УДК 552.13

ХРОНОЛОГИЯ ФОРМИРОВАНИЯ ПОРОД ГАББРО-СИЕНИТ-ГРАНИТНОЙ СЕРИИ ОШУРКОВСКОГО ПЛУТОНА, ЗАПАДНОЕ ЗАБАЙКАЛЬЕ

© 2013 г. Г. С. Рипп*, И. А. Избродин*, А. Г. Дорошкевич*, Е. И. Ласточкин*, М. О. Рампилов*, С. А. Сергеев**, А. В. Травин***, В. Ф. Посохов*

*Геологический институт СО РАН

ул. Сахьяновой, ба, Улан-Удэ, 670047, Россия; e-mail: ripp@gin.bscnet.ru

** Центр изотопных исследований, Всероссийский научно-исследовательский геологический институт Средний проспект, 74, Санкт-Петербург, 199106, Россия; e-mail: sergeev@mail.wplus.net

***Институт геологии и минералогии СО РАН

просп. Коптюга, 3, Новосибирск, 630090, Россия; e-mail: travin@igm.nsc.ru
Поступила в редакцию 12.03.2012 г.
Получена после доработки 10.10.2012 г.

В статье представлены результаты геохронологического (Rb-Sr, ⁴⁰Ar-³⁹Ar, U-Pb) изучения магматических и метаморфических пород, распространенных в районе Ошурковского базитового массива. Установлено, что здесь сформировался габбро-сиенит-гранитный комплекс пород, подобный бимодальным базальт-риолитовым сериям вулканических ассоциаций. Зафиксировано три главных этапа магматической активности: сиенит-гранитный (132—127 млн. лет), затем базитовый (126—117 млн. лет) и вновь гранитный (121—112 млн. лет). Кислые магматиты возникли в результате анатексиса под влиянием тепла, выделившегося из питающего очага щелочных габброидов.

DOI: 10.7868/S0869590313030059

ВВЕДЕНИЕ

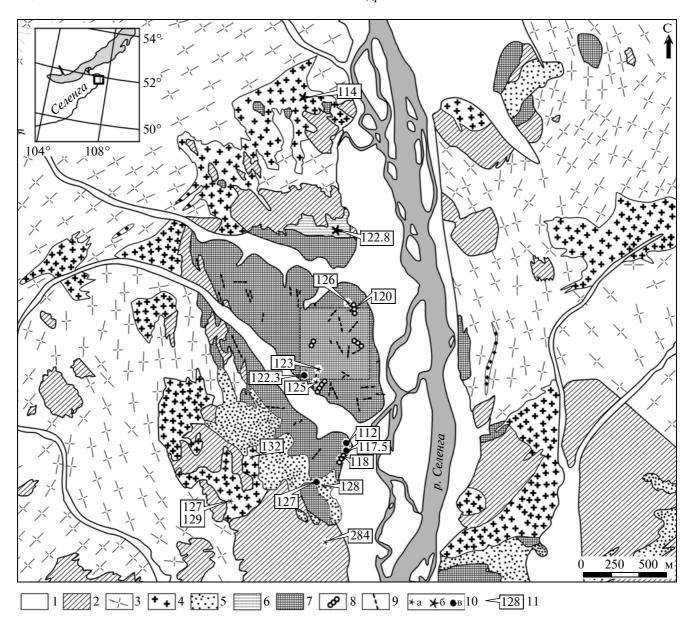
Ошурковский плутон относится к одному из интересных геологических объектов Восточной Сибири. Изучением его и присутствующего апатитового оруденения занимались многие исследователи (Кузнецов, 1980; Андреев и др., 1972; Смирнов, 1971; Литвиновский и др., 1998, 2005; Litvinovski et al., 2002; Кузнецова и др., 1995; Костромина 1971; Поляков и др., 1980 и др.). Это единственный в Западном Забайкалье базитовый плутон позднемезозойского возраста. Все остальные проявления основных пород в регионе представлены вулканическими образованиями и дайками. Массив представляет собой месторождение с достаточно крупными разведанными запасами апатита. Его породы характеризуются повышенной щелочностью, титанистостью, присутствием магматического кальцита и жил карбонатитов. Это обусловило своеобразие петрохимических и геохимических особенностей пород (Никифоров и др., 2000, 2002), неоднозначность оценки формационной принадлежности, отразившейся в многочисленности терминологических названий.

Ранее геохронологически были изучены только плутонические базиты и гранитные пегматиты. Анализы выполнены методами недостаточно устойчивыми к наложенным процессам и показа-

ли широкую вариацию значений возраста. Для габброидов по данным К-Аг метода они лежит в интервале от 80 до 149 млн. лет (Кузнецов, 1980), а Rb-Sr - 108-136 млн. лет (Литвиновский и др., 1998, 2005), для гранитных пегматитов варьируют в пределах 113-121 млн. лет (Шадаев и др., 2001). Полученные возрасты не позволяют локализовать временные диапазоны образования даже изученных пород. Вместе с отсутствием данных о возрасте других пород это определило необходимость дополнительных геохронологических исследований с привлечением более прецизионных методов. Авторами кроме комагматов базитового комплекса (монцогаббро, лампрофиры, карбонатиты, сиениты) были изучены гнейсы, граниты, сиениты, распространенные по периферии плутона, а также дайки гранитных пегматитов, секущих массив (см. табл. 1). Возрастной тренд образования пород контролировался геологическими наблюдениями. Выявившаяся в результате проведенных исследований временная близость гранитоидов и базитов потребовала осмысления причин природы синхронизации их возраста. Предложенный ранее (Литвиновский и др., 2005) вариант анатектического образования гранитных пегматитов при тепловом воздействии базитового расплава более всего подходит для рассматриваемого случая.

Таблица 1. Результаты геохронологического изучения Ошурковского массива и вмещающих его пород

№ п/п	Проанализированные породы	Номер пробы	Координаты	Минерал	Метод анализа	Возраст, млн. лет	Кол-во точек
1	Гнейс биотитовый	Ош-229	N 51°055′40′′ E 107°028′50′′	Циркон	U-Pb	282.8 ± 2.9	16
2	То же	Ош-229	То же		Rb-Sr	123.3 ± 5.8	
3	Гнейсовидный кварцевый сиенит	Хал-232	N 51°051′96′′ E 107°09′84′′	Циркон	U-Pb	281.5 ± 2.9	10
4	То же	232	То же		Rb-Sr	113.4 ± 1.2	
5	Гранит лейкократовый	34/10	N 51°055′26′′ E 107°27′46′′	Циркон	U-Pb	132.8 ± 0.66	18
6	То же	230-2	N 51°055′20′′ E 107°57′23′′	Циркон	U-Pb	129.5 ± 2	10
7	»	230-1	То же	Циркон	U-Pb	127 ± 2	7
8	Сиенит щелочно-полево-шпатовый	Ош-252	N 51°055′32′′ E 107°28′14′′	Циркон	U-Pb	128.6 ± 1.0	10
9	* То же		То же	Циркон	U-Pb	130.01 ± 0.77	
10	»		»	Амфибол	Ar-Ar	126.1 ± 1.9	
11	Карбонатный шлир в габбро	10/07	N 51°056'45'' E 107°28'50''	Циркон	U-Pb	126.55 ± 0.85	12
12	Габбро меланократовое	Ош-2	N 51°056′17′′ E 107°028′23′′	Циркон	U-Pb	125.4 ± 2	12
13	Габбро мезократовое	Ош-1	N 51°056′43′′ E 107°027′53′′	Циркон	U-Pb	123.8 ± 3.9	10
14	Сиенит биотитовый	06/09	N 51°057'48" E 107°028'21"		Rb-Sr	122.8 ± 4.6	
15	Спессартит	64/10	N 51°056′34′′ E 107°027′50′′	Амфибол	Ar-Ar	122.3 ± 1.2	
16	Керсантит	102/10	N 51°055′51″ E 107°028′33″	Биотит	Ar-Ar	117.5 ± 1.2	
17	Карбонатит	Ош-8	N 51°056′44′′ E 107°028′53′′		Rb-Sr	120 ± 9	
18	То же	Ош-5	N 51°056′43′′ E 107°028′26′′		Rb-Sr	118 ± 11	
19	** Гранит лейкократовый	Ош-314	N 51°059′15′′ E 107°028′02′′		Rb-Sr	114 ± 1	
20	Пегматит гранитный	28/10	N 51°055′51″ E 107°028′33″	Амфибол	Ar-Ar	111.6 ± 1	


Примечание. Пробы 6 и 7 представлены цирконами: бесцветным и бурым, выделенными из одного штуфа. В пробах 12 и 13 присутствуют зерна ксеногенного циркона соответственно с возрастом 273 ± 3.7 млн. лет (3 зерна из 12) и 280.6 ± 2.7 млн. лет (1 зерно из 12), близким к возрасту вмещающих гнейсов. * 9 — устное сообщение Д.П. Гладкочуба (LA ICP, Beijing, China). ** Анализ выполнен в ИГГД РАН.

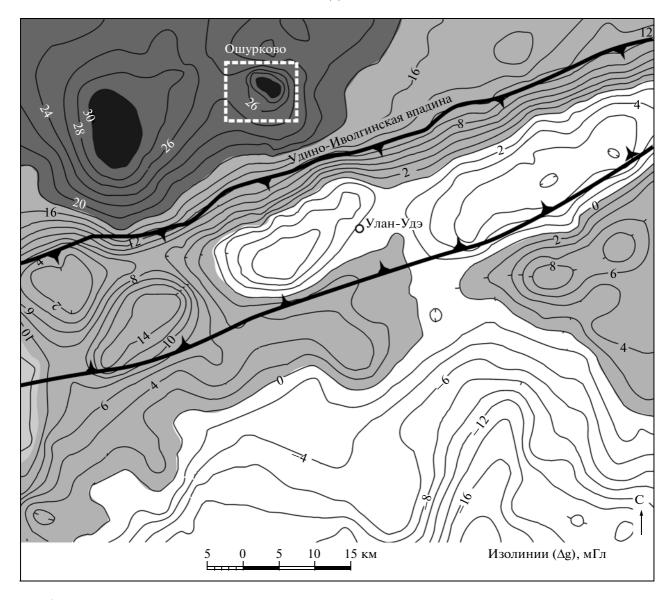
КРАТКАЯ ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА УЧАСТКА

Ошурковский массив находится в 15 км от г. Улан-Удэ, занимает площадь несколько более 12 км². Он расположен в 7 км к северу от Иволгино-Удинской рифтогенной впадины, выполненной существенно терригенными осадочными породами. По данным геолого-съемочных работ (Платов и др., 2009), вмещающие массив породы представлены позднепалеозойским ультрамета-

морфическим Убукун-Бургасским комплексом, сложенным метатектит-гранитами, гнейсовидными гранитами, биотитовыми и амфибол-биотитовыми гнейсами, мигматизированными кристаллосланцами (рис. 1).

