentary se-

quences have been tied to the Iapetus Ocean (Ortega-

Gutierrez et al., 1999) recent work suggests that they

accumulated along the Gondwana margin of the Rheic

Ocean (Murphy et al., 2006). They are correlated with

unmetamorphosed strata of Ordovician age which

together contain detrital zircons with ages indicating

derivation from the Oaxacan Complex and Amazon

craton (Murphy et al., 2006). The Esperanza granites,

which intrude both the Acatlán and Oaxaca terranes are

of Ordovician age (480–440Ma) and along with coeval

mafic bodies (e.g. Middleton et al., 2006) may be

part of a bimodal assemblage related to opening of the

Rheic Ocean. Late Devonian to Carboniferous (360–

330 Ma) deformation and metamorphism (López-

Infanzón, 1986; Yanez et al., 1991; Carpenter, 1997;

Elías-Herrera and Ortega-Gutiérrez, 2002; Middleton

et al., 2006) is related to initial collision between

Gondwana and Laurentia during the amalgamation of

Pangea. A suite of plutons in the Acatlán complex, the

Toltopec Granites, containing zircons with concordant

ages of 287±2 Ma is consistent with ages from

elsewhere in Mexico suggesting widespread granite

magmatism at this time (Feo-Codecido et al., 1984;

Araujo-Gómez and Arenas-Partida, 1986; Grajales,

1988; Yanez et al., 1991; Dickinson and Lawton,

2001). The boundary between the Oaxaca and Acatlán

complexes is known as the Caltepec Fault zone, here

high-temperature metamorphism and deformation

led to the generation of migmatites at 275±1 Ma, in-

terpreted as dating the peak of metamorphism, and

intrusion of the Cozahuico Granite at c. 260 Ma (Fig. 8,

U–Pb zircon; Carpenter, 1997; Fig. 8, U–Pb zircon;

Elías-Herrera and Ortega-Gutiérrez, 2002). Further

evidence of a metamorphic peak at around 275 Ma is

provided by Rb–Sr studies of muscovite schists in the

Sierra del Carmen metamorphic suite (Fig. 8, 277±

10 Ma Muscovite–Feldspar–Apatite–Whole Rock

isochron; Carpenter, 1997). At the same time a complex

transformation was taking place with the establishment

of an active margin on the eastern edge of the new-

ly amalgamated blocks resulting in widespread calc–

alkaline magmatism between c. 280–210 Ma in a

narrow belt from the Juchatengo suite in the southeast

to the Coahuila region stitching many of the terrane

boundaries (Jacobo, 1986; Torres et al., 1999). These

events suggest prolonged deformation in this region,

which is interpreted to represent the final collisional

stages between Gondwana and Laurentia (Yanez et al.,

1991; Dickinson and Lawton, 2001; Elías-Herrera and

Ortega-Gutiérrez, 2002).

4.1.2. Variscan Orogen

The Variscan Orogen stretches across the whole

expanse of Europe covering virtually the same area as

the modern Alpine Orogen, with the inclusion of areas in

the Iberian region of Spain and also southern England

and northern France (Figs. 7 and 10). The record of

amalgamation of peri-Gondwanan terranes and a combined

Laurentia/Baltic craton within the Variscan basement rocks

is complicated by younger overprinting but several recent

studies havemanaged to see through the Alpine events and

reconstruct a history for this time (e.g. Schaltegger and

Corfu, 1995; Schaltegger, 1997; Stampfli and Borel, 2002;

e.g. von Raumer, 1998; von Raumer et al., 2002, 2003).

The Iberian Massif of Spain records several metamor-

phic and magmatic events during Variscan orogenesis. In

the northwest Iberian Massif, the Malpica–Tui complex

preserves evidence of four different deformational events

defined by 40Ar/39Ar studies of white micas from eclogite

to amphibolite facies rocks (Rodriguez et al., 2003). The

earliest deformation records high-pressure conditions in

phengite white micas from eclogite-facies pelitic gneisses

with ages in the range c. 370–365 Ma (Fig. 8), con-

sidered to represent the onset of continental margin sub-

duction (Rodriguez et al., 2003). Dates from gneisses

interpreted to represent the contact between the subduct-

ing plate and overriding plate give ages in the range c.

