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Abstract A variety of detailed data about geological topics and geoscience knowledge are buried in the
geoscience literature and rarely used. Named entity recognition (NER) provides both opportunities and
challenges to leverage this wealth of data in the geoscience literature for data analysis and further
information extraction. Existing NERmodels and techniques are mainly based on rule‐based and supervised
approaches, and developing such systems requires a costly manual effort. In this paper, we first design a
generic stepwise framework for domain‐specific NER. Following this framework, domain‐specific entities
and domain‐general words are collected and selected as seed terms. Normalization and grouping processes
are then applied to these seed terms for further analysis. A random extraction algorithm based on a unigram
language model is used to generate a large‐scale training data set consisting of probabilistically labeled
pseudosentences. Each generated sentence is then used as input to the self‐training and learning algorithm.
Experimental results on two constructed data sets demonstrate that the proposed model effectively
recognizes and identifies geological named entities.

Plain Language Summary Existing entity recognition and classification methods are less
functional for automatic geological name entity recognition. In this paper, we propose a stepwise
unsupervised approach to geological name entity recognition in geological reports that requires no labeled
data. This approach dynamically adapts to extract and identify unseen instances. We hope that our approach
will serve as an alternative method that deserves further study.

1. Introduction

As engagement in the geoscience domain continues to grow within governmental agencies and scientific
organizations and the number of related computational models expands, an overwhelming amount of
geoscience text is becoming available in a variety of digital forms and in numerous languages (Lima et al.,
2017; Wu et al., 2017; Xiao et al., 2016; Zheng et al., 2015). Such free text is often recorded in either structured
or unstructured forms (e.g., technical reports, geological reports, books, and other types of reports), thus
posing challenges for engineers and scientists who need to effectively manage, share, analyze, and reuse
all these online data (Cernuzzi & Pane, 2014; Ma, 2017; Wang et al., 2018). As a key collection of open data,
the geoscience literature is a rich resource that can facilitate in knowledge discovery and information
extraction because this literature contains voluminous meaningful information and expertly defined data
that can be applied to train new models and enrich our understanding (Cracknell & Reading, 2014; Qiu
et al., 2018; Wang et al., 2015).

The first step in automatically extracting potential geological information from the vast number of extant
geological reports is to develop a named entity recognition (NER) system. This is a crucial part of various
extraction systems and applications. NER is important in fields such as text clustering (Chen et al., 2018),
information extraction (Huang et al., 2018), information retrieval (Dai et al., 2018), and automatic text sum-
marization (Enríquez et al., 2017). Geological named entity recognition (GNER; also referred to as geological
concept and element identification or the mapping of geological concepts and elements with similar proper-
ties) is a key process in geological language processing in which relevant terms (including single words and
multiple‐word phrases) are used to identify and classify content into predefined sematic categories. Such
information and knowledge can enable scientists and engineers to participate more actively in geological
investigations. In recent years, several research efforts have been devoted to developing standard scalable
and flexible knowledge bases and terminologies to facilitate information extraction and reasoning using
raw data. The bottleneck of geological information processing has shifted from finding free resources and
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data to making full use of those free raw resources and developing standard and scalable models to process
the fast‐growing collection of available text corpora (Shi et al., 2018; Tran et al., 2017; Zhu & Iglesias, 2018).

Consequently, there is a need to develop flexible and scalable models and approaches that enable the auto-
matic recognition and identification of key information/data concerning geological named entities from a
large number of unstructured textual geological reports. Then, the extracted important information should
be transformed into a structured form to enable further flexible analysis. However, existing techniques and
models for automatic GNER and classification are limited in their capabilities compared to other NER efforts
involving geological reports for three reasons (Goyal et al., 2018; Liu & El‐Gohary, 2017; Zhou & El‐Gohary,
2017). First, compared to domain‐general narrative text, geological reports are highly ambiguous and vari-
able, in terms of both their textual characteristics and patterns because these reports are typically written
by different inspectors/experts from a variety of scientific organizations and governmental agencies.
Unstructured geological reports include domain‐specific characteristics and unique aspects; they contain
enormous amounts of high‐level complex concepts and identified technical details (e.g., geophysical surveys,
geochemical tests, and rock parameters). Second, the existing approaches to NER (e.g., those based on rules
or supervised learning) often require considerable manual effort to construct a comprehensive and robust set
of representative features/patterns or to annotate training data to address the high variability in free text
patterns. The main limitation of the supervised training approach is that it requires excessive amounts of
human labor to manually label the training data set. However, in real‐world situations (e.g., in the
geoscience domain), such labeled data sets are not available. The process of data set annotation is challen-
ging and time‐consuming because the annotators require not only specialized domain knowledge but also
a background in natural language processing. Third, compared with English‐language models, the
processing of geoscience reports in Chinese in particular faces greater challenges because of the lack of
spaces between words in the Chinese language, making it difficult to automatically identify the meanings
of words/phrases. Hence, there is a need to develop an unsupervised model that can automatically extract
and identify geological named entities from complex and variable‐free texts.

To tackle these challenges, we propose a stepwise unsupervised approach to GNER in geological reports that
requires no labeled data. This approach dynamically adapts to extract and identify unseen instances. To train
the generative model, the method takes as input a collection of domain‐specific entities and domain‐general
words along with their corresponding frequencies (referred to as sample seeds). The generative model then
randomly chooses among the seeds to generate new sentences using an attention‐based bidirectional long
short‐term memory (Bi‐LSTM) model (Fernando et al., 2018; Wang et al., 2019). The process of generating
sentences based on a unigram language model is iteratively repeated until the algorithm converges (Guo
et al., 2017; Qiu et al., 2018; Quijano‐Sánchez et al., 2018).