Выход базитовых пород фиксируется контрастной гравитационной аномалией со значениями силы тяжести более 30 мГл в центральной части (рис. 2). Размеры аномалии существенно больше площади распространения базитов и, ве-

Рис. 1. Схема геологического строения площади Ошурковского месторождения (по результатам государственной геологической съемки масштаба 1 : 50 000, с добавлениями авторов)


1 — современные рыхлые отложения; 2 — биотитовые гнейсы и кристаллические сланцы; 3 — гнейсовидные граниты; 4 — лейкократовые граниты; 5 — щелочно-полевошпатовые сиениты; 6 — сиениты биотитовые; 7 — габброиды Ошурковского плутона; 8 — жилы карбонатитов; 9 — дайки лампрофиров; 10 — точки отбора проб на геохронологические исследования и значения возрастов: (а) U-Pb (SHRIMP II), (б) Rb-Sr, (в) Ar-Ar; 11 — возраст, млн. лет.

На врезке — границы участка (см. рис. 3) с детализацией распределения жильных пород.

роятно, совпадают с границами питавшего очага. Согласно геофизическим работам, выполненным в период разведки месторождения, массив имеет грибообразную форму с ножкой диаметром около 1 км, круто уходящей на глубину. У этого воронкообразного тела контакты с вмещающими породами падают внутрь конуса под углами 45°—70° (Костромина, 1971). Мелкие тела габброидов, закартированные за пределами плутона, были интерпретированы как бескорневые останцы. По

периферии плутона в контурах гравиметрической аномалии расположены штоки лейкогранитов и сиенитов (рис. 1).

Распространенные на площади плутона габброиды, сиениты, карбонатиты, аплиты, гранитные и сиенитовые пегматиты слагают в основном самостоятельные тела с секущими контактами; некоторые сиениты имеют постепенные переходы к лейкогаббро или шонкинитам.

Рис. 2. Схема гравитационных аномалий в пределах Удино-Иволгинской впадины и ее обрамления, по (Платов и др., 2009).

Квадратом оконтурены границы (рис. 1) схемы геологического строения площади Ошурковского месторождения.

Габброиды слагают более 70% площади плутона. Они характеризуются полосчатостью, послужившей основанием для предположения (Костромина, 1971) о многофазности образования массива. Отсутствие во многих случаях интрузивных контактов и зон закалки у "фаз" объяснялось (Литвиновский и др., 1998; Litvinovsky et al., 2002) внедрением новых порций расплавов в еще не остывшую матрицу.

По петрохимии большая часть пород, согласно (Петрографический..., 2009), должна быть классифицирована как щелочное габбро (содержание SiO_2 обычно в интервале 42—48 мас. %, а (Na_2O+K_2O) — 5—8 мас. %). Среди них представлены габбро (диопсидовое), монцогаббро, шонкини-

ты, дайки микрогаббро и лампрофиров. В базитах присутствуют 5–7% нормативного нефелина. Низкая кремнистость пород обусловила появление бадделеита. Обычным для габброидов является магматический кальцит, включенный в породообразующие минералы, выполняющий интерстиции. В этом кальците повышены содержания стронция, магния, железа.

К начальному этапу кристаллизации массива относится *габбро (диопсидовое)*. Оно слагает тело протяженностью более 300 м на юго-восточном фланге плутона. Главным минералом его является диопсид, содержащий до 10% эгиринового минала. Другой темноцветный минерал представлен высокоглиноземистым (12—13 мас. % Al₂O₃), ти-

танистым (3–4 мас. % TiO_2) гастингситом. Для плагиоклаза характерно высокое содержание анортитового компонента (An_{36-50}). Порода содержит до 3.0 мас. % P_2O_5 , отличается повышенной титанистостью (3–3.7% TiO_2). С ильменитом и магнетитом ассоциирует бадделеит.

Среди монцогаббро, слагающего большую часть плутона, выделяются мелано-, мезо- и лейкократовые разности, имеющие между собой как резкие границы, так и постепенные переходы. Породы состоят из варьирующих количеств плагиоклаза (An_{16-32}), амфибола, биотита, клинопироксена, апатита, калиевого и калинатрового полевых шпатов. Постоянной примесью являются титанит, ильменит и высокотитанистый ($15-20\% \text{ TiO}_2$) магнетит. При увеличении содержаний полевых шпатов они приближаются к сиенитам. Среди акцессорных минералов начальной стадии кристаллизации установлен бадделеит. Породы характеризуются присутствием нормативного нефелина. Среди темноцветных минералов ведущую роль (до 40–45 об. %) играют амфибол и биотит. Амфибол относится к гастингситу с повышенным содержанием щелочей (0.8–1.2 форм. ед.), титана $(2-4 \text{ мас. } \% \text{ TiO}_2)$. Количество последнего иногда достигает значений более 0.5 форм. ед., характерных для керсутита. Менее распространена обыкновенная железо-магнезиальная роговая обманка, образовавшаяся при замещении гастингсита и клинопироксена. В слюдах (флогопит-аннитовая серия) повышена титанистость (до 4—6 мас. % TiO_2) и магнезиальность (до 1.8 форм. ед. Mg). Количество пироксена обычно не превышает 5-7%. В нем содержится 8-15% эгиринового минала. Апатит слагает пойкилитовые включения в биотите, амфиболе, а также более грубозернистые выделения в межзерновых пространствах пород. Кроме того, встречаются анхимономинеральные скопления апатита, имеющие, возможно, ликвационное происхождение. Как и у предшествующей породы, в монцоните повышены содержания фосфора (3-6 мас. % P_2O_5), титана (2-3 мас. % TiO_2), стронция (0.4-0.9 мас. % SrO) и бария (0.3-0.8 мас. % ВаО).

В рассмотренных породах присутствуют шлиры и жильные тела *габбро-пегматитов*. Первые слагают грубозернистые агрегаты, постепенно переходящие в габбро. Для их центральной части характерны крупные кристаллы диопсида, титанита, выделения (до 10—15 см в диаметре) апатита и более мелкозернистые — олигоклаза и криптопертитового анортоклаза. Жильные габбро-пегматиты встречаются реже. Это короткие (5—7 м) тела мощностью до 0.5 м. Контакты их обогащены крупными кристаллами диопсида. В центре жилы состоят из барийсодержащих (до 2.5 мас. % ВаО) калинатровых полевых шпатов с составом, подобным анортоклазу, и крупночешуйчатого биотита с гнездами гигантозернистого апатита.

Дайки основного состава образовались после плутонических базитов, щелочно-полевошпатовых и биотит-амфиболовых сиенитов. Химический и минеральный состав их близок к монцогаббро, а текстурные особенности подобны микрогаббро и лампрофирам. Среди последних диагностированы вогезиты, спессартиты, керсантиты. Они сложены гастингситом, биотитом, плагиоклазом (An_{18-28}), апатитом, калинатровым полевым шпатом. В небольших количествах присутствуют клинопироксен, титанит, магнетит, ильменит, бадделеит.

Карбонатные образования

В массиве присутствует три группы карбонатных образований. Одна из них связана с зеленокаменным изменением базитов. Это неправильной формы ветвящиеся прожилки кальцита в ассоциации с хлоритом, кварцем. Кальцит не содержит значимых количеств примесных элементов.

В другую группу входит кальцит, включенный в породообразующие минералы, слагающий шлиры и выполняющий интерстиции в плутонических габброидах и дайках лампрофиров. По характеру выделений он подобен магматическим минералам. С кальцитом ассоциируют апатит, калиевый полевой шпат, плагиоклаз (*An*₂₃₋₂₈), гастингсит, флогопит. Особенностью его является повышенное содержание стронция (до 1.5–2 мас. % SrO).

Третья группа представлена маломощными (0.1-1.0 м) жилами кальцита, прослеживающимися по простиранию до 100 м. Жилы образовались после лампрофиров и пересекаются гранитными пегматитами. Минеральный состав и геохимические особенности их свидетельствуют о принадлежности к карбонатитам (Никифоров и др., 2000, Рипп и др., 2000, 2010). Это кальцитовые породы, содержащие апатит, высокостронциевый барит, акцессорные количества монацита, алланита. Зальбанды их жил обычно оторочены флогопитом и обогащены магнетитом. Контакты с вмещающими породами резкие, часто тектонизированы, сами тела иногда раздроблены.

Сиениты

Сиениты представлены биотит-амфиболовыми, щелочно-полевошпатовыми, биотитовыми и пироксеновыми типами. Биотит-амфиболовые сиениты часто имеют постепенные переходы к габбро-сиенитам, а диопсидовые — к шонкинитам. Природа и время их образования исследователями оценивается неоднозначно. В одних работах (Смирнов, 1971, Литвиновский и др., 1998) считается, что они выделились при фракционной кристаллизации габброидной магмы, в других (Кузнецов, 1980) — являются результатом ассими-

ляционных, метасоматических процессов. Существует также мнение о принадлежности части из них к самостоятельному интрузивному комплексу (Костромин и др., 1966; Андреев и др., 1972).