350–340 Ma (Fig. 8), interpreted as the time at which the
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two plates became attached (Rodriguez et al., 2003).

This peak of metamorphism was rapidly followed by

exhumation of the subducted margin resulting in ret-

rograde amphibolite metamorphism between c. 325 and

315 Ma, during which time convergence between the

two plates continued (Fig. 8 Rodriguez et al., 2003). A

final period of convergence and granite intrusion is

recorded between c. 310 and 280 Ma producing alka-

line orthogneisses and syntectonic granites after which

deformation in the area ceased (Rodriguez et al., 2003).

The central Iberian Massif records a very similar his-

tory in the Sierra de Guadarrama, where the Berzosa–

Riaza shear zone underwent syncollisional extension

with low-P/high-T metamorphism resulting in monazite

growth between c. 337 and 326 Ma (Escuder Viruete

et al., 1998).

The basement of the modern Alpine Orogen (Fig. 10)

records a complex history of Variscan deformation,

metamorphism and magmatic events. The Tauern

window of Austria, records three distinct pulses of

magmatism associated with the Variscan orogeny. The

final stages of subduction related magmatism prior to

collision of the European Craton and Avalonia is

recorded by Late Devonian juvenile calc–alkaline

precursors of the Zwölferkogel granodioritic gneiss,

which has yielded a U–Pb zircon age of 374±10 Ma

(Fig. 8; Eichorn et al., 2000). Similar rocks have been

identified within the Armorican terrane (Fig. 10) with an

age of 362±7 Ma (Kirsch et al., 1988) and within the

Schwartzburg anticline and Central Bohemian Batholith

of the Moldanubian zone (Fig. 10; Eichorn et al., 2000;

Fig. 10; Kosler et al., 1993; Janousek et al., 1995).

These granitoids are succeeded by collision-related

crustal melt granites of the Hochweissenfeld gneiss at

342±5 Ma, syncollisional extensional deformation in

the Falkenbachlappen gneiss at 343±6 Ma and by the

Augengneiss of the Felbertauern complex at 340±4 Ma

(Eichorn et al., 2000). Each of these intrusions is

interpreted to be related to the collision of the peri-

Gondwanan Tauern terrane with Laurentia/Baltica (von

Raumer, 1998; Eichorn et al., 2000; von Raumer et al.,

2002, 2003). Similar events are reported in the external

Alpine basement of Switzerland where subaerial clastic

sediments and pyroclastic tuffs were deposited in

syncollisional basins between c. 345 and 335 Ma

(Schaltegger and Corfu, 1995) accompanied by intru-

sion of high-K magmas and peak metamorphism at c.

337–333 Ma within basement gneisses (von Raumer,

1998). This was followed by a period of uplift, cooling

and erosion of the gneisses before eruption of

pyroclastic protoliths of the Schönbachwald, Hauschar-

tenkpopf and Peitingalm gneisses between 300 and

279 Ma (Eichorn et al., 2000), which were laid down

unconformably on a 334 Ma equivalent of the

Augengneiss of Felbertausern (Vavra and Hanson,

1991). Intrusion of calc–alkaline I-type granites accom-

panied this basin formation and volcanism between c.

299 and 295 Ma (Eichorn et al., 2000). The calc–

alkaline nature of these rocks has led to some confusion

regarding the lack of a subducting margin at this time,

but Schaltegger and Corfu (1995) and Schaltegger

(1997) argue that similar magmatism in the external

massifs was the result of post-orogenic uplift and

adiabatic decompression of previously subducted oce-

anic lithosphere underplated into the lower continental

crust. Variscan compression had ceased in the Tauern

window and external massifs by c. 270 Ma with the

emplacement of S- and A-type post-orogenic granites

interpreted to have been intruded during a period of

extension in continental wrench zones (Schaltegger,

Fig. 11. Map of the Urals Orogen showing tectonic subdivisions

(Echtler et al., 1997; Hetzel et al., 1998; Hetzel and Romer, 1999;