The main contributions of the approach proposed in this paper are threefold. (1)We address the GNER issue
specifically for the geoscience domain, which is an understudied but important problem. To our knowledge,
this is the first study to extract geological named entities from unstructured Chinese geoscience reports using
deep learning (DL). (2)We propose a theoretical framework for domain‐specific GNER that incorporates DL
methodology and algorithms into GNER. This framework can be easily extended to other subject domains
through fine‐tuning. (3)We propose a novel generative model/methodology for constructing a training data
set based on both domain‐specific entities and domain‐general words. This method dynamically generalizes
the pseudosentences used as the input training data in a concave DL model.

The remainder of this paper is organized as follows. Section 2 details the related research. Section 3 presents
the preliminaries and the problem formulation. Section 4 describes the algorithm, and section 5 reports and
discusses the experimental results. Section 6 presents a discussion. Finally, section 7 offers conclusions and
prospects for future work.

2. Related Work

The task of NER is to identify terms or concepts that have similar properties from a given set of data. Existing
NER approaches can be grouped into three main categories: rule‐based approaches, statistics‐based
approaches, and hybrid approaches. In this subsection, we review some related works from the
above perspective.
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2.1. Rule‐Based Approaches

Early rule‐based NER approaches mostly depended on sets of various handcrafted rules or matching pat-
terns that supported extraction and recognition of target entities from unstructured textual data (Liu & El‐
Gohary, 2017; Nadeau & Sekine, 2007). Early systems relied on lexical resources and heuristic rules, includ-
ing information from programs such asWordNet and gazetteers, to recognize and classify target named enti-
ties. Such rule‐based systems can be regarded as highly efficient because they explore and use large amounts
of language‐related knowledge (Sarawagi, 2008). The existing approaches exploit domain‐specific syntactic
and semantic text features to achieve high precision performance.

Shaalan (2010) proposed the idea of a local grammar combined with a set of names for identifying entities
with Arabic names. The goal of a filtering technique is to correct the output of an NER by filtering out incor-
rect named entities. Riaz (2010) defined a detailed set of rules and patterns for Urdu NER to address issues
such as the agglutinative nature of the language, lack of capitalization, and spelling variations. The authors
presented a cross‐domain analysis concerning the transference of information fromHindi to Urdu, but these
two languages are closely related. The work of Singh et al. (2012) presented a method for using various rules
and patterns to extract named entities in Urdu. These authors constructed a group of dictionaries used to
find and identify different entities in data sets from different domains. Rahem and Omar (2015) studied
drug‐related entities using a rule‐based approach. In their method, many heuristics and grammatical rules
were constructed for identifying various classes, including the prices of some drugs, types of drugs, and num-
bers of drugs. Quimbaya et al., (2016) defined a set of dictionaries for extracting named entities from electro-
nic free health records. They applied stemmedmatching and fuzzy matching approaches to identify relevant
named entities such as treatments and diagnoses.

However, some disadvantages of rule‐based approaches are that they require a large effort to develop com-
prehensive and representative knowledge bridging the language and the topic domain as well as program-
ming skills to foster further development (Shaalan, 2010). Consequently, rule‐based approaches are
impossible to transfer across domains: rule‐based NER techniques developed for one domain cannot be
extended to other domains or adapted to meet the needs of researchers using other approaches (e.g.,
machine learning [ML] methods).

2.2. Statistics‐Based Approaches
2.2.1. Supervised Learning
Supervised learning approaches focus on the idea of learning from labeled training examples, including both
positive and negative examples. Using this approach, adaptive features can be developed from a large num-
ber of examples, and appropriate algorithms can be constructed to distinguish between positive and negative
examples based on combinations of these features and the identification of similar information from unseen
instances (data).

Supervised learning algorithms heavily rely on training data that are manually labeled by domain experts or
researchers, a task that is both labor intensive and time‐consuming. The annotated data are then input into
algorithms for training, and a model is obtained that is further applied to classify and recognize named enti-
ties in the training data set or in test data. The features considered in these algorithms play an important role
in supporting the multidimensional aspect of free text forms; these features are applied by the learning algo-
rithms to produce models. A generative model has the ability to identify patterns that can be used to recog-
nize similar data and classify examples (both positive and negative data).

Selecting appropriate features for a learning algorithm is a crucial task. Various learning models and tech-
niques have been widely used by NER researchers, such as the conditional random field (CRF) models
(Liu & Zhou, 2013; Majumder et al., 2012), support vector machine (SVM) models (Saha et al., 2010), hidden
Markov models (HMMs; Wang et al., 2014), logistic expression models (Ekbal & Saha, 2011), and maximum
entropy Markov models (Saha et al., 2010).
2.2.2. Semisupervised Learning
Semisupervised learning methods aim to learn from a substantial set of both labeled and unlabeled data to
extract units of target information (e.g., named entities). The existing models and techniques rely on
information‐theoretic regularization, bootstrapping strategies, and robust representations of unannotated
data as inputs (Liu & El‐Gohary, 2017). The generated results are then input into the system to produce more
labeled examples.
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Ekbal et al. (2012) presented a new approach for automatic data annotation using a ML technique. This
method iteratively extracts meaningful sentences from a pool of unannotated documents, labels them,
and adds them to the training data set. An example can be found in the work of Küçük (2015), who proposed
a novel method of automatically compiling language resources from a large number of Turkish
Wikipedia articles.
2.2.3. Unsupervised Learning
Unsupervised learningmodels and techniques learn how to extract and recognize units of target information
(e.g., named entities) without requiring annotated training data. These systems/methods apply only unla-
beled data for decision making. The key goal of an unsupervised learning method is to produce a model that
fully captures the distributional and structural features of the data to achieve better learning (Goyal
et al., 2018).