Щелочно-полевошпатовые сиениты слагают полосу шириной до 0.7—1 км, вытянутую вдоль юговосточного контакта массива (рис. 1). Их секут дайки лампрофиров, а вдоль контакта с габброидами они биотитизированы. В породах содержится кварц, участками образующий с калиевым полевым шпатом субграфические срастания. Мелкой вкрапленностью представлены магнетит, титанит, апатит, циркон. Низкоглиноземистая актинолитовая роговая обманка частично замещена биотитом. В породе присутствует большое количество миароловых пустот, выполненных кристаллами калиевого полевого шпата, амфибола.

Биотитовые сиениты изучены на северном фланге плутона. Породы сложены калиевым полевым шпатом с подчиненными количествами альбита. Биотит, образующий равномерную вкрапленность, содержит около 3 мас. % TiO₂. К числу ранних минералов относится апатит, часть которого слагают пойкилитовые включения в биотите. Более крупные зерна его приурочены к границам полевого шпата. Редкой вкрапленностью представлены магнетит, титанит, циркон. В породах присутствуют миароловые пустоты, выполненные кристаллами калиевого полевого шпата.

Диопсидовый сиенит встречен среди монцогаббро. Это тела мощностью до нескольких метров и протяженностью до 100 м. Они имеют такситовую текстуру, часто грубозернистое и пегматоидное строение. Породы состоят из 60–70% клинопироксена (диопсид с 15–25% эгиринового минала) и калишпата, обогащены кальцитом (до 5 об. %), апатитом, титанитом. Участками состав их близок к шонкиниту.

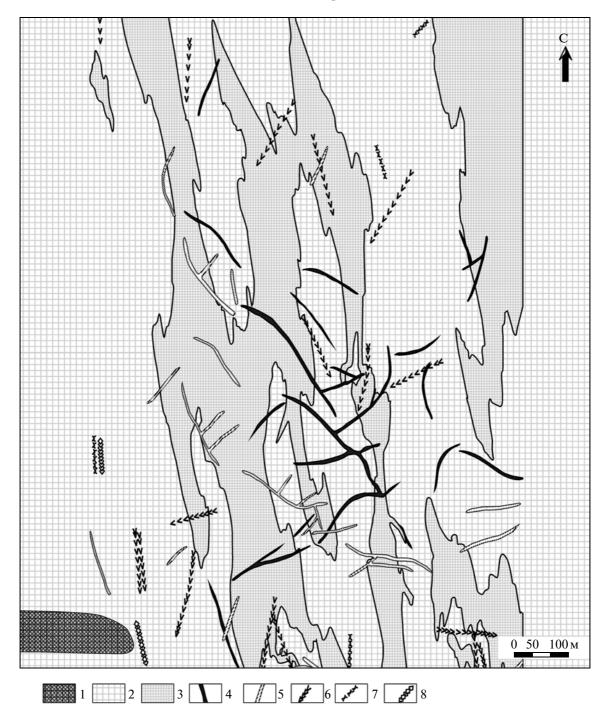
Сиенитовые пегматиты сформировались после монцогаббро. Их описание под названием пегматиты с меланократовыми зонами (ПМЗ) приведено в работе (Литвиновский и др., 2005). Они образовались до аплитов, в которых встречены в виде ксенолитов. Это маломощные (обычно не более 1 м) жилы, прослеживающиеся на расстоянии до нескольких десятков метров. Породы сложены калиевым полевым шпатом, альбитом с подчиненными количествами пироксена (25— 30% эгиринового минала). Их типоморфными акцессорными минералами являются: биотит, магнетит, титанит, циркон, пирохлор. В осевой части жил в небольших количествах присутствует кварц.

Граниты и гранитные пегматиты

Кислые магматиты представлены тремя возрастными группами. К ранней относятся гнейсограниты, постепенно переходящие к мигматитам и гнейсам. Другую группу представляют штоки лейкогранитов, распространенные по периферии Ошурковского плутона. Наиболее поздними являются дайки аплитов и гранитных пегматитов.

Гнейсограниты серые, светло-серые среднекрупнозернистые гнейсовидные с гранобластовой структурой. Они сложены плагиоклазом (20— 60%), биотитом и роговой обманкой. Акцессорные минералы представлены: магнетитом, сфеном, апатитом, цирконом, из вторичных содержатся серицит и хлорит.

Лейкограниты это мелкозернистые породы с редкой вкрапленностью биотита и магнетита. В них просматривается директивная структура, подобная гнейсовидной. Характерным акцессорным минералом является циркон, присутствуют также апатит, титанит.


Дайки аплитов и гранитных пегматитов, распространены как среди массива (рис. 3), так и за его пределами. Тела аплитов имеют мощность до нескольких метров. Породы мелкозернистые, в них видны директивные структуры, обусловленные ориентированным расположением биотита и магнетита. В качестве акцессорных присутствует титанит. В некоторых жилах отмечены каплевидные, овальные и линзовидные включения монцонита, сложенные гастингситом, олигоклазом (An_{10-12}), калиевым полевым шпатом, биотитом, апатитом, магнетитом. Морфология и характер распределения включений подобны минглингу и могут рассматриваться как свидетельство их одновозрастности с гранитами.

Завершают магматический этап *гранитные пегматиты*. Это плитообразные тела мощностью до 4–5 м и протяженностью до сотен метров, дифференцированые от аплитов до зоны блокового строения. В них широко развиты графические, субграфические структуры, а в центральной части присутствует кварцевое ядро. Участками в жилах проявился альбитовый замещающий комплекс с мусковитом, бериллом, турмалином, алланитом, пирохлором.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Определения Rb-Sr возраста выполнены В.Ф. Посоховым (Геологический институт CO PAH). Анализы проводили на масс-спектрометрах МИ-1201 Т (ГИН СО РАН) и Finigan MAT-252 (Байкальский аналитический центр коллективного пользования, г. Иркутск). Для контроля измерений состава Sr использовали стандарты ВНИИМ и NBS-987, по которым получены 87 Sr/ 86 Sr = 0.70798 \pm 0.00008 и 0.71026 \pm 0.00001.

420 РИПП и др.

Рис. 3. Схема распределения жильных пород на одном из участков Ошурковского массива, по (Костромин, Ковальский, 1966, с добавлениями авторов).

Границы участка показаны на врезке на рис. 1. 1 — диопсидовое габбро; 2 — крупнозернистое монцогаббро; 3 — средне-, мелкозернистое монцогаббро; 4 — дайки аплитовидных гранитов; 5 — жилы гранитных пегматитов; 6 — дайки лампрофиров; 7 — жилы карбонатитов; 8 — дайки шонкинитов.

Погрешности определения отношений, с учетом параллельных измерений для 87 Sr/ 86 Sr и 87 Rb/ 86 Sr, составили не более 0.05 и 1% (2σ) соответственно. Расчет возраста выполняли по общепринятой программе ISOPLOT. Ввиду низких значений Rb/Sr в большинстве валовых проб, использовали

выборки определения возраста по схеме вал—минерал. Первичные изотопные стронциевые отношения определяли в таких "безрубидиевых" минералах, как кальцит, апатит, барит, в которых рубидий либо отсутствовал, либо содержание его не превышало первых единиц ppm.

U-Рь датирование циркона осуществлено на ионном микрозонде SHRIMP II в Центре изотопных исследований ВСЕГЕИ. Отобранные кристаллы были имплантированы в эпоксидную смолу вместе с зернами цирконовых стандартов TEMORA и 91500. Для выбора точек локального анализа использовали оптические, BSE и катодолюминесцентные изображения, отражающие внутреннюю структуру и зональность цирконов. Измерения U-Pb отношений проводили по методике, описанной в работе (Williams, 1998). Интенсивность первичного пучка молекулярного кислорода составляла 4 нА, диаметр кратера пробоотбора — 25 мкм при глубине до 5 мкм. Обработку полученных данных осуществляли с помощью программы SQUID (Ludwig, 2000). U-Pb отношения нормализовались на значение 0.0668, приписанное стандартному циркону TEMORA, что соответствует возрасту этого циркона 416.75 млн. лет (Black et al., 2003). Погрешности единичных анализов приводятся на уровне 1σ , а вычисленных конкордантных возрастов – на уровне 2σ. Построение графиков с конкордией проводили с использованием программы ISOPLOT/EX (Ludwig, 1999).

 40 Ar- 39 Ar датирование проведено в ИГМ СО РАН по гастингситу, биотиту, железисто-магнезиальной роговой обманке. Методика анализа описана в статье (Травин и др., 2009). При расчете 40 Ar- 39 Ar возраста по плато использовали критерии (Fleach et al., 1977).

ХРОНОЛОГИЯ ФОРМИРОВАНИЯ ПОРОД

Данные геологических наблюдений. Последовательность магматических процессов установлена по взаимоотношениям пород, присутствию в них ксенолитов, зон закалки и продуктов наложенных процессов (например биотитизации) в контактовых зонах. Это позволило представить следующий порядок образования пород. До начала формирования базитов внедрились лейкократовые граниты и щелочно-полевошпатовые кварцсодержащие сиениты, которые распространены в периферийной зоне массива. В сиенитах отмечаются дайки лампрофиров, а вдоль контактов с монцогаббро на них наложена биотитизация, столь характерная для габброидов. На следующем этапе сформировался базитовый комплекс, кристаллизация которого начиналась с габбро, сменившегося биотит-амфиболовым монцогаббро дифференцированного до сиенитов. Обе породы секут дайки лампрофиров и жилы карбонатитов. К наиболее поздним магматитам относятся аплиты и гранитные пегматиты, содержащие ксенолиты всех перечисленных пород. Наблюдавшиеся взаимоотношения свидетельствуют о более раннем образовании аплитов относительно пегматитов.

Результаты геохронологического изучения. По магматическим и метаморфическим породам проведено 19 определений абсолютного возраста. Часть их выполнена U-Pb (SHRIMP II) методом, другая — ⁴⁰Ar-³⁹Ar и Rb-Sr. С целью более уверенного обоснования возраста для лейкогранитов и щелочно-полевошпатовых сиенитов были проведены дополнительные анализы. Результаты геохронологического изучения представлены в табл. 2 и рис. 4, 5.