Friberg et al., 2000; Hetzel and Glodny, 2002).
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Fig. 12. Compilation of tectonostratigraphic data associated with tectonic events along the Pacific margin of Pangea between 400–200 Ma. The data indicate a temporal correlation of events along the

margin as margin extension in eastern Australia is synchronous with the inset of the Gondwanide orogeny along the rest of the margin around 305–300 Ma. A switch from margin extension to

compression took place in Eastern Australia at c. 265 Ma ceased at 230 Ma synchronous with the end of compression along the rest of the margin. Numbers on data points refer to the following

sources: 1 (Nasi et al., 1985), (Höckenreiner et al., 2003), 3 (Hervé, 1988), 4 (Rapela and Kay, 1988), 5 (Ribba et al., 1988), 6 (Linares et al., 1980), 7 (Rex, 1987), 8 (Ramos, 2000), 9 (Hervé et al.,

1985), 10 (Martin et al., 1999), 11 (Varela et al., 1985), 12 (Noble et al., 1997), 13 (Llambias et al., 2003), 14 (Damm et al., 1990), 15 (Brook et al., 1987), 16 (Hälbich et al., 1983), 17 (Bangert et al.,

1999), 18 (Gresse et al., 1992), 19 (Cole, 1992), 20 (Pankhurst et al., 1998b), 21 (Pankhurst et al., 1996), 22 (Adams, 1987), 23 (Pallais et al., 1993), 24 (Richard et al., 1994), 25 (Adams et al., 1995),

26 (Mukasa, 1995), 27 (Mukasa et al., 1994), 28 (Stump, 1995), 29 (Muir et al., 1996), 30 (Mortimer et al., 1999), 31 (Kimbrough et al., 1994), 32 (Muir et al., 1994), 33 (Bradshaw et al., 1996),

34 (Tulloch et al., 1999), 35 (Adams et al., 1998), 36 (Gibson and Ireland, 1996), 37 (Adams et al., 2002), 38 (Holcombe et al., 1997a), 39 (Aitchison, 1990), 40 (Ishiga, 1990), 41 (Spiller, 1993),

42 (Little et al., 1993), 43 (Roberts et al., 2003), 44 (Ashley and Brownlow, 1993), 45 (Fukui et al., 1993), 46 (Kimbrough et al., 1993), 47 (Roberts et al., 2004), 48 (Roberts et al., 1996), 49 (Sliwa et

al., 1993), 50 (Stephens et al., 1993), 51 (Little et al., 1992), 52 (Watanabe et al., 1990), 53 (Webb and McDougall, 1968), 54 (Little et al., 1995), 55 (Jones et al., 1996), 56 (Allen et al., 1994),

57 (Dirks et al., 1993), 58 (Gulson et al., 1990), 59 (Collins et al., 1993), 60 (Flood et al., 1988).
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1997) or during the initial stages of the Alpine orogeny

(Quadt et al., 1999).

A similar multi-phase history is recorded in the

Southern Alps of Italy (Fig. 10), where gneisses in the

Ivrea Zone record granulite metamorphism at 355 Ma

followed by decompression melting in pelitic and

psammitic layers between c. 296 and 260 Ma (Fig. 11;

Vavra et al., 1996). The final metamorphic event

recorded in these rocks occurred at 226±5 Ma (Vavra

et al., 1996). This is significantly later than those in the

Tauern window and external massifs, suggesting some

diachroneity in deformation within the Variscan orogen.

The Internal Alps massifs (Fig. 10) record final

subduction related magmatism at c. 350 Ma followed by

collision-related metamorphism and granite emplace-

ment in the Southern Vosges and Schwartzwald between

c. 345 and 330 Ma (Fig. 11; Hegner et al., 2001; Fig. 11;

Schaltegger et al., 1996). Syncollision extensional

basins are also found in the Southern Vosges region

between c. 340 and 330 Ma (Schaltegger et al., 1996)

suggesting that these were a common feature along the

length of the Variscan Orogen. Late-Carboniferous to

Permian (c. 320–290) extension and granite emplace-

ment is recorded in the Mont-Mort area and represents

the final stages of Variscan collision-related deformation

in the Internal Alps (Bussy and Cadoppi, 1996; Bussy et

al., 1996; Bertrand et al., 1998; von Raumer, 1998).