Traditional unsupervised learning methods are often based on clustering or association rule‐based methods.
The goal of clustering‐based methods is to group similar named entities into the same cluster by applying
similarity measures. Association rule‐based approaches attempt to extract associations among items that
are buried in large databases.

Zhang and Elhadad (2013) presented an unsupervised method for biomedical entity recognition using a
stepwise solution that included seed‐term selection, inverse document frequency (IDF) information filters,
and semantic similarity calculations. Konkol et al. (2015) proposed a novel method for NER that utilized
semantic features including automatic gazetteer construction to explore word‐similarity features.

2.3. Hybrid Approaches

Hybrid approaches combine the advantages of rule‐based approaches and statistics‐based approaches. These
methods focus on achieving high performance by utilizing the results of various statistics‐based techniques
(e.g., ML techniques) and large numbers of handcrafted rules. Recently, several hybrid NER approaches
have been proposed by different researchers.

In the biomedical domain, a ML approach (e.g., CRF) and a postprocessing technique have been used to find
and extract biomedical domain information (Li et al., 2009). A combination of transformation‐based learn-
ing, CRFs, and human‐created rules and patterns was developed for Chinese NER (Zeng et al., 2009).
Classifier ensemble techniques have been studied to identify relevant entities from different types of data
(Ekbal & Saha, 2011). Some hybrids of supervised methods (e.g., linear CRFs) and unsupervised methods
(e.g., cluster‐based approach) have been constructed in an attempt to extract various entities from
English‐language tweets (Liu & Zhou, 2013).

Atkinson and Bull (2012) studied a multistrategy method for identifying biomedical entities without using
any external lexical features (e.g., a dictionary or ontology). This algorithm mainly focused on using prepro-
cessing techniques such as tokenization, POS tagging, and stop word removal, all of which enhanced the
extraction performance when the two‐model hybrid (HMM and SVM) was utilized. Küçük and Yazıcı
(2012) presented a hybrid Turkish NERmethod that applied the same features (e.g., pattern bases and lexical
resources) used in a rule‐based recognizer (Dalkilic et al., 2010). This approach shows a strong ability to
extend its feature resources by learning from annotated data. Saha and Ekbal (2013) presented an NER
classifier ensemble. Several supervised learning techniques, including the CRF, decision tree, maximum
entropy, HMM, and SVM approaches, were combined to produce different models in an effort to obtain
improved results. Munkhjargal et al. (2015) conducted a study of the extraction of Mongolian named entities
based on a classifier ensemble. This is a rather challenging task because of the complex structure and agglu-
tinative morphology of the Mongolian language. Three types of features generated via the maximum
entropy, CRF, and SVM approaches were used to enhance the extraction performance.

3. Preliminaries and Problem Formulation
3.1. Definition of GNER

The term “named entity” refers to a word or phrase that allows elements that have similar properties to be
recognized. A named entity can be either a rigid designator or a member of a semantic class that may vary
based on the domain of interest. In the domain general, NER focuses on recognizing and identifying differ-
ent types of names, including names of persons, organizations, reports, and locations. To date, various
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entities have been identified in various languages and in different domains and used with different types of
approaches. To the best of our knowledge, the problem of extracting named entities from textual geoscience
reports has been less well studied, hence motivating us to shed light on this domain.

Our goal is to recognize four different types of named entities (see Table 1): geological history, geological
structure, rock, and stratum. Examples of each named entity type are listed in Table 1. These geological
named entities, together with their representative meanings, are described as follows:

Geological history (GH) relates to the time during which various geological events occurred, including both
relative and absolute ages.

Geological structure (GS) refers to the deformation or displacement of a rock or stratum under
tectonic action.

Rock (RK) is a solid substance formed by geological processes in the Earth's crust and consists of a collection
of minerals or rock debris with certain structural characteristics and rules governing its modifications.

Stratum (SM) is related to the general term for strata or combinations of strata with common characteristics
or attributes formed during a particular geological period.

The goal of NER is to annotate words in input sentences as named entities. More formally, an input sentence
is represented as S=[w1, w2, … ,wN], and the corresponding prediction labels are denoted by Y=[y1, y 2, … ,
yN]. Following the standard procedure of sequence processing (Reyes‐Galaviz et al., 2017; Zheng et al.,
2017), the BIO scheme is used for annotation and evaluation in our task, where B represents “begin,” I repre-
sents “inside,” and O represents “other.”

3.2. Attention‐Based Bi‐LSTM Model

We describe an attention‐based, Bi‐LSTMmodel, for the GNER extraction task. Most traditional deep‐learn-
ing‐based NER approaches (e.g., LSTM and Bi‐LSTM models) are limited in their ability to address tagging
inconsistency problems (Luo et al., 2017). A natural approach for overcoming this issue is to apply an atten-
tion mechanism (Vaswani et al., 2017). Attention‐based models have recently become popular in fields such
as image recognition, natural language processing (NLP), and speech recognition (X. Li et al., 2018; Qu et al.,
2018; Zhou et al., 2018).