Уран-свинцовое датирование проведено по циркону. Это гипидиоморфные зерна и кристаллы с магматической зональностью. За исключением гнейсов, морфологические особенности цирконов и Th/U отношения в них указывают на магматическое его происхождение.

Результаты датировок, представленные на рис. 4, образуют конкордантные кластеры. Зерна с гомогенным и гетерогенным катодолюминесцентным свечением, обусловленным варьирующими содержаниями урана и тория, показывают близкие возрасты. Как видно из табл. 2, для цирконов из гнейсов и ксеногенных цирконов из базитов с возрастом близким к гнейсам, а также в гранитах (в отличие от базитов) характерны более высокие вариации содержаний урана и тория. Нередко количество тория в них преобладает над ураном.

Возраст биотитовых гнейсов составил 282.8 ± 2.9 млн. лет. Он близок к значению, полученному (Мазукабзов и др., 2010) для гнейсов в 15 км севернее Ошурковского плутона. С метаморфическими процессами сближено формирование гнейсовидных гранитов. Определенный нами возраст гнейсовидного биотитового кварцевого сиенита, расположенного в 20 км южнее массива, составляет 281.5 ± 2.9 млн. лет (табл. 1). Датировки гнейсогранитов, полученные Rb-Sr методом (Платов и др., 2009), варьируют в интервале 277-314 млн. лет.

Возраст гнейсов и гнейсовидного кварцевого сиенита, продублированный нами Rb-Sr методом, оказался существенно моложе (табл. 3). Причиной омоложения послужила, вероятно, их биотитизация, связанная с формированием габброидов и лейкогранитов.

В возрастных 40 Ar- 39 Ar спектрах амфиболов и биотита из лампрофиров, щелочно-полевошпатового сиенита и гранитного пегматита фиксируются четкие плато (рис. 5), характеризующиеся значениями — 122.3 ± 1.2 , 117.5 ± 1.2 , 126.1 ± 1.9 , 111.6 ± 1.0 млн. лет соответственно (табл. 1). Учитывая, что температура закрытия K/Ar изотопной системы минералов составляет $550 \pm 50^{\circ}$ C (Harrison et al., 1994), можно считать, что полученные нами датировки приближенны к возрасту формирования изученных пород. Существенный разрыв во времени образования спессартита и керсантита

422 РИПП и др.

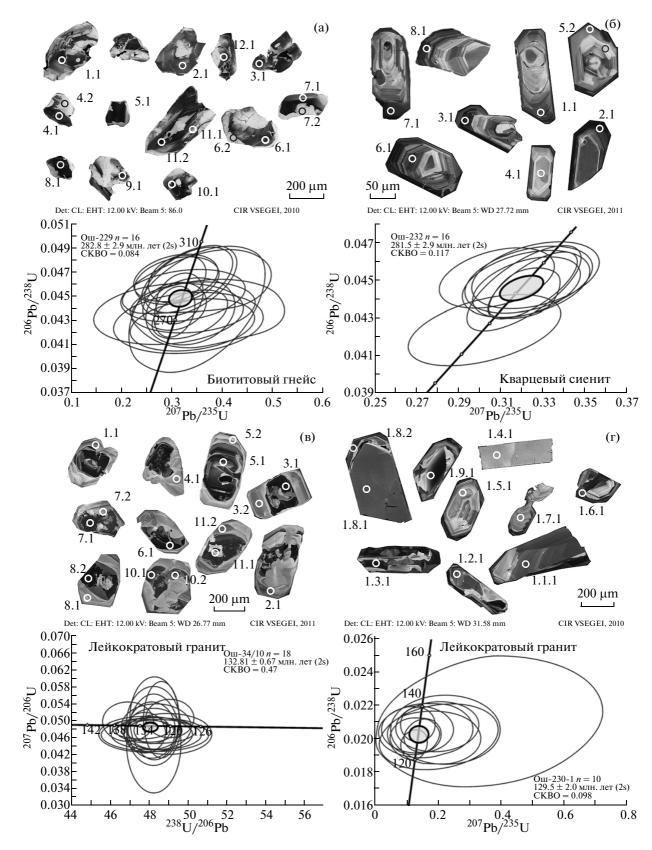


Рис. 4. Диаграммы с конкордией для цирконов Ошурковского плутона и вмещающих пород: (а) — биотитовый гнейс; (б) — гнейсовидный кварцевый сиенит; (в—д) — гранит лейкократовый; (е) — сиенит щелочно-полевошпатовый; (ж) — габбро меланократовое; (з) — габбро с карбонатным шлиром.

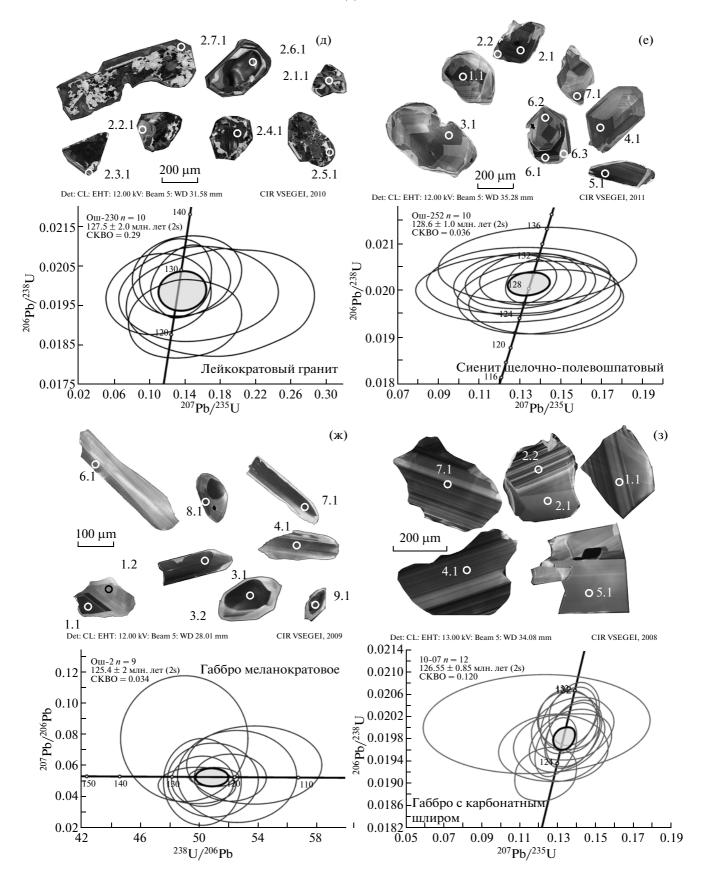
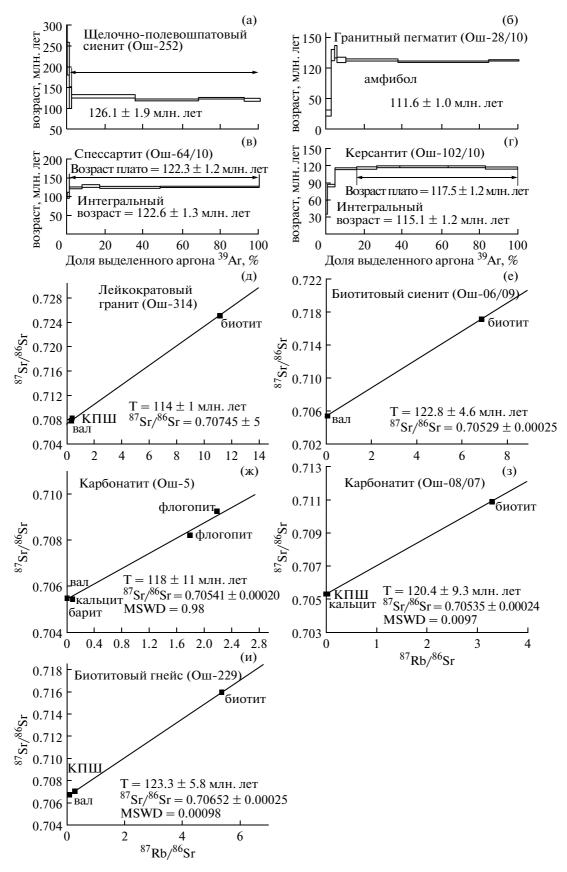



Рис. 4. Окончание.

424 РИПП и др.

Рис. 5. 40 Ar- 39 Ar (а—г) возрастные спектры минералов и Rb-Sr (д—и) изохроны магматических и метаморфических пород на площади Ошурковского плутона.