4.1.3. Urals Orogen

The Urals Orogen was created during the amalgam-

ation of eastern Europe with a combined Siberia–

Kazakhstan–Asia continent during the formation of

Pangea (Figs. 7 and 11). As with the Variscan Orogen,

the rocks of the Urals record a multi-phase deforma-

tional, metamorphic and magmatic history. However,

the history of the Urals is more clearly preserved due to

a lack of subsequent overprinting.

Supra-subduction magmatic arc volcanism is recorded

in the Magnitogorsk Arc (Fig. 11) of the Urals through

the Devonian until c. 350 Ma (Fig. 8; Echtler et al.,

1997). Towards the end of this period, at c. 370–355 Ma

eclogites and blueschists were formed along the Main

Uralian fault (Figs. 8 and 11), which marks the main

suture between the largely magmatic arc terranes of the

Siberian–Kazakhstan–Asia continent and the continental

margin of the East European craton (Hetzel et al., 1998).

Immediately following this high-pressuremetamorphism a

period of granulite facies high-temperature metamorphism

Fig. 13. Summary of tectonic events associated with amalgamation of Gondwana and coeval margin activity.

Fig. 12 (continued ).
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and granite intrusion is recorded in the Salda metamor-

phic complex at c. 350–335 Ma (Figs. 8 and 11) that is

interpreted to represent the onset of collision of Eastern

Europe and the Kazakhstan–Siberia–Asia continent

(Friberg et al., 2000). A second phase of convergent

deformation immediately followed by extensional ex-

humation is recorded in the Ufaley complex in the

Middle Urals, part of the East European continental

margin. This complex was subducted to eclogite facies

conditions and then rapidly exhumed through amphib-

olite facies by 316±1 Ma (Fig. 8) when a granite was

intruded across the foliation in the Ufaley gneiss (Fig. 11

Hetzel and Romer, 1999). The period of extensional

exhumation was accompanied by the intrusion of several

tonalites, trondhjemites and granodiorites between c.

320 and 315Ma (Bea et al., 1997). There then followed a

period of relative tectonic and magmatic quiescence,

after which renewed compression resulted in a magmatic

pulse creating several granites throughout the Urals

between 290 and 240 Ma (Bea et al., 1997; Echtler et al.,

1997). The final stages of deformation in the Urals were

influenced by a change in relative compression direction

resulting in orogen parallel strike–slip fault development

and high-temperature metamorphism and mylonite

generation in the Kyshtym Fault between c. 240 and

229Ma (Fig. 8), after which deformation along the Main

Uralian Fault ceased (Hetzel and Glodny, 2002).

4.2. Pacific margin of Pangea

The Pacific margin of Gondwana remained a

coherent margin throughout the formation of Pangea

following the late Neoproterozoic to early Palaeozoic

amalgamation of Gondwana. Events along the margin

during this period are punctuated by the Gondwanide

orogeny that affected the whole of the Terra Australis

Orogen (Figs. 2 and 12).

