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ABSTRACT

Large language models (LLMs) have achieved great success in gen-

eral domains of natural language processing. In this paper, we

bring LLMs to the realm of geoscience with the objective of ad-

vancing research and applications in this field. To this end, we

present the first-ever LLM in geoscience, K2, alongside a suite

of resources developed to further promote LLM research within

geoscience. For instance, we have curated the first geoscience in-

struction tuning dataset, GeoSignal, which aims to align LLM

responses to geoscience-related user queries. Additionally, we have

established the first geoscience benchmark, GeoBenchmark, to

evaluate LLMs in the context of geoscience. In this work, we exper-

iment with a complete recipe to adapt a pretrained general-domain

LLM to the geoscience domain. Specifically, we further train the

LLaMA-7B model on over 2 million pieces of geoscience literature

(3.9B Tokens) and utilize GeoSignal’s supervised data to fine-tune

the model. Moreover, we share a protocol that can efficiently gather

domain-specific data and construct domain-supervised data, even

in situations where manpower is scarce. Experiments conducted on

the GeoBenchmark demonstrate the effectiveness of our approach

and datasets.
1
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1 INTRODUCTION

Geoscientists have long faced challenges in integrating data from

various sources and disciplines due to differences in terminolo-

gies, formats, and data structures, which subsequently leads to

numbers of natural language tasks in geoscience such as geolog-

ical and geographical named entity recognition [10], spatial and

temporal relation extraction [27] to build geoscience knowledge

graph [7], geology reports and literatures summarization [26], and

representation learning via geoscience language models [33]. How-

ever, language models in geoscience are sparse and remain limited

in scale [8]. This situation stands in stark contrast with the pros-

perity of large language models (LLMs), such as ChatGPT [31] and

GPT-4 [32], in general natural language processing (NLP), where

notable successes have been achieved.

Despite their effectiveness in general domains, current LLMs of-

ten fall short in catering to the needs of geoscientists. This shortfall

is largely attributed to the lack of reliable knowledge concerning

geoscience problems, given that the related geoscience data seldom

1
We release the full version of training data and models after the final draft.

exist in the commonly used pretraining text corpora such as C4 [35]

and the Pile [12]. Moreover, top-performing LLMs like ChatGPT

only offer services via APIs, which presents roadblocks for external

domain research and advancement. To mitigate these issues and

foster research and application within the geoscience domain, we

introduce the first-ever open-source LLM for geoscience, referred

to as K2 (The second highest mountain in the world, which we believe
in the future larger and more powerful geoscience language models
will be created). K2, a GPT-like language model comprising 7 bil-

lion parameters, is based on the pre-trained LLaMA [42] model but

specializes on the geoscience domain. Along with the introduction

of K2, this paper also explores a roadway to collect geoscience

text corpus, constructs geoscience instruction supervised data, and

builds geoscience NLP tasks benchmarks, in alignment with the

Deep-time Digital Earth (DDE, [44])
2
big science plan.

The training of K2 consists of two stages, the pretraining stage

and the instruction tuning stage, as depicted in Figure 1. During

pretraining, we continue pretraining the LLaMA-7B model on a

geoscience text corpus that we preprocessed from geoscience pa-

pers. Then we perform instruction tuning [4, 23, 36], where we

further train the model to follow human instructions. To this end,

we have curated GeoSignal, an instruction tuning dataset created

by unifying 8 diverse geoscience NLP task data with prompts, such

as relation extraction, entity recognition, classification, and summa-

rization. We also construct GeoBenchmark, an evaluation dataset

comprising more than 1500 objective questions and 939 subjective

questions collected from National Postgraduate Entrance Examina-

tion (NPEE) on Geoscience and AP Test Geology, Geography and

Environmental science. GeoBenchmark serves to track the progress

and drive the development of geoscience language models. Through

our concerted efforts in data collection and training, the resulted

K2 model is a foundation language model that can be used to de-

sign multiple geoscience applications, making it benefit geoscience

researchers and practitioners [28].

Our contributions can be listed as follows:

• We introduce K2, a foundation langugage model in geoscience

field. K2 can answer geoscience questions and follow geoscien-

tists’ instructions via suitable prompts with its professionalism

in geoscience.

• We construct GeoSignal, the first-ever geoscience-supervised

instruction data. To evaluate K2 on geoscience tasks and the fol-

lowing language models in geoscience, we build GeoBenchmark,

the first NLP task benchmarks in geoscience.

2
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Figure 1: Pipeline of training K2, including two steps, one is further pretrain for absorption of geoscience knowledge, another

one is instruction tuning, deploying to make the model align to human, instructed by human, and response like a human.

• Taking geoscience as an example, we build up a paradigm to con-

struct the domain text corpus and domain-supervised instruction

data and explore a recipe to train a domain-specific language

model.

• Compared with similar-size baseline models, K2 outperforms

both subjective and objective geoscience tasks. At last, we release

the code, K2 weights, GeoSignal, and GeoBenchmark at Github.