Таблица 2. Результаты U/Pb (SHRIMP II) изучения цирконов из пород Ошурковского плутона

~~	1 206 Pb	U.	Th	232Th/	232Th/ 206 pb *		Возраст,	зраст, млн. лет		238UJ/	3	3	23811/206		²⁰⁷ Pb*/	-	207 Pb */		/*dd902	3	;
ана- лиза	2%		mdd	$238\overline{\mathrm{U}}$	ppm	206Pb $/$ ²³	/ ₂₃₈ U	²⁰⁷ Pb,	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb *	% +I	D, %	Pb*	% +I	²⁰⁶ Pb *	% +I	235 <u>U</u> ′	%	238Ū′	% +I	Kho
									Гней	Гнейсы (обр.	. Om-229)	(67	1	•							
1.1	0.5	299	919	2.13	12	292.8	±5.1	221	±190	21.41	1.7	-25	21.52	1.8	0.0506	8.4	0.324	8.6	0.04646	1.8	0.209
2.1	1.01	195	184	0.98	7.47	279.2	+4.8	146	±160	22.36	1.7	-48	22.59	1.7	0.049	_	0.299	7.2	0.04426	1.7	0.242
3.1	1.6	253	377	1.54	96.6	284.7	+5	129	± 320	21.79	1.6	-55	22.14	1.8	0.0486	14	0.303	14 0	0.04515	1.8	0.132
4.1	0.91	185	270	1.51	7.39	290.7	±5.5	261	± 210	21.48	1.9	-10	21.68	1.9	0.0515	9.3	0.327	9.5	0.04612	1.9	0.205
4.2	0	16	13	0.81	0.625	283	±10	267	±220	22.31	3.7	101	22.31	3.7	0.059	10	0.365	11 0	0.0448	3.7	0.336
5.1	0.49	207	329	1.64	7.96	281	±4.7	324	±150	22.33	1.7	15	22.44	1.7	0.0529	6.7	0.325	6.9	0.04455	1.7	0.25
6.1	0.95	219	349	1.64	8.38	277.7	+5	279	± 280	22.5	1.7	0	22.71	1.8	0.0519	12	0.315	13 0	0.04402	1.8	0.146
6.2	0	12	6	0.83	0.434	275	±12	451	±300	23	4.5	64	23	4.5	0.056	14	0.336	14 0	0.0436	4.5	0.314
7.1	0.23	139	168	1.25	5.24	276.8	±5.5	239	± 120	22.74	7	-14	22.79	7	0.051	5.4	0.308	5.7	0.04388	2	0.353
7.2	0	13	13	1.02	0.518	285	±10	376	± 230	22.14	3.7	32	22.14	3.7	0.0541	10	0.337	11 0	0.0452	3.7	0.343
8.1	1.09	198	331	1.72	7.96	291.6	±5.2	55	± 220	21.37	1.8		21.61	1.8	0.0471	9.3	0.301	9.5	0.04627	1.8	0.193
9.1	1.75	166	216	1.35	6.52	282.6	±5.1	70	±300	21.92	1.7		22.31	1.8	0.0474	13	0.293		0.04482	1.8	0.143
10.1	0.46	132	148	1.16	5.2	286.8	±5.5	497	± 160	21.88	1.9	73	21.98	7	0.0571	7.5	0.358	7.7	0.04549	7	0.253
11.1	1.68	49	40	0.85	1.87	275.1	±7.5	456	± 510	22.53	2.3	99	22.92	2.8	0.056	23	0.337	23 0	0.0436	2.8	0.121
11.2	2.13	101	128	1.31	3.79	268.7	±5.3	107	± 320	22.99	1.8	09-	23.49	7	0.0482	14	0.283	14 0	0.04257	7	0.145
12.1	1.24	58	53	0.95	2.33	291.9	±6.7	504	± 330	21.31	2.1	73	21.57	2.4	0.0573	15	0.366	15 0	0.0463	2.4	0.157
	_	_	=	_	_	_	. Гне	Гнейсовид	іный кварцевь	рцевы	і сиени	\vdash	(обр. Хал-232)	-	-	=	-	=	_	-	
1.1	0.00	485	243.04	0.52	18.3	277.7	±4.2	290	±26	22.72	1.6	4	0.0521	2.5	0.0521	2.5	0.3162	2.9 0	2.9 0.04402	1.6	0.54
2.1	0.00	1176	648.64	0.57	45.8	285.7	±4.1	230	±52	22.07	1.5	-19	0.0508	2.3	0.0508	2.3	0.3171	2.7	0.04531	1.5	0.54
3.1	0.48	945	415.38	0.45	36.8	284.6	±4.2	208	±92	22.04	1.5	-27	0.0503	4	0.05412	1.7	0.313	4.2	0.04515	1.5	0.35
4.1	0.00	147	101.49	0.72	5.34	267.6	+5	282	±110	23.6	1.9	5	0.0519	4.6	0.0519	4.6	0.303	5 0	0.04238	1.9	0.38
5.1	0.00	1579	10.24	0.01	27.7	130.1	±1.9	62	±50	49.06	1.5	-39	0.0476	2.1	0.0476	2.1	0.1338	2.6	0.02038		0.58
5.2	0.00	288	182.60	0.65	11.2	284.9	±4.7	272	±74	22.13	1.7	-5	0.0517	3.2	0.0517	3.2	0.322	3.6	0.04518	1.7	0.46
6.1	0.00	558	296.39	0.55	21.4	281.6	±4.3	331		22.4	1.5	17	0.053	2.3	0.053	2.3	0.3265	2.8	0.04464	1.5	95.0
7.1	0.00	909	132.84	0.27	19.5	283.1	±4.3	338		22.28	1.6	19	0.0532	2.4	0.0532	2.4	0.3293	2.9 0	0.04489	1.6	0.55
8.1	0.35	1005	516.65	0.53	38.7	281.6	±4.1	288		22.31	1.5	7	0.0521	3.2	0.05486	1.7	0.32		0.04465	1.5	0.42
9.1	0.00	519	317.21	0.63	20	283.2	±4.3	304	±55	22.27		7	0.0524	2.4	0.0524	2.4	0.3247	2.9	0.04491	1.6	0.54
									Гран	Граниты (обр. 34	\	10)									
1.1	0.38	255	202	0.82	4.53	132	+1	131	±181				48.4	1	0.049	7.7	0.14	7.7 0.02	.02		0.13
1.2	0.33	206	122	0.61	3.65	131	+1	168	±173				48.5	1	0.049	4.	0.14	7.5	0.02		0.13
2.1	0	249	174	0.72	4.55	136	+2	190	±94				46.9	1.1	0.05	4	0.15	4.2 0			0.27
3.1	0	227	129	0.58	4.08		+1	6.79	±101				47.8	6.0	0.047	4.3	0.14	4.4			0.21
3.2	0.19	1288	815	0.65	23		 1	91.8	+ 62				48.1	8.0	0.048	5.6	0.14	2.7	0.02		0.29
4.1	0.93	175	114	0.67	3.11	132	+2	29.5	±292				48.3	1:1	0.047	12.2	0.13	12.3 0	0.02		0.09
5.1	0	189	90	0.49	3.32		+1	216	±91				49	1.1	0.05	3.9	0.14		0.02		0.26
5.2	0	393	566	0.7	7.09		+1	144	+ 65			7	47.6	6.0	0.049	2.8	0.14	2.9 0	0.02	6.0	0.29
																	•		•		

Продолжение
તં
блица

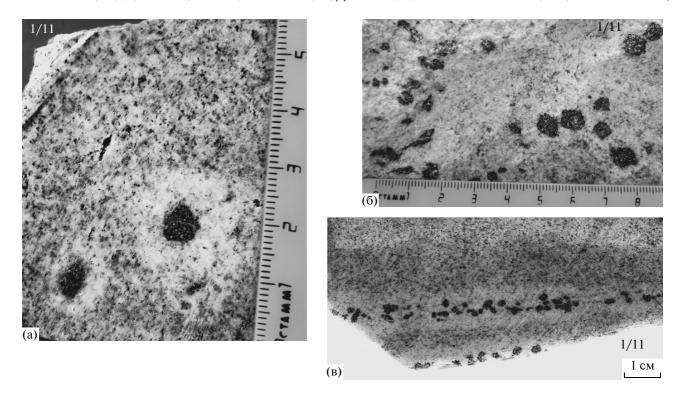
	100	Kno	0.19	0.44	0.41 0.16	7.	0.19	2	0.64	1	0.117	0.102	0.115	0.145	0.153	960.0	0.115		0.108	0.076	0.087	0.123	$0.19_{\tilde{i}}$	0.12	0.085	0.091	0.125	0.134	0.095	0.131	0.136	0.125	0.126	0.254		0.15	0.11	121
										_								-	_										_									-
	,/ T		0.8	1.9	<u> </u>	1.7	1.7	7	1.7	<u>:</u>	_	76 2.4				9 2.1		-		3 2.8	_	4.1	١	2		3.6		9 1.9	1.5								7 1.6	_
	$^{506}\mathrm{Pb}_{*}/$	$^{238}\mathrm{U}^{'}$	0.02	0.02	0.02	0.02	0.02	0.02	0.02	1	0.01958	0.01976	0.02026	0.02028	0.02007	0.01979	0.01917		0.02076	0.02053	0.0202	0.02058	0.0211	0.02086	0.02053	0.01994	0.02022	0.01969	0.02006	0.01977	0.01987	0.02014	0.02018	0.0202	0.02024	0.02026	0.02057	
	<i>20</i> +				5.7				2.7						12 (19		27		25 (41) 91					3.7		8	14 ×	1
	$^{207}\mathrm{Pb}^{*}/$	$^{235}\mathrm{U}^{'}$	0.14 0.14	0.13	0.14 0.14	0.13	$0.15 \\ 0.14$	0.14	0.14	-	0.181	0.157	0.143	0.13	0.148	0.1111	0.141		0.197	0.13	0.125	0.217	$0.36_{0.36}$	0.135	0.161	0.171	0.15	0.123	0.128	0.143	0.139	0.133	0.13	0.1353	0.129	0.136	0.139	771.0
	8		4.4	4 ,	5.4 C	7	9	3.5	2.1	<u>}</u>	24	24	18	13	12	22	18	•	27	37	25	33	40	17	38	39	16	4	16	=	12	10	10	3.6	14	7.7	4 ×	1.0
	$^{207}\mathrm{Pb}^{*}/$	$^{206} extbf{Pb}^{*}$	0.047	0.047	0.05	0.047	0.05	0.047	0.049	2	0.067	0.058	0.0513	0.0466	0.0534	0.0407	0.0533	_	0.069	0.046	0.045	0.077	0.125	0.0468	0.057	0.062	0.0539	0.0454	0.0462	0.0524	0.0509	0.0478	0.0467	0.0486	0.0463	0.0488	0.0489	
		% H	0.8	1.9	<u></u>	1.7	1.2	7	1.7	-	2.8	2.4	7	1.8	1.9	2.1	2.1	-	2.9	2.8	2.5	4.1	7.6	7	3.2	3.6	7	1.9	5	4	1.6	1.3	1.3	6.0	1.4	1.2	1.6	1.1
	$^{238}U/$	²⁰⁶ Pb*	48 47.8	48.9	48.5 47.8	48.2	48.1	47.8	48.1	_	51.1	9.09	49.3	49.31	49.82	50.5	2.7	•	48.2	48.7	49.5	48.5	47.3	47.92	48.7	50.1	49.45	2.2 49.8 1.7 50.79 Higgson (25.5)	7. OIII-222, 49.84	50.58	50.31	49.64	49.55	49.51	49.4	49.36	48.6 49.57	1.5.7
	Š	D, %			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				4 c	_	<u>~</u>	·Ω	4	4	<u>4 .</u>	S.	<u>~</u>	-	4	4	4	4	4	4	<u>4 .</u>	<u>.</u>	4	5	1 (00p. 4	'	· V	4	4	4	4	4	4 4	
		, % H	1	<u> </u>						Гранит (обр. 230-2)	6.	6:1	8.1	.7	×. (∞.	∞.	230-1)	2.2	7	1.8	2.5	3.6	∞.	2.2		∞.		2 – 2	~	4:1	.2	.2	6.0	1.2	1.1	6.1	
											_ 						_	(06p.)											1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 –									
	$V_{\rm SS}$	$^{206} extbf{Pb}^{*}$								– анит (48	49.37	48.19	48.51	49.14	49.22	50.9	Гранит (обр.	46.2	46.4	48.05	45	42.5	47.07	46.1	47.3	48.64	49.8	149.11	49.86	49.76	49.07	49.01	49.35	48.74	49.1	48.02	1:/-
	T	207 Pb $/^{206}$ Pb	$\begin{array}{c} \pm 105 \\ \pm 34 \end{array}$	±95	+144	+41	±141	±84	±49 +114	- 11 <u>-</u> 1								ф																				
	Возраст, млн. лет	²⁰⁷ Pb,	55.9 172	45	180	49.2	177	71.1	128	0								_											1-0111-011 									
	юзраст,	U	H H			+2	1 + 1	+13	+ + 2	-	±2.4	± 2.5	±2.4	±2.2	±2.3	±2.3	± 2.3		±3.4	± 2.8	±2.5	+3.2	+4.8 8.4	±2.3	+3.4	+3.4	±2.3	±2.2	+10	+	± 2.0	±1.7	± 1.6	±1.2	± 1.8	± 1.5	+2.1 +1.4	; :
	В	206Pb $/$ 238	133 133	130	133	132	133	133	133		122.2	124.8	128.9	129.7	127.3	127.6	121.7		129.2	131.5	129.5	126.8	122	133.5	129.7	125.2	128.2	126.2	128	126.2	126.9	128.6	128.8	128.9	129.2	129.3	131.3	1,000
	²⁰⁶ Pb*,	ppm	18.9 26.2	5.9	7 48	2.4	90.9	6.39	3.46	<u>-</u>		6.59											0.903						_	4.13		3.74					3.94 88.88	_
	232 Th/ 29	238 U,	0.71 1.48 2									0.27						-	_				0.97					_	.58).56).37	95.0).56).62	4.().32	0.45	
	Th, 23	1								_	_	86						-	_				45					_	_								96	
жение			6 725 1 2093							_	_				_			-				_						_	_									
Габлица 2. Продолжение	, U,	Ţ	7 1056 1461							_		3 379						-					3 45					_	_								9 220	-
			lia -	· 1	∹ , ≍	í	ń		\tilde{c}		6	2.43	w.	9	ن ب	<u>.</u>	4		4.0	4.6	2.9	7.3	10.33	1.7		<u>, </u>	9	6	4	4		$\ddot{-}$	Ŏ.	$\tilde{\omega}$	$\tilde{\omega}$	Ş.	1.19 0.6	:
ta 2.	Точки ₂₀₆ Pb.,	%	0.67	0.34	0.0	:	0	0	0.08	<u> </u>		2.2.1 2		-		,		-					$\frac{1.5.1}{1}$						_		_			0		0		-