The East Gondwana margin remained an active

subduction–accretion margin throughout the Palaeozoic

(Cawood and Leitch, 1985; Scheibner, 1998; Foster

et al., 2005a) and the first events associated with the

Gondwanide orogeny involved a complex interplay of

compression and transtension between about 305 Ma

and 230 Ma (Leitch, 1988; Veevers, 2004). Tectonic

events associated with the Gondwanide orogeny are

recorded in accretionary prism rocks of the Tablelands

Complex in the New England region of eastern

Australia, where they are marked by mid-crustal

deformation and metamorphism along with emplace-

ment of S-type granites (e.g. Hillgrove Suite) at around

305 Ma (Collins et al., 1993). Deformation has been

related to contraction in the New South Wales segment

(Dirks et al., 1993) and extension in the Queensland

segment (Little et al., 1995). A phase of extension

(probably sinistral transtension) occurred between 300

and 270 Ma, resulting in the generation of the Sydney–

Bowen and Barnard basins (Cawood, 1982; Leitch,

1988; Holcombe et al., 1997b; Veevers, 2004). The

main phase of deformation, referred to locally as the

Hunter–Bowen Orogeny (Carey and Browne, 1938),

occurred between 265 and 230 Ma and is well

developed throughout the New England region (Leitch,

1969; Collins, 1991; Veevers, 2004). Deformation

extended west (decreasing in intensity and age) into

the Sydney–Bowen basin, which evolved into a

foreland system (Fergusson, 1991; Korsch, 2004) with

the oldest detritus shed from the uplifting welt of the

New England region dated at about 270 Ma (Hamilton,

1986; Roberts et al., 1996). At the same time, major

oroclinal bending occurred in the east (Cawood, 1982;

Korsch and Harrington, 1987; Murray et al., 1987; Goss

and Cawood, 2005). In New Zealand, the Hunter–

Bowen event is poorly documented, but Mortimer et al.

(1999) have proposed that it was related to accretion of

theBrookStreetTerrane.Gondwanidedeformationofvari-

able intensity and distribution is recognized throughout
Fig. 14. Summary of tectonic events associated with amalgamation of

Pangea and coeval margin activity.
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West Antarctica and the adjoining Cape Fold Belt of

southern Africa on the basis of stratigraphic and geochro-

nological data (Storey et al., 1987; Trouw and De Wit,

1999; Johnston, 2000). In the Ellsworth–Whitmore

Mountains, Permo-Triassic Gondwanide deformation

resulted in upright to inclined folds with axial planar

cleavage that are inferred to have formed in a dextral

transpressive environment (Curtis, 1998).

Following Ordovician (?) margin extension, the West

Gondwana margin records passive margin sedimentation

until the Mid-Carboniferous when it developed into a

continental arc setting above an active subduction zone, as

indicated by intrusion of batholiths in the Chilean Frontal

Cordillera at c. 320–310 Ma (Mpodozis and Kay, 1992).

This margin switch immediately predates the onset of the

Gondwanide Orogeny which includes the Late Carbon-

iferous Toco event and the mid-Permian San Rafael

(Sanrafaelic) event (Bahlburg and Hervé, 1997; Ramos,

2000). The Toco event involved folding and melange

disruption of turbidite strata as young as Late Carbonif-

erous to Early Permian with an upper age limit provided

by the emplacement of c. 310–290 Ma plutons into the

folded turbidites (Bahlburg and Hervé, 1997). The San

Raphael event is marked by intense folding and thrusting,

resulting in a pronounced angular unconformity between

Late Carboniferous to Early Permian turbidites and the

extensive Permo-Triassic Choiyoi Volcanics (Kay et al.,

1989; Ramos, 2000; Ramos and Aleman, 2000). The

Ventana Fold Belt, inboard of the Andes, is characterized

by NNE verging fold and thrust belt, the development of

which is contemporaneous with that of the Sauce Grande

foreland basin (Trouw and De Wit, 1999). Deformation

occurred between about 280 and 260 Ma on the basis of

K–Ar ages and is inferred to have taken place in a dextral

transpressional environment (Cobbold et al., 1991).

Ramos (2000) proposed that the accretion of Patagonia

drove deformation in the Ventana and Cape fold belts (cf.

Pankhurst et al., 2006).

Fig. 15. Accretionary orogen types: for the retreating-type the velocity

of slab retreat (Vr) for the underriding plate (Vu) is greater than that of

the overriding plate (Vo), whereas for the advancing orogen the

velocity of the overriding plate is greater.

Fig. 16. Possible modes of plate coupling leading to orogenesis in

accretionary orogens.
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Permo-Triassic orogenesis along the Pacific margin

was accompanied by the widespread emplacement of I-

type granites marking a new outboard, convergent

margin accretionary cycle. The main products of this

margin are exposed in the old fore-arc and subduction

complex of the New England Fold Belt (Cawood,

1984), along the Median Tectonic Zone in New Zealand

(Mortimer et al., 1999), and in Marie Byrd Land

(Mukasa and Dalziel, 2000), the Antarctic Peninsula

(Vaughan and Storey, 2000) and South America (Ramos

and Aleman, 2000).