The rest of the paper is arranged as follows: Section 2 will introduce

the related work of K2. In section 3, the detail of data collection and

supervised instruction data construction will be illustrated. Further,

we will share our further pretrain detail and parameter-efficient

instruction tuning processes in section 4, while in section 5, we will

evaluate the K2 and do an ablation study. Finally, we will discuss

the topics raised, lessons learned, potential applications, and future

work related to the K2.

2 RELATEDWORK

Foundation Language Models. Since the appearance of Chat-

GPT [31], there has been a large number of large language models

for use as a foundation model to solve real-life problems. Since the

models that provide only online demos and APIs, like ChatGPT,

GPT-4[32] and Yiyan ( https://yiyan.baidu.com/) are not suitable

and convenient for further pretraining and developing. The open-

source models like CodeGen [30], LLaMA[42], GLM [48], becomes

the foundation models for many other instruction-tuned LLMs like

Alpaca [39], Baize [46], Vicuna [3], Koala [13], and Dolly [6].

Domain Language Models. Large language models become the

foundation model to address the issues in many other domains. In

life science field, Med-PaLm [38], MedGPT [19], BioGPT [25], and

Bio-Megatron [37] The large language model is useful and reliable

in the biomedicine field [43]. In natural science field, Geographic-

BERT [22], MGeo [9], ERNIE-GeoL [17] and GeoBERT [8] are typ-

ical cases in geography and geology, while MatSciBERT [14] is

the one in material science. In academic scenario, SciBERT [2] and

Galactica [40] are two examples.

Parameter-Efficient Tuning on LLMs. Conventional fine-tuning

needs to update all the parameters in LLMs, leading to inefficient

and leaving a large carbon footprint as the models grow along

with the scaling law [18]. Soft Prompt tuning [20] frozen language

models to perform specific downstream tasks. Prefix-tuning [21]

draws inspiration from prompting for language models, allowing

subsequent tokens to attend to this prefix as if it were “virtual to-

kens”. In addition, Adapter [15] make the parameters of the original

network remain fixed, yielding a high degree of parameter sharing,

and LoRA [16] views the update of the weights as the result of two

tunable low-rank matrices multiplication.

3 DATA COLLECTION AND CURATION

To train K2, we collect geoscience text corpus and geoscience-

oriented data from various resources. Then we re-structure the data

into signals and build up the instruction tuning dataset GeoSignal.

This valuable information can serve for learning knowledge for

geoscience tasks and instruct models for aligning with humans

and experts. Moreover, we develop GeoBenchmark to compare lan-

guage models focusing on geoscience. We will publicly make our

datasets available after the final draft on Github.

3.1 Pretraining Data

Our text corpus for further pretraining on LLaMA-7B consists of

3.9 billion tokens from geoscience papers published in selected high-

quality journals in earth science and mainly collected by GAKG [7].

3.1.1 Geoscience Text Corpus Collection.

Geoscience Open Access Literatures. With the support from

DDE (Deep-Time Digital Earth Big Science Program), we can have

the resources and chances to access materials and data strongly

related to geoscience, including 531 journals, and 4,274,716 papers’
metadata. We use 1,122,094 open-access papers’ PDFs organized by

GAKG to build the text corpus.

Wikipedia pages about Earth science. Wikipedia is an import

resource we take into account for text corpus collection, and the

root node of the Wikipedia category of geoscience we take into

consideration is “https://en.wikipedia.org/wiki/Earth_science”. We

mine all the child and related topics connected to it and finally gain

767,341 Wikipedia pages.

In brief, The statistic of the collection of geoscience text corpus

is shown in Table 1.

3.1.2 Text Corpus Preprocessing.

https://github.com/davendw49/k2
https://yiyan.baidu.com/
https://deep-time.org/
https://gakg.acemap.info/
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A. Figure Processed Text. B. Table Processed Text. C. Citation Processed Text. D. Formula Processed Text.

Figure 2: Tokenization processed text. A. shows an example of a figure marker, we only choose to preserve the captions; B.

shows an example of a table marker, we transfer the tables into the form of Markdown; C. shows the tokenization of the

citations, we replace the reference numbers into reference papers’ title to preserve the readability of the text corpus.

Data source Document Tokens

Geoscience papers 1,122,094 3.9B

Geoscience papers Metadata 4,274,716 0.1B

Wikipedia page 767,341 1.5B

Total 6,164,151 5.5B

Table 1: The details of the text corpus used to train K2.

PDF Parsing. We build an automatic PDF parsing toolkit based

on the GROBID library [1]. We use Markdown as the format for all

papers in the corpus to preserve readability and consistency. Finally,

we use regular expressions and rule-based scripts to clean the data,

removing the text obstructing reading, garbled, and impurity data.

The script will be released shortly.

Tokenization. Tokenization is an essential part of text corpus

design. To make the language model understand the academic

papers, we utilize specialized tokens for different modalities as

follows, and the examples are shown in Figure 2.

• Illustrations: we use special tokens [START_FIGURE] and

[END_FIGURE] to annotate the captions of the illustrations in

the papers.