- 5	
-	-
- 1	-
- 5	3
С	α
٠.	_
-5	7
	г.
-	-
7	$\overline{}$
5	_
- 1	-
- 2	•
- 5	_
$\overline{}$	۲
•	-
_	•
_	
	•
_	j
۔ ر	i
c	i
`-	i
`-	i
`-	1
, ,	10 10
`-	1 to 11.
`-	7 THU
`-	1 THE
`-	JIMIA 2.
`-	Junia 4.
`-	CIMITA 4.
`-	Column 4.
`-	acimina 4.

Точки 206рр.	206 Ph .			232Th/	206 pb *	1	Возраст,	зраст, млн. лет	238[1]	3	3	238[]/	_	²⁰⁷ Pb */		207 Pb */		206 Pb */	3	
ана- лиза	5%	ppm	mdd	$238\widetilde{\overline{\mathrm{U}}}$	mdd	206 Pb $/^{23}$	$^{/238}$ U	207 Pb $/^{206}$ Pb	$^{206}P_{\mathbf{b}^{*}}$	% +I	Ď,%	$^{206}\overline{\mathbf{Pb}^{*}}$	%	$^{206}\mathbf{Pb}^{*}_{\mathbf{b}}$	%	$^{235} m U'$	%	238 U $^{'}$	%	Kho
								Карбонатный шлир в габбро (обр. 10/07	і шлир в	ra66pc	(oop. 1	(20/01)							_	
1.1	0.2	955	294	0.55	9.46	126.3	±1.3		50.43	1.1		50.53	1:1	0.0498	3.7	0.1358		3.9 0.01979	1:1	0.28
2.1	0.29	375	113	0.31	6.37	125.9	±1.5		50.55	1.2		50.7	1.2	0.0502	6.4	0.1366		6.5 0.01972	1.2	0.185
2.2	0.41	396	143	0.37	6.55	122.5	±1.3		51.92			52.13	1.1	0.0467	5.4	0.1236		5.5 0.01918	1:1	0.193
3.1	0.55	428	125	0.3	7.26	125.3	±1.6		50.65	1.1		50.93	1.2	0.0471	9.3	0.127	9.3	9.3 0.01963	1.2	0.134
4.1	0.36	488	113	0.24	8.42	127.6	±1.5		49.82	1.1		50.01	1.2	0.05	6.4	0.1378	6.5 0.02	0.02	1.2	0.179
5.1	0.43	476	109	0.24	8.09	125.6	±1.5		50.61	1.1		50.83	1.2	0.0482	7.6	0.131	7.7	7.7 0.01967	1.2	0.157
6.1	0.27	453	243	0.55	7.9	129.3	±1.4		49.24	1.1		49.37	1.1	0.0495	3.8	0.1384	4	0.02025	1:1	0.281
7.1	0.21	989	188	0.3	10.8	125.7	±1.4		50.7	1.1		50.8	1.1	0.0476	3.1	0.1292	3.3	3.3 0.01968	1:1	0.333
8.1	0.32	628	218	0.36	10.9	128.6	±1.4		49.47			49.62	1.1	0.0485	5.2	0.1347	5.3	0.02015	1:1	0.202
9.1	0.19	441	108	0.25	7.55	126.9	±1.5		50.19	1.2		50.28	1.2	0.0503	3.8	0.1379	4	0.01989	1.2	0.307
10.1	1.39	123	23	0.19	2.15	128.1	±2.3		49.13	1.5		49.82	1.8	0.043	21	0.119	21 (0.02007	1.8	0.089
10.2	0.21	493	164	0.34	8.52	128.2	±1.3		49.7	1		8.64	-	0.0488	4.1	0.135	4.2	4.2 0.02008	_	0.246
	_	-		_	_	_	-	Монш	Монцога ббро	(06p.	Om-2)		-	_	-	_	-	_	_	
8.1	1.11	105	145	1.42	1.7	119	±4.1		53.2	3.3		53.8	3.5	0.056	18	0.144	18	0.01858	3.5	0.189
1.2	2.06	113	144	1.31	1.89	121	±3.8		51.6	2.9		52.6	3.2	0.049	25	0.128	25 (0.01899	3.2	0.127
3.2	1.16	569	100	0.38	4.48	122	±2.3		51.57	1.8		52.2	1.9	0.048	13	0.127	13 (0.01916	1.9	0.143
3.1	0.45	700	648	96.0	11.8	125	±1.7		50.89	1.3		51.12	1.4	0.0491	5.8	0.1324	9	0.01956	1.4	0.229
4.1	1.95	247	186	0.78	4.24	125	+3		50	2.1		51	2.4	0.0466	21	0.126	21 (0.01962		0.116
7.1	1.03	474	1072	2.34	8.18	127	±2.1		49.77	1.6		50.29	1.7	0.046	14	0.126		0.01988		0.117
2.1	2.71	301	228	0.78	5.29	127	±2.7		48.88	1.6		50.2	2.2	0.045	25	0.125	25 (0.0199	2.2	0.085
1.1	0.88	569	497	1.91	4.67	128	±2.6		49.39	2		8.64	2.1	0.0435	11	0.12	11	0.02007	2.1	0.18
6.1	3.03	101	519	5.31	1.82	130	±4.6		47.5	3		49	3.6	0.073	23	0.205	23 (0.02039	3.6	0.154
9.1	0.43	436	304	0.72	16.3	273	±3.7		23.02	1.4		23.12	1.4	0.0518	4.9	0.309	5.1	5.1 0.04326		0.273
5.1	0.13	889	922	1.38	48.1	504	±5.6		12.28	1.1		12.3	1.2	0.0582	4	0.653	4.2	4.2 0.08132	1.2	0.274
								Монш	Монцога ббро	(oop. C										
1.2.1	2.55	122	36		2.17		±3.7		48.5			49.7	2.9	0.043	27	0.118	(1	0.0201		0.107
1.3.1	0.15	516	107		8.45		±2.1		52.47	1.7		52.54	1.7	0.0495	3.7	0.1298	4.1	4.1 0.01903		0.423
1.4.1	1.7	126	118		2.04		±2.8		53.1	2.2		54	2.4	0.0442	19	0.113		0.01853		0.129
1.5.1	0.72	92	46		1.53		±4.2		51.5	3.5		51.9	3.5	0.0506	9.6	0.135		0.01927	3.5	0.341
1.6.1	0.91	237	158		3.75		±2.3		54.4	1.9		54.9	7	0.049	11	0.123	1	0.01821		0.185
1.7.1	0.23	4385	1462		170		±4.3		22.14	1.6		22.19	1.6	0.0523	0.98	0.3252		1.8 0.04507		0.846
1.8.1	0.47	268	523		21.3		+4. 4		22.86	1.6		22.97	1.6	0.0515	3.4	0.309	∞.	3.8 0.04354	1.6	0.432
1.9.1	0.83	121	48		4.71		±5.7		22.11	1.9		22.29	7	0.053	Ξ:	0.328		0.04486		0.185
1.10.1	3.64	35	9 !	0.18	0.583	120.7	±4.8		51			52.9	4	0.039	49	0.101		0.0189		0.082
1.11.1	1.35	243	142		4.14		±2.6		50.52	1.9	-177	51.2	2.1	0.0443	17	0.119	17 (0.01953	2.1	0.124