Permo-Triassic deformation events also affected the

southern margin of South Africa where basement rocks

were uplifted to form the Cape Fold Belt and associated

Karoo Foreland Basin. Ash fall tuffs in the Dwyka

Formation deposited between c. 300 and 288 Ma are

interpreted to provide evidence of arc related magma-

tism along the margin of Gondwana at this time

(Bangert et al., 1999), but the distance of the Cape

Fold Belt and Karoo basins from the margin is under

debate (Cole, 1992; Gresse et al., 1992, Thomas, 1993

#294; Visser, 1992). Compressional activity within the

Cape Fold Belt itself is dated by propagation of

deformation into the Karoo basin, resulting in a number

of basin inversion events at c. 300, 260, 250 and 220 Ma

and greenschist grade foliation growth in pelitic

sediments (Hälbich et al., 1983; Gresse et al., 1992).

Gresse et al. (1992) suggested that these events can be

correlated with unconformities within the Karoo

sedimentary sequence, but Frimmel et al. (2001) argue

that these unconformities are related to older pre-Cape

events and thus cannot be correlated. Nonetheless, the

greenschist cleavage forming events are not in dispute

and clearly identify deformation in the Cape Fold belt

between 300 and 220 Ma, synchronous with events

along the rest of the Gondwana Pacific margin.

5. Discussion

5.1. Driving compression in accretionary margins

Accretionary orogens can be broken into two end-

member types (Fig. 13; cf. Uyeda, 1982), retreating and

advancing. Retreating orogens undergo long-term

extension in response to lower plate retreat resulting in

forearc accretion and opening of back arc basins (e.g.

West Pacific). Advancing orogens develop in an

environment in which the overriding plate is advancing

Fig. 17. Schematic model illustrating the mechanism to induce transient coupling at the plate margin by transfer of shortening from the Pan-African

orogens in the latter stages of amalgamation of Gondwana. (a) Tectonic plate configuration c. 600–580 Ma, bold line indicates line of section shown

in (b). (b) Schematic cross section illustrating subduction initiation at the Pacific Margin of Gondwana caused by plate reconfiguration after initial

collision of continental blocks along Pan-African orogens. Rapid roll-back at the newly formed subduction zone produces a retreating-mode

accretionary orogen and results in margin extension in Australia. (c) Tectonic plate configuration c. 520–500 Ma, bold line indicates line of section

shown in (d). (d) Schematic cross section illustrating onset of compression at Pacific margin resulting in the Ross–Delamerian, Pampean and

Saldanian Orogenies. After cessation of activity in the Pan-African orogens, shortening was transferred to the subducting margin causing a change to

advancing-mode and thus transient coupling across the plate boundary and compression of the upper plate. In (a) and (c) orange is stabilized

continental crust, pale green is Pan-African orogens, pink is rifted continental crust related to Iapetus opening, yellow is Terra Australis and

Caledonide–Appalachian orogens and dark yellow is area of Avalon (Av) and related terranes. Yellow line is position of schematic cross sections

(b) and (d). In (b) and (d), orange is continental crust and green is oceanic crust.
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towards the downgoing plate, as exemplified by the

modern westward motion of the North and South

American plates advancing over the eastward moving

Pacific plate (Russo and Silver, 1996). This has resulted

in the accretion (and strike–slip motion) of arc and

microcontinental ribbons previously rifted off the upper

plate and extensive retro-arc fold and thrust belts. The

mode of plate convergence may switch between that of

an advancing or retreating orogen such as has been

documented in Eastern Australia (Holcombe et al.,

1997b; Collins, 2002; Jenkins et al., 2002) and the

Permo-Triassic belts of South America (Ramos and

Aleman, 2000). The process of tectonic switching of

kinematic reference frames appears to be intimately

related to accretionary orogenesis (Collins, 2002), but

the driving force for switching from an extensional to

compressional regime is poorly understood.

5.2. Detecting convergent margin coupling and oro-

genic driving mechanisms

Possible mechanisms for coupling within accretion-

ary orogens include; subduction of buoyant oceanic

lithosphere (flat-slab subduction); accretion of buoyant

lithosphere (terrane accretion); and tectonic plate re-

organization (Fig. 14). These mechanisms punctuate a

regime of ongoing plate convergence, resulting in

transitory coupling across the boundary and orogenesis.