• Tables: Two special tokens [START_TABLE] and [END_TABLE]

are used to locate the position of the table in the passage. In this

process, we transform the tables in the PDFs into the format of

Markdown.

• Citations: We use special tokens [START_REF] and [END_REF]

to annotate the citations.

• Formulas: For mathematical content or formulas, we filter and

clean the irregular formulas parsed from PDFs through regular ex-

pressions and rule-based methods. Further we use special tokens

[START_FORMULA] and [END_FORMULA] to capture them.

3.2 Instruction Tuning Data: GeoSignal

Further, we collect well-organized instruction tuning data, such

as natural instruction [29], AI2 Reasoning Challenge, stanford-

alpaca [39], and Dolly-15k [6] for human-alignment and further

build up expert-alignment data with a semi-manual pipeline called

GeoSignal, the statistics of these instruction tuning data are shown

in Table 2.

Instruction Tuning Data Prompts Data Type

GPT4-Alpaca 52,002 Self-instruct

Dolly-15K 15,011 Task-specific

Natural Instruction 2,446 Task-specific

AI2 Reasoning Challenge 7,787 Task-specific

GeoSignal 82,202 Knowledge Intensive

Table 2: Datasets used to train K2 during the instruction

tuning process.

3.2.1 Align-to-Human. Expert is a human who specializes in a

given domain; therefore, we collect several well-construct super-

vised datasets, including self-instruct and human-annotated.

• Alpaca-GPT4: Alpaca-GPT4
3
is instruction-following data gen-

erated by the techniques named Self-Instruct [45], and all the

samples are in the form of <instruction, input, output>, which we

choose to follow.

• Dolly-15k: databricks-dolly-15k [6] is an open-source dataset

of instruction-following records generated by thousands of

Databricks employees, including brainstorming, classification,

closed QA, generation, information extraction, open QA, and

summarization. We organize them all into <instruction, input,
output> format.

• Natural Instruction: Natural Instruction [29] maintains many

tasks and their natural language definitions/instructions. Its v1.x

dataset consists of 61 tasks. The v2.x dataset contains over 1.5k

tasks. We select objective tasks elaborately from the v2.x dataset

and organize them into <instruction, input, output> format.

• AI2 Reasoning Challenge: AI2 Reasoning Challenge (ARC) [5]

is a dataset of 7,787 genuine grade-school level, multiple-choice

science questions. As it is well-formed, we sample randomly and

organize it into <instruction, input, output> format.

3.2.2 Align-to-Expert. Referring to reStructured pre-training [4,

47], signals are the data we can use to train models and usually exist

in databases and websites. Many data sources and materials have

different types of geoscience signals in geoscience, as illustrated

in Figure 3. These signals could be restructured into input-output

pairs as instruction tuning samples. For example, with a paper’s

abstract and title information, we can restructure such signals into

3
https://github.com/tloen/alpaca-lora

https://github.com/tloen/alpaca-lora
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a title generation task given the abstract. In addition, and most

importantly, with the support of several applications and products

of DDE, we collect a large quantity of geoscience expertise data and

re-structure it with prompts into a unified sequence-to-sequence

format, namely GeoSignal. The databases and websites we use are

as follows:

• GAKG: GAKG [7] is a multimodal Geoscience Academic Knowl-

edge Graph organizing geoscience papers’ illustrations, text, and

bibliometric data.

• DDE Scholar: DDE Scholar (https://ddescholar.acemap.info/), a

geoscience academic literature search engine, contains more than

3 million papers and 4 million scholars’ information in the field

of earth sciences.

• DataExpo: DataExpo [24] is a one-stop dataset service and has

indexed over 960,000 datasets from more than 27,000 repositories

in the context of Deep-time Digital Earth Program.

• GSO: GSO (https://gso.acemap.info/) is a large-scale ontology

of research areas that was automatically generated using the

hierarchical topic modeling, which consists of more than 120

thousand research interests in the field of geoscience.

• Geoscience QA:We crawler 4 question and answer platform, and

7 geoscience-related databases, using OpenAI [31] for template

generation and with the help of the human expert, we finally have

a clean and correct geoscience Q&A dataset. The distribution of

each part is shown in the Github Repo for the limitation of this

manuscript.

For a better understanding of geoscience signals, we list the main

signals we take into consideration in bellowing:

GAKG DataExpo

GSO Geoscience QA

Pangaea

Cruise

Top Website

DDEScholar
Paper Keyword Extraction

References Resolution

Geoscience Summary

Knowledge Extraction

Table Content

Figure Content

Table Resolution

Figure Resolution

Description
Wikipedia

Dictionary

WordNet

Taxonomy
Dictionary Synonym

WordNet Synonym DDE hyponymy

Wikipedia hyponymy

Wikipedia Entity Wikipedia Title

Dinosaur

Fossil

Mineral

NGDB RRUFF

Earthquake

Save my Exam

Researchgate

Quizlet

Extractive QA

Figure 3: The components of GeoSignal.