Таблица 3. Rb-Sr характеристика минералов и пород Ошурковского массива

Номер	Проанализированный	Содержа	ние, ррт	⁸⁷ Rb/ ⁸⁷ Sr	⁸⁷ Sr/ ⁸⁶ Sr
пробы	материал	Rb	Sr	KU/ Si	31/ 31
	.!	Жила № 1 (точк	а 1). Карбонатит	!	
Ош-8а/07	КПШ	3.71	3171.7	0.0033	0.70534
Ош-8б/07	Кальцит	2.5	11797.8	0.0006	0.70536
Ош-8/07	Биотит	312.7	277.8	3.256	0.71092
Ош-5	То же	212.1	213.4	2.876	0.71002
	1	Жила № 1 (точк	а 1). Карбонатит	I	
O-12	Вал	6.97	2652	0.0665	0.70545
О-5б	Барит	0.8	15805	0.00015	0.70546
O-5a	Кальцит	1.2	10874	0.00032	0.70548
O-5f	Флогопит	179.2	290	1.792	0.70819
O-5f	То же	173.6	230	2.18	0.70924
	1	Биотитов	ый сиенит	I	
6/09	Вал	58.99	3088.89	0.0552	0.70539
6a/09	То же	70.31	3264.80	0.0622	0.70540
6/09	Биотит	292.6	124.20	6.8200	0.71720
	1	Биотитов	ый гранит	I	
ОШ-314	Вал	74.9	743	0.2919	0.707927
ОШ-314	КПШ	87.4	789	0.3205	0.708238
ОШ-314	Биотит	276	72.2	11.08	0.725458
		Гне	ейс	I	
Ош-229	ПШ	77.3	826.7	0.2705	0.707
Ош-229	Вал	29	1036	0.081	0.70666
Ош-229	Биотит	240.2	129.6	5.367	0.71593


предполагает вероятность неоднократного внедрения даек базитов, хотя непосредственных наблюдений их разновременности не установлено.

Полученные геохронологические данные в целом согласуются с последовательностью образования пород, установленной геологическими наблюдениями. Кристаллизация Ошурковского плутона и окружающих его кислых магматитов происходила около 20 млн. лет. Выделяется следующие возрастные интервалы их формирования. На начальном этапе (132–127 млн. лет) – это были щелочно-полевошпатовые и кварцевые сиениты, штоки лейкогранитов. Затем (126-117 млн. лет) внедрились плутонические и дайковые породы базитового комплекса, включающие габброиды, лампрофиры, сиениты и карбонатиты. Этап становления базитового комплекса завершают карбонатиты (118–120 млн. лет). В заключительную стадию магматизма внедрились дайки аплитов и затем гранитных пегматитов (112 млн. лет).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные исследования подтвердили установленный ранее (Кузнецов, 1980; Литвиновский и др., 1998, 2005) позднемезозойский возраст пород Ошурковского массива. Они показали, что образование комагматичных пород массива охватывает интервал времени в 6—8 млн. лет. Позднемезозойский возраст (110—130 млн. лет) в Западном Забайкалье известен пока только у субвулканических и вулканических пород, связанных с рифтогенным этапом (Гордиенко и др., 1997; Ярмолюк и др., 1998).

Выявленная временная близость образования базитов и лейкогранитов, распространенных по периферии Ошурковского массива, позволяет выделить габбро-сиенит-гранитную ассоциацию, подобную бимодальным вулканическим сериям. Так как другие источники тепла, которые могли инициировать процесс гранитообразования в этот период неизвестны, то наиболее реальным

Рис. 6. Характер выделений монцонита (темное) в аплитовидном граните (обр. 1/11). (а, б) — каплевидная форма; (в) — струеподобная.

видится их образование в выплавлении вследствие термического воздействия базитового расплава.

В литературе неоднократно приводятся примеры субсинхронного образования основных и кислых пород, не связанных дочерне-родительскими отношениями, как например с фракционной кристаллизацией (Докукина, 2010; Докукина идр., 2010; Graham et al., 2005; He et al., 2010; Miller et al., 2011 и др.). Причина появления такой ассоциации связывается с более низкой температурой ликвидуса кислых расплавов относительно основных, обусловливающих возможность анатектических процессов. Для Ошурковского массива доказательством такой связи, кроме близкого возраста рассматриваемых пород, служит их пространственная сближенность. Штоки гранитов расположены в контурах единой гравитационной аномалии, в виде кольца обрамляя габброидный плутон, а дайки аплитов и гранитных пегматитов его рассекают. Кроме того, в дайках аплитовидных гранитов встречаются каплевидные включения монцонитов (рис. 6). Овальная и округлая форма включений с признаками пластических деформаций в них обычно трактуются как свидетельства двух жидкостей с разной вязкостью (Cook, 1988; Lowell, Young, 1999 и др.). Согласно экспериментальным данным и изученным природным объектам (например, Valentini, Moore, 2009) указанные признаки рассматриваются как

минглинг и могут служить важным свидетельством близкого временного образования этих пород.

Согласная с простиранием даек ориентировка зерен и сегрегаций магнетита, биотита в гранитах определила директивные структуры, связанные с перемещением расплава в условиях ламинарного течения. Каплевидные включения вытягиваясь вдоль полосчатости гранитов, приобрели овальные и линзовидные формы. При встрече с ксенолитами они обтекали их. Это согласуется с экспериментальными работами (Snyder et al., 1977), показавшими, что в гетерогенной смеси двух расплавов деформации происходят в менее вязком (базальтовом) расплаве, в то время как кислый расплав ведет себя пассивно. Являясь поздними дифференциатами базитового расплава, монцониты могут свидетельствовать о более длительном функционировании питающего базитового очага.

Плавлению вмещающих пород способствовала дистиляция базитового расплава, имевшего повышенную флюидонасыщенность, о которой свидетельствует присутствие магматических амфибола и биотита. Расчеты по минеральным барометрам показывают, что флюидное давление в нем достигало 6—8 кбар и уменьшалось от ранних фаз к поздним (табл. 4).

Последовательность формирования выделяемой габбро-сиенит-гранитной серии показана на

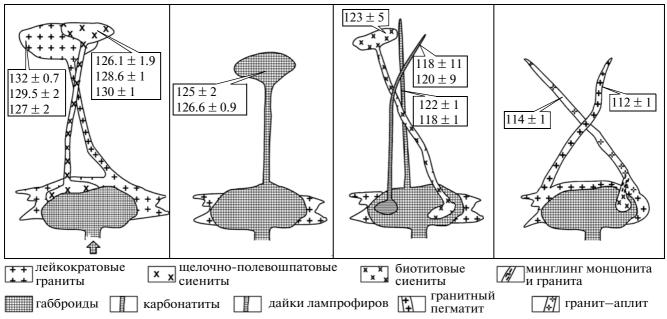


Рис. 7. Последовательность образования магматических пород Ошурковского месторождения.

рис. 7. Граниты и кварцевые сиениты, внедрившиеся до становления главной фазы габброидов, представляют кислый расплав, возникший в над-

Таблица 4. Оценка давлений (кбар) при образовании пород Ошурковского плутона

Номер пробы	Hammar- strom, Zen, 1986	Hollister et al., 1987	Johnson, Rutherford, 1989	Schmid, 1992
	•	Габбро	•	
58/11	8.2	8.9	6.8	8.5
58/11	7.0	7.5	5.7	7.3
58/11	8.2	8.9	6.8	8.5
59/11	7.9	8.5	6.5	8.2
59/11	7.9	8.5	6.5	8.1
59/11	7.4	8.0	6.1	7.7
П-5	7.5	8.1	6.2	7.8
П-5	7.5	8.1	6.1	7.8
П-5	8.1	8.7	6.6	8.3
П-5	7.8	8.4	6.4	8.1
	I	Монцогаббр	00	
П-1а	6.6	7.0	5.4	6.9
П-2	6.4	6.9	5.2	6.8
П-3	6.2	6.6	5.1	6.6
Π-4	6.8	7.2	5.5	7.1
	1	Лампрофир	Ы	
56б/10	5.4	5.7	4.4	5.8
72/10	5.3	5.6	4.3	5.7
72/10	5.4	5.6	4.7	5.5
		Монцонит		ı
5/11	3.7	3.8	2.9	4.2
5/11	3.9	4.0	3.1	4.4
5/11	3.8	3.9	3.0	4.3
5/11	3.7	3.8	2.9	4.2
5/11	3.4	3.5	2.7	4.0
5/11	4.2	4.4	3.4	4.7

купольной зоне базитового очага. Затем образовались породы щелочно-габроидного комплекса. Их формирование произошло в следующем порядке: габбро (диопсидовое) — монцогаббро (до габбро-сиенитов) — лампрофиры — сиениты — карбонатиты. В этом направлении уменьшалась основность плагиоклаза от An_{36-50} до An_{10-12} , увеличилось содержание эгиринового минала в пироксенах (от 8-10 до 25-30), а рост калиевости обусловил увеличение количества биотита и калиевого полевого шпата. На заключительном этапе из остаточного кислого расплава сформировались дайки аплитовидных гранитов и затем гранитные пегматиты.