Therefore, we design a Bi‐LSTM model together with an attention mechanism to automatically address the
GNER task. Figure 1 shows the network architecture of this model; the embedding features are provided as
the input to the first layer, and then a fixed vector representation is formed by the subsequent layers. The
final layer calculates a score for each possible information unit (e.g., named entity class) and predicts unseen
instances using these scores. In the following subsections, we briefly describe each core component of
the model.
3.2.1. Embedding Layer
The embedding layer applies a process in which each discrete feature is mapped into a real‐valued vector
representation based on a lookupmatrix. Given an embeddingmatrixMi that represents the ith feature, each
column of Mi is a vector representing the feature values for the ith feature.

Let aij denote the one hot vector for the jth feature value of the ith feature; then, the final output xi of the

embedding layer can be computed as follows:

xi ¼ f i1⊕f i2⊕f i3; (2)

where⊕ denotes the concatenation operation, xi∈R(n1+n2+n3) denotes the feature vector for the ith word of
the sentence, and nk represents the vector dimensions of the kth feature. We use pretrained vectors for the
word embedding matrix.
3.2.2. Bi‐LSTM Layer
A recurrent neural network (RNN) is a network with loops. RNNs have gained attention due to their ability
to model sequential tasks and data (Osipov & Osipova, 2018; Morchid, 2018) by allowing relevant informa-
tion to persist throughout the sequence. However, existing RNN models and techniques are limited in their
ability to handle instances with longer sentences because they may suffer from problems of vanishing or
exploding gradients (Pascanu et al., 2012). An LSTM model can be used to address this issue by means of
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applying the forget gate andmemorymechanisms. An LSTM layer has a novel structure that includes several
memory cells (denoted by as ct) and contains three well‐known types of gates: input gates it, outputs gate ot,
and forget gates ft. These three gates constitute a sigmoid activation function and are used to regulate and
manage cell information.

Let {x1, x2, … ,xm} denote the sequence of word vectors from a sentence, where m denotes the length of the
sentences and xi represents the feature vector that is formed by concatenating all word vectors for the ith

word. The previous hidden state and the cell state are denoted byht−1l and ct−1l , respectively; then, the current

hidden state htl, cell state c
t
l, and the output of the Bi‐LSTMmodel (denoted byzt) can be presented as follows:

itl ¼ σ Ui
lx

t þWi
lh

t−1
l þ bil

� �
;

f tl ¼ σ U f
l x

t þW f
l h

t−1
l þ b f

l

� �
;

otl ¼ σ Uo
l x

t þWo
l h

t−1
l þ bol

� �
;

gtl ¼ tanh Ug
l x

t þWg
l h

t−1
l þ bgl

� �
;

ctl ¼ ct−1l *f tl þ gtl*i
t
l ;

htl ¼ tanh ctl
� �

*otl :

(3)

Figure 1. Attention‐based bidirectional long short‐term memory (Bi‐LSTM) model.

Table 1
Sample List of Geological Named Entities (Ordered Alphabetically)

Named entity Example in English translation

Geological history Cenozoic Era, Quaternary Period
Geological structure Crest of Fold, Trough of Fold
Rock Aiounite, Talzastite
Stratum Precambrian Section in Jixian, Sinian Section in Three Gorges area
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In equation (3), σ denotes the sigmoid activation function, * is used to represent the elementwise product,
and the other previously undefined symbols denote the learning parameters of the Bi‐LSTM model. Here,

d denotes the dimensions of the input feature vector, and N denotes the hidden layer size. htr is computed

similarly to htl but with the order of the words in a given sentence reversed. The final output for the ith word
from the Bi‐LSTM layer is presented as follows:

zt ¼ htl⊕htr : (4)

3.2.3. Pooling Layer
The purposed of a pooling layer is to derive a fixed feature vector from a varied group of word features. In this
paper, motivated by Y. Li et al. (2018), max pooling is used throughout entire complete sequence. The objec-
tive of a max pooling layer is to derive a fixed feature vector from an input sequence; it takes the maximum
value from the input sequence based on the assumption that all relevant and important information is accu-
mulated in the corresponding position. Let {z1, z2, … ,zm} denote the sequence of vectors formed by concate-
nating the previous and subsequent LSTM outputs for all words. This sequence of vectors is defined as
follows:

z ¼ max
1≤i≤m

zi
� �

; (5)

where z denotes the dimension wise maximum among all zi.
3.2.4. Fully Connected and Softmax Layer
The output of the max pooling layer is a fixed feature vector. We use an activation function, namely, the non-
linear tanh function, to process this fixed feature vector and take the newly resulting vector as the input to a
fully connected layer, as follows:

h3 ¼ tanh h2
� �

p yjxð Þ ¼ softmax h3TWo þ bo
� �

;
(6)

where h2 denotes the output of the max pooling layer,Wo ∈ RN × C and bo ∈ RC represent the parameters of
the fully connected layer, and C denotes the final number of categories in our designed model. Finally, the
softmax function is used in the fully connected layer to generate a normalized probability score for each
category.

4. Proposed Approach

To tackle the abovementioned needs and challenges, the authors present a novel, generative, unsupervised,
DL‐based, GNER methodology. The proposed GNER methodology generates training data sets (sets of gen-
erative pseudosentences) that depend entirely on the words and their corresponding frequencies in a
machine‐learning function based on an n‐gram language model. The method dynamically adapts to unseen
instances (entities) and classifies them into predefined entity categories by learning from a large number of
training data sets—thus eliminating the need for human annotation.