• G1: Paper content: The title, abstract, full-text of geoscience

literature. This signal naturally exists on DDE Scholar, GAKG,

and DataExpo, and can be used in summarization tasks.

• G2: Category: The category of a geoscience paper or term. This

signal typically exists on DDE Scholar, GAKG, and Wikipedia. It

can be used for the text classification task.

• G3: Reference Paper: This signal exists in the reference lists

and introduction of papers and is useful for text comprehension

and summarization.

• G4: Paper table and illustration: Tables and figures in geo-

science papers provide captions and content mentioned in the

passage, which can be used for question-answering tasks.

• G5: Entity mentions: The entities within a given text. This

signal can be found in GAKG and Wikipedia and can be useful

for named entity recognition tasks.

• G6: Relations: The relationships between different geoscience

entities. This information exists in human-annotated datasets

such as GAKG andGSO. This signal is useful for finding synonyms

and hyponymy terms in geoscience.

• G7: Word description: The definition of a word. Various geo-

science resources contain this signal, such as Geoscience Dictio-

nary, WordNet, Wikipedia, and GSO. This signal is useful for the

task of explanation.

• G8: Synonyms & Taxonomy: The Synonyms and hyponymy

relation between terms in geoscience. Geoscience Dictionary and

GSO contain this signal, which is useful for finding synonyms

and hyponymy terms in geoscience.

• G9: Text Comprehension: This signal typically exists in geo-

science academic platforms and other text material containing

question and answer pairs and is useful for question answering.

• G10: Factual knowledge: Geoscience facts, e.g., Dolomite is a

carbonate rock. This signal typically exists in some geoscience-

related QA platforms, useful for question-answering and fact

verification.

Based on these signals, we restructure the data for tuning on

tasks of Question Answering, Named Entity Recognition, Relation Ex-
traction, Fact Verification, Summarization, Text Classification, Word
Semantics, and Explanation, and we sample and clean the data to

build the instruction tuning data GeoSignal. The statistics of GeoSig-

nal is listed as Table 3.

Tasks Samples Total

Question Answering 11,360,163 15,349

Named Entity Recognition 6,252,268 2,400

Relation Extraction 1,200 600

Fact Verification 168,424 8,000

Summarization 3,279,336 800

Text Classification 8,313 2,000

Word Semantics 826,194 6,400

Explanation 731,374 4,200

Entire GeoSignal 22,627,272 39,749

Table 3: The statistics of GeoSignal categorized by tasks.

3.3 Evaluation on Expertise in Geoscience:

GeoBenchmark

Lastly, in order to evaluate the language models for solving geo-

science questions and the capacity to understand and utilize the

geoscience knowledge, we extract the data from various Question-

answer websites, crawl several open-source test websites, and fi-

nally construct a benchmark, named GeoBenchmark.

NPEE. First, we collected National Postgraduate Entrance Exam

questions on geology and geography in the past five years. We

choose the text-only questions and translate them into English since

the base model is LLaMA. After verifying the translated questions

and corresponding answers, we got 182 multiple-choice questions,

150 fill-in-the-blank questions, 454 word-explanation tasks, and

335 essay questions. Since the fill-in-the-blank questions, word-

explanation tasks, and essay questions are hard to evaluate, we

make them subjective tasks, while the multiple-choice questions

are objective tasks.
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APTest. we also collect AP (Advanced Placement) examinations

are exams offered in the US by the College Board and are taken

each May by students. We collect and clean 1395 multiple-choice

questions about geology, geography, and environmental science.

To sum up, There are 183 multiple-choice questions in NPEE,

and 1,395 in total in AP Test, constituting the objective task set.

Meanwhile, we gather all 939 subjective questions in NPEE to be

the subjective tasks set and use 50 to measure the baselines with

human evaluation. In the experiments sessions, we further discuss

the evaluation metrics on these tasks.

4 TRAINING THE K2

In this section, we establish a recipe for tuning a large language

model on a specific domain and share the settings we adopt to train

the K2.

4.1 Geoscience Domain Adaptation Recipe

Since geoscience is a relatively secondary or arcane field of study,

there are few language models for such scenarios. However, ad-

vanced natural language models and tools can help geoscientists

with data mining and knowledge discovery in their research fields.

Therefore, learning a language model for knowledge understand-

ing, summary, and QA is necessary. Meanwhile, geoscience has a

rich knowledge accumulation, such as academic papers and scien-

tific reports, which has established a data foundation for training

large-scale language models. Consequently, Based on the data in

the field of geosciences, we explored a recipe for scientific domain

adaptation and finally obtained K2.

Further
Pre-training Instruction Tuning Knowledge-Intensive 

Instruction Tuning

Domain-Shift Human-Alignment Expert-Alignment

Figure 4: Training recipe for domain language models.