Each mechanism has the following predictable con-

sequences for the geological record.

Flat-slab subduction reflects the effect of subduction

of young (e.g. oceanic ridge) and/or buoyant (e.g. oceanic

plateau) lithosphere (e.g. Murphy et al., 2003; e.g.

Murphy et al., 1998). Effects should be spatially limited

to the region of the flat-slab/accretion zone (Fig. 14a),

which should result in short-lived orogenesis and/or

diachronous events that migrate along the convergent

margin in harmony with the subducted plate movement

vector (Saleeby, 2003). Flat-slab subduction in modern

settings (e.g. Andes, Ramos et al., 2002) also produces

characteristic geochemical signatures (Kay and Mpodo-

zis, 2002) in associated igneous rocks including adakitic

compositions (Samaniego et al., 2002). In addition

igneous activity should cease in the previously established

arc and may migrate inboard. If impinging oceanic

plateaus were the cause of increased coupling, then there

should be evidence of accreted parts of the buoyant

plateau preserved in the accretionary complex (e.g.

Cawood, 1990). Mid-Ocean Ridge subduction is a

specific case of flat-slab subduction which may involve

a major change in plate convergence vectors between the

upper plate and two different subducting plates, with the

change in plate convergence vectors separated by a period

of heating and igneous intrusion in the forearc or in the

trench. The result is deformation that is diachronous, and

will include structural, magmatic, thermal, and metallo-

genic fingerprints (Bradley et al., 2003).

Terrane accretion (Fig. 14b) should also be spatially

limited to the region of terrane collision and, similar to

flat-slab subduction, should have short-lived/diachronous

effects. For terrane accretion to be a drivingmechanism of

orogenesis the accreted terrane must be brought to the

upper plate margin on the subducting lower plate and

therefore must be exotic to the plate margin. If the terrane

is (para)autochthonous (e.g. rifted micro-continental

ribbon or arc) then its accretion is a consequence of

orogenesis rather than a driving force (e.g. Vaughan and

Livermore, 2005). This can be tested using provenance

and or palaeomagnetic studies to detect if the accreted

terrane is truly exotic (see summary in; Vaughan et al.,

2005). During terrane accretion magmatic arc activity

may migrate first inboard as terrane accretion causes

contraction and then jump outboard as a new subduction

zone is established. Although the North American

Cordillera is often cited as the type example of terrane

related orogenesis, recentwork has shown thatmost, if not

all, suspect terrains are upper plate fragments of American

affinity (e.g. English and Johnston, 2005; e.g.Monger and

Knokleberg, 1996; Johnston, 2001), and are superficial

with no deep crustal roots (Snyder et al., 2002).

Tectonic plate reorganization (Fig. 14c) involving

changes in convergence direction, including rapid

increases in the absolute motion of the overriding

plate, will affect the length of the orogen/plate boundary

synchronously and reflect widespread and possibly long-

term changes in orogenic character. Plate reorganization

may be inter-orogen in extent. For example, major plate

reorganization associated with increased spreading rate

in the Pacific during the mid-Cretaceous (Sutherland and

Hollis, 2001) resulted in increased plate buoyancy and

major submarine flood magmatism, and is interpreted to

have resulted in pan-Pacific margin tectonic and

metamorphic effects (Vaughan, 1995; Vaughan and

Livermore, 2005). This process contrasts markedly

with those detailed above and is thus readily distin-

guishable by correlating timing and kinematics of events

along the margin and also with coeval events around the

world that may have led to plate reorganization.