Figure 2 depicts our proposed GNER framework. A set of unlabeled seeds (e.g., domain‐specific entities and
domain‐general words) is initially provided as the training input. In this study, the process of GNER is per-
formed in four steps.

As in a typical GNER approach, collecting a set of seeds is the first step. This process involves collecting com-
prehensive and representative terms suitable for generating the pseudosentences described in the third step.
The aim of the seed collection process is to select pairs of domain‐specific entities and their corresponding
frequencies as well as domain‐general words and their corresponding frequencies. The second step of the
GNER process is to normalize and group the selected seeds (terms) based on their corresponding frequen-
cies. In this step, all the frequencies are first normalized using an integral function, and then these seeds
(terms) are grouped to speed up algorithm training. In the third step (random selection of a diverse set of
seeds for generating sentences), entities and words are randomly selected from the previously formed groups
to generate a set of pseudosentences to be used as input training data for a DLmodel (the attention‐based Bi‐
LSTM model in this study). A randomized and automatic seed selection process is an important step of
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automatically generating sentences to be used as training data. In the last step (self‐training and learning),
the DL model is trained with each generated sentence, and the trained model is then used to predict the
final results.

The following sections, the proposed GNER methodology and its components are described in more detail.

4.1. Step 1: Collecting a Highly Diverse Set of Seeds

Most existing approaches to NER utilize supervisedMLmodels and techniques to train and generate amodel
for classifying pairs of terms as either matches or nonmatches. The main limitation of such methods is that
they require labeled training examples/data sets. However, in real‐world applications (e.g., in the geoscience
domain), such annotated data sets are difficult to acquire. In addition, constructing a data set of a sufficient
size through manual labeling is often impossible because of the sensitivity of the data. Therefore, developing
a novel unsupervised learning technique is necessary.

The first step of our approach is to collect a set of representative seed terms for different types of geological
entity classes suitable for generating sample sentences in the third step of the GNER process. The seed‐term
set (the input to our model) is gathered from external concepts and terminologies. To enhance the auto-
mated extraction of geological named entities, the selected seed terms are mainly derived from correspond-
ing formally defined semantic types, domain ontologies, and specific groups that utilize these domain‐
specific terminologies; consideration of these domain‐specific terms is required because of the complexity
and heterogeneity of the free texts found in geoscience reports. We call these domain‐specific terminologies
chosen for inclusion in the seed set “domain‐specific entities.” These are paired with their corresponding fre-
quencies and are combined with domain‐general words and their corresponding frequencies.

After the selection procedure, in this study, we obtained 11,892 and 665,785 seed terms corresponding to
domain‐specific entities and domain‐general words, respectively. Note that the domain‐specific entities
include various types of geological entities, including geological history, geological structure, rock, and stra-
tum entities. Table 2 presents simple examples of the two types of seed terms, each consisting of a term and
its corresponding frequency.

4.2. Step 2: Normalizing and Grouping Seeds by Frequency

After collecting the highly diverse seed set, the next step is to normalize
and group the seeds by frequency. Two text/term processing steps were
applied in this phase: term normalization and term grouping. Term nor-
malization involves applying a rounding function to map the frequencies
of the seed terms into a form suitable for further analysis. Term grouping
involves dividing the seed terms into a sequence of groups based on their
frequencies. In our approach, frequency is a representative and important
factor aiding in geological named entity extraction.

Figure 2. Geological name entity recognition with the proposed approach.

Table 2
Example of the Two Types of Seed Terms

Domain‐specific entity Domain‐general words

Quaternary period, 6689 Reporters Center, 164
Coniacian Age, 7741 Silk‐like cotton, 129
Upright fold, 2235 Rouse, 124
Glauconitic quartzarenite, 4478 Country, 119
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Formally, given a wordw in a seed term set S, whereG={g1, g2,… ,gn} is the final set of groups, let F={f1,f2,… ,
fN} denote the frequency of each group g. Here, θ denotes the contribution factor and is defined as follows:

θi ¼ f i
∑N

j¼1f j
: (6)

We normalize the frequency for each term in the set and obtain the extraction probability for each term by
averaging all groups. Note that θ represents a probability computed based on the weight of each word in the
groups. The weight is an indicator that determines the probability of random extraction from among the seed
terms. A greater probability means that a term is statistically more important when generating sentences.
The reason for using this strategy for each seed term rather than another approach is that this strategy speeds
up the training time.

Figure 3 shows an example of the normalization and grouping processes.

4.3. Step 3: Randomly Selecting a Subset of Seeds for Generating Sentences

After preprocessing the collection of seed terms, the next step is to apply a novel generative method based on
a statistical language model to automatically construct a training data set, thus eliminating the need to
manually annotate a training data set. We refer to these generated examples (for inclusion in the training
data set) as “pseudosentences.” First, terms and their corresponding frequencies from the seed set are ran-
domly and automatically selected and extracted from the different groups based on their extraction probabil-
ities (described in section 4.2). A computational function is used to optimize the extraction probability and
automatically generate a large number of pseudosentences along with appropriate annotation labels.

To generate the pseudosentences, a unigram language model is primarily used to extract and identify geolo-
gical named entities, under the assumption that sentences consist of independent words (Peng et al., 2016;
Qiu et al., 2018; Tripathy et al., 2016). A language model (Brown et al., 1992) is a statistical model that com-
putes the probability of a sentence by helping to predict the next word in a given sequence for different lan-
guage types. From a generative perspective, every natural sentence is composed of a set of words strung
together with a probability equal to the product of a group of conditional probabilities.