As shown in Figure 4, scientific domain adaptation has three

main steps. First, we use domain-specific text corpus to further

pretrain the base model. In this paper, we use LLaMA as the base

model. Second, since instruction tuning can make the language

models generate content following human instructions, we can first

do instruction tuning with general instruction-tuning data, such as

Alpaca, and natural instruction. Lastly, after learning the paradigm

to follow the instructions, the model can learn more information

from the restructured domain knowledge, which we call expertise-

instruction tuning. In the ablation experiments, we will further

verify the correctness of this recipe.

4.2 Further Pretrain

During the stage of further pretrain on geoscience text corpus, We

initialize the LLaMA-7B [42] checkpoints with the 8-bit integer

format (int8) parameters, using bf16 and tf32 as the floating point

formats, and train it on 3.9B tokens from 2,455,040 samples consist-

ing more than 2 million well-preprocessing geoscience literature.

The entire parameters of LLaMA-7B (6.7B trainable parameters)

are further pretrain for one epoch on 4 NVIDIA A100-SXM-40GB

GPUs and the training for 214 hours. In this stage, we set a learning

rate of 1e-5, with a global batch size of 128 and a micro-batch size

of 2. The incremental steps of the train are 30,140 steps (1,000 for
warm-up). Finally, we will call the model obtained after the further

pretrain GeoLLaMA for better distinction.

4.3 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) helps achieve the mission

of training in a low-resource setting. As mentioned in [16], the

weight updates during the fine-tuning process also have a low

“intrinsic rank” during adaptation. Therefore, according to LoRA, a

hidden layer ℎ =𝑊0𝑥,𝑊0 ∈ 𝑅𝑑∗𝑘 , the modified forward pass yields:

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 , where 𝐵 ∈ 𝑅𝑑∗𝑟 , 𝐴 ∈ 𝑅𝑟∗𝑘 and 𝑟 <<

𝑚𝑖𝑛(𝑑, 𝑘) are two low “intrinsic rank” matrix containing trainable

parameters. Moreover, after further pretraining the LLaMA, the

adaptation to the field of geoscience is more comprehensive. During

the instruction tuning stage, the target is to train the model to align

with humans and experts. We use Low-Rank Adaption to tune the

model.

In instruction tuning, we set a learning rate of 1e-4 with a global

batch size of 128. As for the LoRA setup, we set lora_r as eight

while lora_alpha as 16. We set the lora_target_modules as k_proj,

q_proj, and v_proj, based on our experimental observation. The

instruction tuning via LoRA only trains 6M parameters on one

single NVIDIA GeForce RTX 3090 for 23 hours. In order to make the

model perform better and inject part of the geoscience knowledge in

the instruction tuning stage, we first use alpaca instruction tuning

data to train GeoLLaMA, which we recognize as Human-alignment.

Then we resume from the checkpoint obtained and continue fine-

tuning the model using GeoSignal for further training. Based on

our experimental observation, the performance does not perform

better if we mix these training data.

5 EVALUATION

This section illustrates the evaluationmethods and results of K2 and

related baselines. GeoBenchmark consists of two kinds of tasks,

one is subjective, and one is objective.Wewill release our evaluation

pipeline on Github Repo. In this part, we choose four baselines

models: Galactica [40], MPT-7B [41], Vicuna-7B [3], LLaMA-7B [42]

and Alpaca-7b [39].

5.1 Objective tasks in GeoBenchmark

For objective tasks like multiple-choice tasks (GeoBenchmark-AP

and multiple-choice and true-false questions in GeoBenchmark-

GNPEE), we prompt appropriately, ending with the phrase “The
answer is”, calculate the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 of the probability of next token

among the choice label (e.g., A, B, C, D, sometimes E), and finally

gain the score of the Accuracy based on these test ground truth.

First, we evaluate all the saved checkpoints, as shown in Figure 5.

We can find that as the tokens seen by the model gradually scale

up, the model’s performance on our benchmark is improving. This

result indicates that the model learns geoscience knowledge in

further pretrain.

Moreover, compared with the baselines, we can see that K2

outperforms the NPEE dataset. However, in the AP Test, K2 is

similar to the Galactica model since geoscience learned in high

school is human geography and environmental science, including

in the training corpus of Galactica.

https://github.com/davendw49/k2
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21.621.6
19.619.6

23.623.6

29.129.1

25.725.7

31.131.1

Figure 5: Each score at selected training steps of K2 on the

Objective tasks in GeoBenchmark.

Baselines NPEE APTest

Gal-6.7B 25.7 29.9

LLaMA-7B 21.6 27.6

MPT-7B 28.4 26.0

Vicuna-7B 26.4 16.8

Alpaca-7B 31.1 29.1

K2-7B (Ours) 39.9 29.3

Table 4: Comparison among baselines on Objective tasks in

GeoBenchmark. The best number is bolded, while the second

best is underlined.