ЗАКЛЮЧЕНИЕ

Полученные результаты позволяют рассматривать площадь Ошурковского массива в качестве одного из объектов для изучения условий формирования габбро-сиенит-гранитных серий пород. Надо полагать, что случаев анатектического образования гранитов значительно больше, чем известно к настоящему времени, а вероятность этого сценария возможна для участков с достаточно крупными базитовыми массивами. Этому может способствовать анализ полей гравиметрических аномалий. Вместе с тем обоснование синхронности образования гранитов и базитов в значительной мере сдерживается пока еще ограниченным объемом геохронологических исследований и не столь высокой точностью последних. К числу признаков временной близости контрастных по составу пород может быть привлечен также их минглинг. В отличие от вулканических образований, при отсутствии данных по возрасту, минглинг разноформационных плутонических пород доказывается сложнее.

На Ошурковском массиве остается не до конца решенной проблема связи и временного соотношения некоторых типов сиенитов и базитов. При этом если для щелочно-полевошпатовых сиенитов на основании геохронологических и геохимических данных комагматичность решается не в пользу фракционной кристаллизации базитового расплава, то для биотитовых сиенитов такой ясности нет и необходимы дополнительные изотопно-геохимические исследования.

Работа выполнена при финансовой поддержке проектов ОНЗ 10.3, 27.2.1, РФФИ 11-05-00324, 12-05-31001, Интеграционного проекта СО РАН 14.2.

СПИСОК ЛИТЕРАТУРЫ

Андреев Г.В., Гордиенко И.В., Кузнецов А.Н., Кравченко А.И. Апатитоносные диориты Юго-Западного Забайкалья Улан-Удэ: Бурятское книжное изд-во, 1972. 157 с.

Гордиенко И.В., Климук В.С., Иванов В.Г., Посохов В.Ф. Новые данные о составе и возрасте бимодальной вулканической серии Тугнуйской рифтогенной впадины (Забайкалье) // Доклады АН. 1997. Т. 352. № 6. С. 799—803.

Докукина К.А. Модель формирования Тастауской палеовулканической структуры (Чарская сдвиговая зона, Восточный Казахстан) // Литосфера. 2010. № 3. С. 103—110.

Докукина К.А., Конилов А.Н., Каулина Т.В., Владимиров В.Г. Взаимодействие базитовой и гранитной магм в субвулканических условиях // Геология и геофизика. 2010. Т. 51. № 6. С. 804—826.

Костромин С.В., Ковальский Ф.И. Геолого-структурные особенности Ошурковского месторождении апатита и его народохозяйственое значение. Улан-Удэ: Бурятское книжное изд-во. 1966. С. 114—122.

Костромина Л.Н. Апатитовая минерализация и генезис Ошурковского месторождения // Тр. СНИИГ-ГИМС. 1971. Вып. 108. С. 93—101.

Кузнецов А.Н. Минералогия и геохимия апатитоносных диоритов (Юго-Западное Забайкалье) Новосибирск: Наука, СО РАН, 1980. 103 с.

Кузнецова Л.Г., Василенко В.Б., Холодова Л.Д. Особенности состава породообразующих минералов Ошурковского массива // Материалы по генетической и экспериментальной минералогии. Новосибирск: ОИГГиМ, 1995. Т. 11. Вып. 832. С. 81—97.

Литвиновский Б.А., Занвилевич А.Н., Бурдуков И.В., Карманов Н.С. Сиениты как продукт фракционной кристаллизации щелочно-базальтовой магмы Ошурковского массива, Забайкалье // Петрология. 1998. Т. 6. № 1. С. 30—53.

Литвиновский Б.А., Ярмолюк В.В., Занвилевич А.Н. и др. Источники и условия формирования гранитных пегматитов Ошурковского щелочно-монцонитового массива, Забайкалье // Геохимия. 2005. № 12. С. 1251—1270.

Мазукабзов А.М., Донская Т.В., Гладкочуб Д.П., Падерин И.П. Геодинамика Западно-Забайкальского сегмента Центрально-Азиатского складчатого пояса в позднем палеозое // Геология и геофизика. 2010. Т. 51. № 5. С. 615—628.

Никифоров А.В., Ярмолюк В.В., Коваленко В.И. и др. Позднемезозойские карбонатиты Западного Забайкалья: изотопно-геохимические характеристики и источники // Петрология. 2002. Т. 10. № 2. С. 168—188.

Никифоров А.В., Ярмолюк В.В., Покровский Б.Г. и др. Позднемезозойские карбонатиты Западного Забайкалья: минеральный, химический и изотопный (O, C, S, Sr) состав и соотношения со щелочным магматизмом // Петрология. 2000. Т. 8. № 3. С. 309—336.

Петрографический кодекс. Издание третье. СПб.: ВСЕГЕИ, 2009. 200 с.

Платов В.С., Савченко А.А., Игнатов А.М. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье издание). Алдано-Забайкальская серия. Лист М-48 — Улан-Удэ. Объяснительная записка. СПб.: ВСЕГЕИ, 2009. 271 с.

Поляков Г.В., Богнибов В.И., Кривенко А.П., Балыкин П.А. О происхождении, формах проявления и распространенности апатитовой минерализации Ошурковского типа на юге Сибири // Геология и геофизика. 1980. № 6. С. 19—26.

Рипп Г.С., Кобылкина О.В., Дорошкевич А.Г., Шаракшинов А.О. Позднемезозойские карбонатиты Западного Забайкалья. Улан-Удэ: Изд-во БНЦ СО РАН, 2000. 224 с.

Рипп Г.С., Дорошкевич А.Г., Ласточкин Е.И., Избродин И.А. Изотопный состав кислорода в минералах силикатных пород Ошурковского апатитоносного массива щелочных габброидов (Западное Забайкалье) / XIX симпозиум по геохимии стабильных изотопов. Тез. докл. М. 2010. С. 337—339.

Смирнов Φ .*Л*. Ошурковское месторождение апатита // Советская геология. 1971. № 4. С. 79—90.

Травин А.В., Юдин Д.С., Владимиров А.Г. и др. Термохронология Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) // Геохимия. 2009. Т. 11. С. 1181—1199.

Шадаев М.Г., Посохов В.Ф., Рипп Г.С. Rb-Sr данные о раннемеловом возрасте пегматитов а Западном Забай-калье // Геология и геофизика. 2001. T. 42. № 9. C. 1421-1424.

Ярмолюк В.В., Иванов В.Г., Коваленко В.И. Источники внутриплитного магматизма в позднем мезозое—кайнозое (на основе геохимических и изотопно-геохимических данных) // Петрология. 1998. Т. 6. № 2. С. 115—138.

Black L.P., Kamo S.L., Allen C.M. et al. TEMORA 1: a new zircon standard for phanerozoic U-Pb geochronology // Chemical. Geology. 2003. V. 200. P. 155–170.

Cook N.D.J. Diorites and associated rocks in the Anglern Complex at the Neck, northeastern Stewart Island, New Zealand: An example of magma mingling // Lithos. 1988. V. 21. P. 247–262.

Fleach R.J., Sutter J.F., Elliot D.H. Interpretation of discordant 39 Ar/ 40 Ar age-spectra of Mesosoic tholeites from Antarctica // Geochim. Cosmochim. Acta. 1977. V. 41. P. 15–32.

Graham I.T., De Waal S.A., Armstrong R.A. New U-Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa // J. African Earth Sci. 2005. V. 43. P. 537–548.

Hammarstrom J.M., Zen E-an. Aluminium in hornblende: an empirical igneous geobarometer // Amer. Mineral. 1986. V. 71. P. 1297–1313.

Harrison T.M., Heizler M.T., Lovera O.M. et al. A chlorine disinfectant for excess argon released from K-feldspar during step heating // Earth Planet. Sci. Lett. 1994. V. 123. P. 95–104.

He Z.-Y., Hu X.-S., Niu Y. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China // Lithos. 2010. V. 119. P. 621–641.

Hollister L.S., Grissom G.C., Peters E.K. et al. Confirmation of the empirical correlation of the Al in horblende with pressure solidification of calc-alkaline plutons // Amer. Mineral. 1987. V. 72. P. 231–239.

Johnson M., Rutherford M.J. Experimentally determined conditions in the Fich Canyon Tuff, Colorado, magma chamber // J. Petrology. 1989. V. 30. P. 711–737.

Litvinovsky B.A., Jahn B., Zanvilevich A.N., Shadaev M.G. Cristal fractionation in the petrogenesis of an alkali monzodiorite — sienite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia // Lithos. 2002. V. 64. P. 97—130.

Lowell G.R., Young G.J. Interaction of coeval mafic and felsic melts in the St. Francois Terrane of Missouri, USA // Precambrian Res. 1999. V. 95. P. 69–88.

Ludwig K.R. User's Manual for Isoplot/Ex, Version 2.10, A geochronological toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication. 1999. № 1. 46 p.

Ludwig K.R. SQUID 1.00 User's Manual; Berkeley Geochronology Center Special Publication. 2000. № 2. 19 p.

Miller C., Thoni M., Goessler W., Tessadri R. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps) // Lithos. 2011. V. 125. P. 434–448.

Schmid M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-inhorblende barometer // Contrib. Mineral. Petrol. 1992. V. 110. P. 304—310.

Snyder D., Crambes C., Tait S., Wiebe R.A. Magma mingling in dikes and sills // J. Geology. 1977. V. 105. P. 75–86.

Valentini L., Moore K.R. Numerical modeling of the development of small-scale magmatic emulsions by Korteweg stress driven flow // J. Volcanology and Geothermal Res. 2009. V. 179. P. 87–95.

Williams J.S. U-Th-Pb geochronology by ion microprobe // Application of microanalytical techniques to understanding mineralizing processes // Rev. Economic. Geology. 1998. V. 7. P. 1–35.