For example, given a sentence s={t1,t2, … ,tn}, the sentence probability is defined as follows:

p sð Þ ¼ p t1; t2;…; tnð Þ ¼ p t1ð Þp t2jt1ð Þp t3jt1t2ð Þ…p tnjt1t2::tn−1ð Þ: (7)

The language model given in equation (7) represents a probability distribution over a sequence of many
tokens (symbols) drawn from a finite symbol set. The chain rule of conditional probability is used to generate
a sequence s.

Initially, we consider an n‐gram of size 1, a unigram. Unigrams are the words that independently constitute a
sentence. Thus, equation (7) is computed as follows:

p sð Þ ¼ p t1; t2;…; tnð Þ ¼ p t1ð Þp t2ð Þp t3ð Þ…p tnð Þ ¼ ∏
N

i¼1
p tið Þ; (8)

where p (ti) denotes the probability of the single word ti. The probability estimates p (ti) is required to either
compute the probability of a given sequence (sentence) or to make predictions. A natural way to calculate
this probability is to apply the maximum likelihood estimate, which can be computed by counting the num-
ber of occurrences of ti in a corpus (denoted by N (ti)) and then dividing that value by the total number of
tokens (sequences; denoted by M) in the corpus:

p tið Þ ¼ N tið Þ
M

: (9)

The assumption of a probability estimate is important because it directly simplifies the problem of estimating
a languagemodel from a limited set. More importantly, in the unigrammodel, words are assumed to be inde-
pendent and exchangeable, and word order information is irrelevant.
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Because the words in a sentence in the unigram model are regarded as independent and unordered, by sim-
ply using words and their corresponding frequencies (the extraction probabilities defined in section 4.2), we
can theoretically generate and produce new sentences based on the unigram language model. The corre-
sponding frequencies are calculated and then considered as the probability p (ti); then, words with their cor-
responding probabilities can be iteratively input into an optimization function to generate pseudosentences.
For this study, we constructed the following probability function as the optimization object:

Smax ¼ argmaxp t1ð Þp t2ð Þ…p tnð Þ: (10)

In other words, the goal is to capture the highest possible probability p(t1)p(t2) … p (tn) via a dynamic pro-
gramming scheme. DL offers strong self‐learning capabilities for optimizing this objective function.

Given a random selection algorithm, each iteration focuses on automatically generating a sentence accom-
panied by corresponding labels. Sentence generation continues until the algorithm reaches its maximum
number of iterations; then, the generated sentences are added to the input training data set.

4.4. Step 4: Self‐Training and Learning for GNER

The proposed attention‐based Bi‐LSTM model (presented in section 3.2) is trained using the set of pseudo-
sentences generated as described above. Given a large training data set, many existing ML models and tech-
niques can be used in the self‐training and learning process. However, the computational complexity of
traditional ML approaches limits their ability to support training on large data sets. To improve the training
efficiency of the self‐training and learning process, we use a DL algorithm to train the classifier. In addition,
GNER can be regarded as a sequence‐based problem. DL approaches have become prevalent for application
to such sequence problems (Salaken et al., 2018; Yang & Chen, 2018; Yuan et al., 2018). Following the self‐
training and learning process, a classification model is generated. Then, the model is used to generate a pre-
diction for each unseen instance (item from the test data set), determining it to be a match or nonmatch.

5. Experimental Evaluation

We conducted five primary experiments to fine‐tune the parameters of the unsupervised GNER algorithm
and verify its performance for automatic NER from geological reports. The first experiment was conducted
to identify and select the best parameters (e.g., the word embedding dimensionality and different frequen-
cies). The second experiment was conducted to evaluate the overall performance of the proposed GNER
algorithm. The third experiment was conducted to validate the performance for new entity detection. The
fourth experiment was conducted to select the most appropriate input data size (e.g., the number of seed
terms from among the selected training terms). Finally, the fifth experiment compared our proposed method
with other methods on two constructed data sets. The details of the experimental setup, the final results, and
the performance of the proposed GNER algorithm are presented and discussed in the following sections.

Figure 3. An example of normalization and grouping.
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5.1. Experimental Setup

To evaluate the final performance of the proposed GNER methodology,
we constructed two experimental data sets. The first data set, named the
GJP corpus, consists of abstracts of various geological journal papers pub-
lished between 2014 and 2018. These data were sourced from the largest
Chinese academic database CNKI (http://www.cnki.net/). Fourteen
regional geological reports were selected to construct the second experi-
mental data set, which is called the RGR corpus. A summary of these
two data sets, including the numbers of sentences, entities, and words,

is shown in Table 3. A step‐by‐step illustration of the application of the proposed GNERmethodology is pre-
sented in Figure 4.

For both data sets, we followed the standard manual annotation procedure to develop gold‐standard
sequences of entity categories for testing purposes. The goal of manual annotation is to assign a true label
to each token (term) in a sentence. Five human labelers with experience in both geoscience and NER were
asked to annotate the selected documents/reports to form the gold‐standard corpus.

Three metrics derived from the field of information retrieval, namely, the precision, recall, and F1‐measure,
were selected as the evaluation metrics. The precision, defined in equation (10), measures the percentage of
the overall number of relevant extracted entities out of all extracted entities. The recall, defined in equa-
tion (11), measures the percentage of the overall number of relevant extracted entities out of all relevant enti-
ties. To quantify the a balance between the precision and recall, the third evaluation metric, the F1‐measure,
defined in equation (12), represents the harmonic mean of precision and recall. When both the precision and
recall have fairly high values, the F1‐measure will also have a high value and vice versa.