5.3. Amalgamating supercontinents and marginal

compression

The data presented for assembly of Gondwana and

Pangea indicate that the timing of collisional orogenesis
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between amalgamating continental bodies was synchro-

nous with subduction initiation and contractional

orogenesis within accretionary orogens located along

the margins of these supercontinents. In the case of

Gondwana, final assembly occurred between c.570 and

510Ma (Fig. 15), amalgamating the various components

of East andWest Gondwana with final cooling and uplift

complete by 490 Ma (Fig. 3). This was coeval with a

switch from passive margin sedimentation to convergent

margin activity along the Pacific margin of the

supercontinent (Fig. 15). Timing of subduction initiation

along the Pacific margin ranges from 580–550 Ma

evidenced by the first appearance of arc derived detrital

zircons in the upper Byrd group sediments and the oldest

supra-subduction zone plutons along the Antarctic

segment of the margin (Fig. 6). A phase of extension

marked by supra-subduction zone ophiolite generation at

535–520 Ma is preserved in greenstone successions in

eastern Australia and immediately precedes Ross–

Delamerian contractional orogenesis between 520 and

490 Ma (Fig. 6) inboard of the plate margin, which

coincides with the cessation of collisional orogenesis

between the amalgamating blocks of Gondwana (Fig.

15). Supra-subduction zone igneous activity was con-

tinuous throughout this period indicating that subduction

was ongoing along the Gondwana margin (Fig. 6).

The final stages of assembly of the Pangean super-

continent occurred between c.320 and 250 Ma (Fig. 8).

Major plate boundary reorganization during this time

(Valencio et al., 1983; Kay et al., 1989) was accom-

panied by regional orogenesis along the Pacific mar-

gin. The East Gondwanan margin segment experienced

extension and strike–slip activity from c.305 Ma until

c.270 Ma, after which convergence along the plate mar-

gin was re-established, marked in eastern Australia by

the migration of arc magmatism in response to a migra-

tion of the plate margin (Cawood, 1984; Jenkins et al.,

2002). Synchronous with this phase of plate re-adjust-

ment was the Gondwanide Orogeny (305–230 Ma),

which affected the entire Pacific margin of Pangea

(Figs. 2 and 12).

These temporal relations between interior collisional

orogeny, associated with assembly of continental

blocks, and marginal accretionary orogens during

supercontinent amalgamation (Figs. 15 and 16), suggest

a linked history between interior and exterior processes,

which we believe is related to global plate kinematic

adjustments (Fig. 14c) rather than localised mechanisms

such as terrane accretion or flat-slab subduction (Fig.

14a, b). Orogenesis in accretionary orogens occurs in

the absence of colliding bodies during ongoing

subduction and plate convergence and must therefore

be driven by a transitory coupling across the plate

boundary. Correspondence of coupling along the margin

of a supercontinent with assembly of the supercontinent

and termination of convergence in its interior suggests

that it may reflect plate re-adjustments involving a

temporary phase of increased relative convergence

across the plate boundary.

Fig. 17 shows a schematic model illustrating how this

may be explained in terms of the amalgamation of

Gondwana, but is conceptually equally valid at the time of

Pangea assembly. Prior to collision of continental blocks

in Gondwana, oceans existed that were freely subducting

allowing shortening to be taken up along the subducting

margins and a passive margin to exist along the Pacific

margin of Gondwana (Fig. 17a). When initial collision of

continental blocks occurred in the Pan-African orogens,

the effect would be to rapidly reduce the convergence

velocity between these bodies (Fig. 17b) and, if amodel of

a constant radius Earth is assumed, potentially cause the

plate configuration to change between Gondwana and the

Pacific Ocean lithosphere, thereby initiating subduction

and thus transferring convergence to the plate margin

(Fig. 17b). The balance between motion across the Pan-

African orogens and the newly initiated subduction zone

would stabilize convergence and plate movement for the

period of Pan-African orogenesis. However, when

convergence ceased along the Pan-African orogens at c.

520–500 Ma as Gondwana was finally amalgamated

(Fig. 3), plate motions would again be altered as

convergence could no longer be accommodated in this

region (Fig. 17d). The result would be to transfer

convergence to the free moving subducting margins of

Gondwana, such as the Pacific margin, thereby causing an

increase in convergence velocity and coupling between

the overriding and subducting plates, and producing the

Ross–Delamerian, Saldanian and Pampean orogenesis in

the upper plate (Fig. 17d). It is expected that the coupling

effects would be transitory as the margin adapted to the

change in convergence rate and would return to a steady

subduction configuration resulting in a decrease of

coupling across the boundary.
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