5.2 Subjective tasks in GeoBenchmark

For subjective tasks (mainly in GeoBenchmark-NPEE), we use au-

tomatic methods, GPTScore [11] and Perplexity to evaluate the

quality of the output. GPTScore utilizes generative pre-trained mod-

els’ emergent abilities (e.g., zero-shot instruction) to score generated

texts. In addition, perplexity is computed with GPT-2 [34] on the

generated text and measures the fluency of the generations. Fur-

thermore, referring to geoscientists, we collect 50 open geoscience

questions and gather ten geoscience research practitioners to evalu-

ate the output of baseline models. We evaluate the models on three

metrics, 1) rationality: whether the generated content of the model

is technical rationality or not; 2) correctness: whether the content

generated by the model is reliable or not; 3) consistency: whether

the generated content always stays in the topic. All the scores scale

from 1 (poor) to 3 (good), with 2 indicating acceptable content. The

complete results of the subjective tasks are in Table 5.

Baselines

Automatic Evaluation Human Evaluation

perplexity GPTScore rationality correctness consistency

Gal-6.7B 34.57 -2.3598 1.96 1.74 1.79

LLaMA-7B 40.07 -1.9531 2.24 2.04 2.01

GeoLLaMA-7B 32.32 -1.9457 2.15 1.89 2.03

Alpaca-7B 40.07 -1.9536 2.09 1.93 2.34

K2-7B (Ours) 32.32 -1.9487 2.38 2.13 2.14

Table 5: Comparsion on subjective tasks in GeoBenchmarks.

The best number is bolded, while the second best is under-

lined.

As we can see, K2 performs better on rationality and correctness.

At the same time, consistency stays competitive. The results indi-

cate that our model better understands geoscience and can utilize

scientific knowledge.

5.3 Ablation on Expert-Alignment

To better understand the recipe for aligning the model with humans

and experts, we deploy the ablation experiments to explore the

detail. We treat the data constructed by self-instruct or human-

annotated in the general domain or for dialogue generation as

human-alignment data. At the same time, view the data annotated

by experts in specific domains as expert-alignment data. As shown

in Table 6, using task-special data, such as dolly-15k, fails to achieve

a good performance, while using self-instruct data, such as Alpaca-

GPT4, is still not as effective as using knowledge-intensive data.

Surprisingly, we have discovered that the results are unsatisfactory

if we mix the knowledge-intensive data GeoSignal with human-

alignment data Alpaca. It is better to use Alpaca to align the model

to follow human instruction and then use the GeoSignal to align

with the experts. Here LoRA is deployed only on attention layers.

Model NPEE APTest

GeoLLaMA→ Dolly 27.0 26.3

GeoLLaMA→ Alpaca-GPT4 34.4 26.5

GeoLLaMA→ GeoSignal 37.2 27.4

GeoLLaMA→ GeoSignal mix Alpaca-GPT4 33.8 23.4

GeoLLaMA→ Alpaca-GPT4 → GeoSignal (K2) 39.9 29.8

Table 6: Results when using different instruction tuning data.

The best number is bolded, while the second best is under-

lined.

6 CONCLUSION AND DISCUSSION

In this paper, we introduceK2, the first-ever large languagemodel in

the geoscience field. K2 can answer geoscience questions and follow

geoscientists’ instructions with its geoscience professionalism. We

construct the first geoscience-supervised instruction data, GeoSig-

nal. Meanwhile, we build GeoBenchmark, the first NLP benchmark

in geoscience to evaluate the capability on geoscience knowledge

understanding and utilization. On the geoscience benchmarks col-

lected, K2 shows its professionalism and effectiveness compared

with other similar-size language models.

Limitations. Like other language models, hallucination, toxic-

ity, and stereotypes exist in K2. Since LLaMA’s pretraining data are

from before 2020 and K2 only use open-access geoscience papers,

the information, and knowledge may not be up-to-date. Moreover,

LLaMA only supports 20 languages and has limited support for

non-English languages, which K2 inherits as well.

Potential Applications. K2 shows the potential of adapting

language models to a scientific field with domain barriers. As a

language model, K2 can understand geoscience materials and mod-

ify the statement about geoscience with suitable prompts. Since

K2 is a generative language model, it can generate paragraphs and

statements on word description and answer generation based on

the given questions. In this way, K2 acts like a knowledge base and

gives the geoscientist a professional assistant.

In the future, we will maximize the advantages and minimize the

limitation of using K2 and provide better services to data mining

communities and geoscientists for further research.



Learning Foundation Language Models for Geoscience Knowledge Understanding and Utilization Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] 2008–2023. GROBID: A machine learning software for extracting information

from scholarly documents. https://github.com/kermitt2/grobid.

[2] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained Language

Model for Scientific Text. In Conference on Empirical Methods in Natural Language
Processing.

[3] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,

Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,

and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with

90%* ChatGPT Quality. https://vicuna.lmsys.org

[4] Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric

Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixi-

ang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery,

Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Wei Yu, Vincent Zhao, Yan-

ping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi, Jeff

Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022.

Scaling Instruction-Finetuned Language Models. ArXiv abs/2210.11416 (2022).

[5] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa

Schoenick, and Oyvind Tafjord. 2018. Think you have Solved Question Answer-

ing? Try ARC, the AI2 Reasoning Challenge. ArXiv abs/1803.05457 (2018).