Precision ¼ number of correctly extracted entities
number of extracted entities

; (10)

Recall ¼ number of correctly extracted entities
number of extracted entities

; (11)

F1−measure ¼ 2⋅
Precision×Recall
Precisionþ Recall

: (12)

5.2. Parameters and Sensitivity Analysis

We conducted a variety of experiments to investigate how different key hyperparameters, including the vec-
tor dimensionality d and the terms frequency was n, could affect the GNER performance. The proposed

model's results demonstrate the impacts of these hyperparameters in
terms of the F1‐measure. Extensive experiments were conducted on both
the GJP and RGR data sets.

Figure 5a shows the impact of the vector dimensionality d. In six experi-
ments, the vector dimensionality was varied from 50 to 300 with a step
size of 50. The results suggest that the vector dimensionality affects the
overall performance. Increasing the vector dimensionality d results in a
higher‐dimensional representation that includes more dependent infor-
mation and can more precisely capture the relevant relationships from
various features. However, a larger d also adds complexity and necessi-
tates longer training time. Thus, based on the results, we set the vector
dimensionality to d=300 as a trade‐off between GNER performance and
training time.

As mentioned in section 4.2, the frequencies (also interpreted as the prob-
abilities) of seed terms control their likelihood of random extraction for
generating pseudosentences for training. To verify the influence of this
parameter, we conducted a total of nine experiments using terms with fre-
quencies ranging from 500 to 4,000 with a step size of 500. The final results

Table 3
General Statistics of the Two Data Sets Used in Our Experiments

Property GJP data set RGR data set

# sentences 8,975 7,936
# words 18,985 25,774
# entity mentions 6,598 9,901
# test documents 500 14

Note. The “#” symbol represents “number of.”

Figure 4. Illustrative example with gold‐standard annotations.

10.1029/2019EA000610Earth and Space Science

QIU ET AL. 941

http://www.cnki.net/


are illustrated in Figure 5b in terms of the F1‐measure. Note that a frequency of n=500 means that the
frequency of all domain‐specific seed terms used is 500. However, we observe that varying the frequency
information in the proposed model does not result in GNER performance improvements as n increases.
The proposed GNER model achieves its best performance, with F1‐measure values of 86.41% and 84.31%
on the GJP and RGR data sets, respectively, when the frequency information is based on a statistical
strategy. Therefore, we employ a statistical strategy to set the frequencies for the GJP and RGR data sets.

5.3. Overall Performance

A set of baseline DL models (e.g., RNN, LSTM, Bi‐LSTM, and Bi‐LSTM‐CRF) were constructed and com-
pared with the proposed GNER models. These baseline DL models were configured with their optimal
hyperparameters. Table 4 summarizes the results for the performance of our proposed GNERmodel on both
the GJP and RGR data sets. As shown in Table 4, compared with the four baseline methods, our proposed
approach yields the best results on both data sets, with average precision, recall, and F1‐measure scores of
86.74%, 86.05%, and 86.39%, respectively, on the GJP data set and 84.85%, 83.75%, and 84.30%, respectively,
on the RGR data set. These results illustrate the effectiveness of DL models and techniques.

5.4. New Entity Detection Capability

To test the new entity detection capability of our proposed GNERmodel, we chose to calculate the ROOV and
RIV metrics on both the GJP and RGR data sets. ROOV denotes the percentage of out‐of‐vocabulary (OOV)
terms and is an indicator that can be generalized to a new field. RIV denotes the percentage of in‐vocabulary
(IV) terms that are correctly recognized and reflects model's predictive ability with respect to the
training data.

The dictionary‐based matching approach (abbreviated as MM) for GNER was chosen as a basic and repre-
sentative approach. All collected domain‐specific entities were regarded as the dictionary in our experi-
ments. As suggested by the ROOV rates and RIV rates reported in Table 5 it is evident that detecting new
entities is indeed a difficult task. The ROOV value for the MM approach is only 5.4% because the MM
approach lacks the self‐learning power to identify new entities. By contrast, the proposed method yields a
significant improvement, with ROOV values of 48.1% and 68.1% on the GJP and RGR data sets, respectively,

Figure 5. Impacts of Vector Dimensionality (a) and Different Term Frequencies (b).

Table 4
Performance of the Proposed GNER Algorithm on the GJP and RGR Data Sets

Model

GJP RGR

Precision (%) Recall (%) F1‐measure (%) Precision (%) Recall (%) F1‐measure (%)

RNN 80.25 79.12 79.68 78.12 78.02 78.07
LSTM 81.93 79.99 80.95 79.15 79.05 79.10
Bi‐LSTM 82.14 80.65 81.39 80.35 80.03 80.19
Bi‐LSTM‐CRF 83.45 82.69 83.07 81.25 81.11 81.18
Ours 86.74 86.05 86.39 84.85 83.75 84.30
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indicating that the proposed DL model has substantial predictive power
thanks to its capabilities of self‐learning and self‐correction. The RIV

values suggest that our proposed approach performs well for NER.
These results indicate that the proposed stepwise method is effective at
addressing the domain‐specific NER problem.

5.5. Varying the Training Data Set Size

We also conducted controlled experiments to investigate the optimal size
of the training data set (as defined in section 4.1). We chose the F1‐
measuremetric to demonstrate the impacts when the training data set size

was varied from 10% to 100%with a step size of 10%; the results are shown in Figure 6. Five independent runs
were performed for every split, and the average results were calculated.

As shown in Figure 6, the proposed GNER model benefits from a larger number of seed terms, resulting in
steadily rising curves. Initially, the model makes full use of the training set and increasingly benefits from
larger amounts of training data. Eventually, however, the performance of the proposed GNER model tends
to converge as the training data set size increases. For example, the F1‐measure on the GJP data set starts to
fall after the training data set size reaches 90% of the total collected data set, and the average F1‐measure
shows a converging trend as the size increases. This finding indicates that we must select representative
and comprehensive training data to allow the model to automatically learn from these data to correct mis-
takes and address different GNER extraction cases.

5.6. Comparison with Other Methods

We compared our proposed model with the following five related methods:

IDF_NER (Zhang & Elhadad, 2013) is an unsupervised method that identifies named entities in free text
without requiring any rules or annotated data. This approach involves two main steps: detecting entity
boundaries and classifying entity types.

C_NER (Alicante et al., 2016) uses several traditional NLP tools to extract entities. It is an unsupervised
approach that uses clustering to group entity pairs.

SwellShark (Fries et al., 2017) is a framework for performing NER without requiring manually labeled data.
It applies a generative model to achieve supervision through the generation of large‐scale labeled data sets.

DPT (Gupta et al., 2018) uses a hybrid approach that incorporates dependency‐based parse trees and seman-
tics to extract named entities.

CAAEE (Cai &Wu, 2018) is an unsupervised model based on content‐aware attributed entity embedding for
the discovery of named entities.

From Table 6, we can observe that the traditional approaches (e.g.,
IDF_NER and C_NER) are inferior to the other methods. Using our pro-
posed method, the precision, recall, and F1‐measure are improved by
15.89%, 14.8%, and 15.34%, respectively. These results suggest that DL
offers a superior predictive ability compared to traditional approaches.

Our proposed model also significantly outperforms the other ML
approaches (SwellShark, DPT, and CAAEE), indicating that our proposed
GNER model can randomly select domain‐specific entities and domain‐
general words to form new sentences for training DL models that exhibit
the capability of self‐correction.

6. Discussion

This paper presents and discusses the use of unsupervised information
extraction techniques for the extraction and recognition of geological
named entities from geological reports written in Chinese. In particular,
it is aimed at the extraction of domain‐relevant entities. To this end, a
pipeline system with a four‐step structure is proposed, where the four

Table 5
Performance of the Proposed GNER Algorithm for Identifying OOV and
IV Terms

Model ROOV Improvement RIV Improvement

MM 0.054 0.793
Att‐BiSTMGIP 0.535 ↑48.1% 0.863 ↑7.0%
Att‐BiSTMRGR 0.735 ↑68.1% 0.832 ↑3.9%

Note. GNER = geological name entity recognition; MM = matching
approach; OOV = out of vocabulary; IV = in‐vocabulary.

Figure 6. F1‐measure values for the proposed algorithm on both the GJP
and RGR data sets when varying the training data set size.
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steps include collecting a set of seeds, normalizing and grouping the seeds by frequency, randomly selecting
diverse sets of seeds for generating pseudo sentences, and self‐training and learning. The proposed algorithm
achieves average F1‐measure values of 86.39% and 84.30% on the GJP and RGR data sets, respectively.

With the advent of the big data era, geological data services face the dual demands of digitization and socia-
lization for both institutions and the public. Currently, large amounts of fragmented and unstructured data
are buried in geological reports and go unused. In particular, textual data make up an important part of these
unstructured geological data, and consequently, the automatic extraction of entities from textual data has
become an important research direction. As a core element of geological entity recognition, the extraction
of geological named entities will provide new opportunities to mine this wealth of geological text in the
geoscience domain. In a given report, the arrangement of the words and chapters is organized around certain
topics. The recognition of geological entities can not only enable effective identification of the basic informa-
tion units in such a text and assist in correctly understanding the meaning of that text but also provide com-
prehensive support for information extraction, information retrieval, machine translation, abstract
generation, and other tasks in generalized text data mining based on the extracted geological knowledge.

To this end, we can use the entities extracted by the proposed algorithm to represent the key information
contained in a sentence. In general, doing so can quickly provide a basic overview of a long
sentence/document quickly, avoiding the need to read the document word by word. For example, in the sen-
tence shown in Figure 4, the domain‐specific words (i.e., Jurassic and granite) are informative.

7. Conclusions

GNER is a challenging task in geological NLP. In this study, we designed and proposed an unsupervised fra-
mework that provides a pipeline solution for GNER, including colleting a highly diverse set of seeds, normal-
izing and grouping the seeds by frequency, randomly selecting sets of seeds to generate sentences for
training, and self‐training and learning for the extraction of named entities. In our framework, the selection
of high‐quality seed terms (e.g., domain‐specific entities and domain‐general words) is a key factor in build-
ing a successful model. The approaches for normalizing and grouping the seed terms are candidates for
further analysis. Following the automatic and random seed selection process, we use an attention‐based
bidirectional long short‐term memory model to generate various pseudosentences. Each generated set of
sentences is then input into the self‐training and learning algorithm. Our proposed approach does not
depend on any heuristics or rules or require any labeled data, making it suitable for application to various
domains and tasks. We conducted extensive experiments to validate the performance of the proposed model
and compare it to other approaches. The experimental results obtained on two constructed data sets demon-
strate the effectiveness of our method for GNER.

In future work, we plan to focus on combining our proposed method with other supervised methods to
improve the ultimate GNER performance.
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