[6] Databricks. 2023. Hello Dolly: Democratizing the magic of ChatGPT with open

models. https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizin

g-magic-chatgpt-open-models.html

[7] Cheng Deng, Yuting Jia, Hui Xu, Chong Zhang, Jingyao Tang, Luoyi Fu, Weinan

Zhang, Haisong Zhang, Xinbing Wang, and Cheng Zhou. 2021. GAKG: A Mul-

timodal Geoscience Academic Knowledge Graph. Proceedings of the 30th ACM
International Conference on Information & Knowledge Management (2021).

[8] Huseyin Denli, HassanJaved Chughtai, Brian Hughes, Robert Gistri, and Peng Xu.

2021. Geoscience Language Processing for Exploration. Day 3 Wed, November 17,
2021 (2021).

[9] Ruixue Ding, Boli Chen, Pengjun Xie, Fei Huang, Xin Li, Qiang-Wei Zhang,

and Yao Xu. 2023. A Multi-Modal Geographic Pre-Training Method. ArXiv
abs/2301.04283 (2023).

[10] Majigsuren Enkhsaikhan, Wei Liu, Eun-Jung Holden, and Paul Duuring. 2021.

Auto-labelling entities in low-resource text: a geological case study. Knowledge
and Information Systems 63 (2021), 695 – 715.

[11] Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. 2023. GPTScore:

Evaluate as You Desire. ArXiv abs/2302.04166 (2023).

[12] Leo Gao, Stella Rose Biderman, Sid Black, Laurence Golding, Travis Hoppe,

Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn

Presser, and Connor Leahy. 2020. The Pile: An 800GB Dataset of Diverse Text for

Language Modeling. ArXiv abs/2101.00027 (2020).

[13] Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey

Levine, and Dawn Song. 2023. Koala: A Dialogue Model for Academic Research.

Blog post. https://bair.berkeley.edu/blog/2023/04/03/koala/

[14] Tanishq Gupta, Mohd Zaki, N. Krishnan, and Mausam. 2021. MatSciBERT: A

materials domain language model for text mining and information extraction.

npj Computational Materials 8 (2021), 1–11.
[15] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin

de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

Parameter-Efficient Transfer Learning for NLP. In International Conference on
Machine Learning.

[16] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language

Models. ArXiv abs/2106.09685 (2021).

[17] Jizhou Huang, HaifengWang, Yibo Sun, Yunsheng Shi, Zhengjie Huang, An Zhuo,

and Shikun Feng. 2022. ERNIE-GeoL: A Geography-and-Language Pre-trained

Model and its Applications in Baidu Maps. Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (2022).

[18] Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. 2020. Scaling

Laws for Neural Language Models. ArXiv abs/2001.08361 (2020).

[19] Zeljko Kraljevic, Anthony Shek, Daniel M Bean, Rebecca Bendayan, James T. H.

Teo, and Richard J. B. Dobson. 2021. MedGPT: Medical Concept Prediction from

Clinical Narratives. ArXiv abs/2107.03134 (2021).

[20] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for

Parameter-Efficient Prompt Tuning. ArXiv abs/2104.08691 (2021).

[21] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous

Prompts for Generation. Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers) abs/2101.00190 (2021).

[22] Xiao Liu, Juan Hu, Qi Shen, and Huan Chen. 2021. Geo-BERT Pre-training Model

for Query Rewriting in POI Search. In Conference on Empirical Methods in Natural
Language Processing.

[23] S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny

Zhou, Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. 2023. The Flan

Collection: Designing Data and Methods for Effective Instruction Tuning. ArXiv

abs/2301.13688 (2023).

[24] Bin Lu, Lyuwen Wu, Lina Yang, Chenxing Sun, Wei Liu, Xiaoying Gan, Shiyu

Liang, Luoyi Fu, Xinbing Wang, and Cheng Zhou. 2023. DataExpo: A One-Stop

Dataset Service for Open Science Research. Companion Proceedings of the ACM
Web Conference 2023 (2023).

[25] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and

Tie-Yan Liu. 2022. BioGPT: Generative Pre-trained Transformer for Biomedical

Text Generation and Mining. Briefings in bioinformatics (2022).
[26] Kai Ma, Miao Tian, Yongjian Tan, Xuejing Xie, and Qinjun Qiu. 2021. What

is this article about? Generative summarization with the BERT model in the

geosciences domain. Earth Science Informatics 15 (2021), 21 – 36.

[27] Xiaogang Ma, Chao Ma, and Chengbin Wang. 2020. A new structure for rep-

resenting and tracking version information in a deep time knowledge graph.

Comput. Geosci. 145 (2020), 104620.
[28] Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao

Liu, Song Gao, Tianming Liu, G. Cong, Yingjie Hu, Chris Cundy, Ziyuan Li, Rui

Zhu, and Ni Lao. 2023. On the Opportunities and Challenges of Foundation

Models for Geospatial Artificial Intelligence. ArXiv abs/2304.06798 (2023).

[29] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2021.

Natural Instructions: Benchmarking Generalization to New Tasks from Natural

Language Instructions. arXiv preprint arXiv:2104.08773 (2021).
[30] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou,

Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language

Model for Code with Multi-Turn Program Synthesis.

[31] OpenAI. 2022. Introducing ChatGPT. (2022). https://openai.com/blog/chatgpt

[32] OpenAI. 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023).

[33] José Padarian and Ignacio Fuentes. 2019. Word embeddings for application in

geosciences: development, evaluation, and examples of soil-related concepts.

SOIL (2019).

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[35] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou,Wei Li, and Peter J. Liu. 2019. Exploring the Limits of

Transfer Learning with a Unified Text-to-Text Transformer. ArXiv abs/1910.10683
(2019).

[36] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika,

Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan

Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla,

Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan

Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin

Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,

Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,

Stella Rose Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush.

2021. Multitask Prompted Training Enables Zero-Shot Task Generalization. ArXiv
abs/2110.08207 (2021).

[37] Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina, Raul Puri, Mostofa Patwary,

Mohammad Shoeybi, and Raghav Mani. 2020. Bio-Megatron: Larger Biomedical

Domain Language Model. ArXiv abs/2010.06060 (2020).

[38] K. Singhal, Shekoofeh Azizi, Tao Tu, SaidMahdavi, Jason Lee KaiWei, HyungWon

Chung, Nathan Scales, Ajay Kumar Tanwani, Heather J. Cole-Lewis, Stephen J.

Pfohl, P A Payne, Martin G. Seneviratne, Paul Gamble, Chris Kelly, Nathaneal

Scharli, Aakanksha Chowdhery, P. A. Mansfield, Blaise Agüera y Arcas, Dale R.

Webster, Greg S. Corrado, Y. Matias, Katherine Hui-Ling Chou, Juraj Gottweis,

Nenad Tomavsev, Yun Liu, Alvin Rajkomar, Joëlle K. Barral, Christopher Semturs,

Alan Karthikesalingam, and Vivek Natarajan. 2022. Large Language Models

Encode Clinical Knowledge. ArXiv abs/2212.13138 (2022).

[39] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An

Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_alp

aca.

[40] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony S.

Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic.

2022. Galactica: A Large Language Model for Science. ArXiv abs/2211.09085

(2022).

[41] MosaicML NLP Team. 2023. Introducing MPT-7B: A New Standard for Open-

Source, ly Usable LLMs. (2023). www.mosaicml.com/blog/mpt-7b

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-

ple. 2023. LLaMA: Open and Efficient Foundation Language Models. ArXiv
abs/2302.13971 (2023).

[43] Benyou Wang, Qianqian Xie, Jiahuan Pei, Prayag Tiwari, Zhao Li, and Jie Fu.

2021. Pre-trained Language Models in Biomedical Domain: A Systematic Survey.

ArXiv abs/2110.05006 (2021).

[44] Chengshan Wang, Robert M. Hazen, Qiuming Cheng, Michael H. Stephenson,

Chenghu Zhou, Peter A. Fox, Shu-zhong Shen, Roland Oberhänsli, Zeng-qian

Hou, Xiaogang Ma, Zhiqiang Feng, Junxuan Fan, Chao Ma, Xiumian Hu, Bin

Luo, Juanle Wang, and Craig M. Schiffries. 2021. The Deep-Time Digital Earth

https://github.com/kermitt2/grobid
https://vicuna.lmsys.org
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://openai.com/blog/chatgpt
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
www.mosaicml.com/blog/mpt-7b


Conference’17, July 2017, Washington, DC, USA Cheng Deng, et al.

program: data-driven discovery in geosciences. National Science Review 8 (2021).

[45] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel

Khashabi, andHannanehHajishirzi. 2022. Self-Instruct: Aligning LanguageModel

with Self Generated Instructions. ArXiv abs/2212.10560 (2022).

[46] Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. 2023. Baize: An Open-

Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data. ArXiv
abs/2304.01196 (2023).

[47] Weizhe Yuan and Pengfei Liu. 2022. reStructured Pre-training. ArXiv
abs/2206.11147 (2022).

[48] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,

Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,

Yufei Xue, Jidong Zhai, Wenguang Chen, P. Zhang, Yuxiao Dong, and Jie Tang.

2022. GLM-130B: An Open Bilingual Pre-trained Model. ArXiv abs/2210.02414

(2022).


	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection and Curation
	3.1 Pretraining Data
	3.2 Instruction Tuning Data: GeoSignal
	3.3 Evaluation on Expertise in Geoscience: GeoBenchmark

	4 Training the K2
	4.1 Geoscience Domain Adaptation Recipe
	4.2 Further Pretrain
	4.3 Parameter-Efficient Fine-Tuning

	5 Evaluation
	5.1 Objective tasks in GeoBenchmark
	5.2 Subjective tasks in GeoBenchmark
	5.3 Ablation on Expert-Alignment

	6 Conclusion and Discussion
	References

