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Abstract The Miocene to Quaternary lavas of north-
western Syria range from basanite, alkali basalts, and
tholeiites to basaltic andesites, hawaiites, and mugea-
rites. Crustal assimilation and fractional crystallization
processes (AFC) modified the composition of the mantle
derived magmas. Crustal assimilation is indicated by
decreasing Nb/U (52.8–17.9) and increasing Pb/Nd
(0.09–0.21) and by variable isotopic compositions of the
lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–
0.51269, 206Pb/204Pb: 18.98–18.60) throughout the dif-
ferentiation. Modeling of the AFC processes indicates
that the magmas have assimilated up to 25% of conti-
nental upper crust. The stratigraphy of the lavas reveals
decreasing degrees and increasing depths of melting with
time and the strongly fractionated heavy rare earth ele-
ments indicate melt generation in the garnet stability
field. Modeling of melt formation based on trace ele-
ment contents suggests that 8–10% melting of the
asthenospheric mantle source produced the tholeiites,

whereas basanite and alkali basalts are formed by 2–4%
melting of a similar source.

Introduction

Incompatible element and radiogenic isotopic composi-
tions of continental primitive volcanic rocks often differ
from lavas erupted in oceanic settings indicating the
presence of other magma sources like the asthenosphere
or deep mantle plumes. It has been suggested that con-
tinental magmas form from sources in the lower part of
the subcontinental thermal boundary layer due to adi-
abatic melting or due to lowering of the solidus by
volatiles (e.g., Gallagher and Hawkesworth 1992). Fur-
thermore, magmas from the asthenosphere may react
with the subcontinental lithospheric mantle as they rise
to the surface (e.g., Ellam and Cox 1991; Wilson and
Downes 1991). The subcontinental lithospheric mantle
possibly contains regions that have been metasomatized
by small degree melts or fluids during previous mag-
matic episodes and magmas from these portions may
have geochemical compositions that significantly differ
from asthenospheric melts. Alternatively, the continen-
tal intraplate magmas may be modified by the assimi-
lation of crustal wallrocks as well as by crystal
fractionation during their ascent. Several and partly
energy-dependent thermodynamic models have been
developed to model these processes (DePaolo 1981;
Aitchenson and Forrest 1994; Spera and Bohrson 2001).
Thus, the study of intracontinental basalts may reveal
different petrogenetic processes than the study of basalts
in oceanic settings.

In this contribution we provide new geochemical and
petrological data for a Cenozoic lava suite from north-
western (NW) Syria in order to investigate their petro-
genesis within the large scale geological framework. This
study shows that fractional crystallization and crustal
contamination were important processes during the
magma genesis of the volcanic rocks in NW Syria.
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Two chemically different groups of magmas were gen-
erated from the same mantle source which is probably
situated in the asthenosphere. We interpret the volcanic
activity in NW Syria to be related to a slab-breakoff
process that occurred in this region, where the Arabian
plate converges Eurasia, and coincided with the eruption
of the lavas.

Geological setting

Large parts of western Arabia are covered by Cenozoic
basaltic lava fields related to the formation of the Red
Sea, beginning in Miocene times and to the development
of the Miocene/Pliocene Dead Sea fault (DSF) system
(Bohannon et al. 1989; Nasir and Safarjalani 2000). The
evolution of the western Arabian rift system is accom-
panied by extensive magmatism and several models have
been proposed to explain the intraplate magmatic
activity in Israel, Jordan, Saudi Arabia, Syria, and
southern Turkey. For example, Camp and Roobol
(1992) suggested that the volcanism is caused by hot
asthenospheric material either channeled northwards
from the Afar plume or that another mantle plume exists
beneath western Arabia. Alternatively, Stein and
Hofmann (1992) suggested that an old plume head was
stored beneath the subcontinental lithosphere and that
volcanism was triggered during periods of lithospheric
extension. In contrast, Keskin (2003) favored a model of
slab steepening and breakoff during the collision of
the Arabian plate with Eurasia to explain the magma
genesis in Eastern Anatolia.

Syria is located at the NW flank of the Arabian
peninsula and is covered by several volcanic fields of
Miocene to Quaternary age (Fig. 1). Volcanic rocks are
concentrated in the western part of Syria in the vicinity
of the Dead Sea fault, but other volcanic fields are
spread across the whole country (Fig. 1). The present
tectonic situation in Syria is the result of the interaction
of the Cenozoic plate boundaries with older intraplate
features (McBride et al. 1990). Based on Bouguer
gravity anomalies Syria can be divided into three major
areas: the Rutbah Uplift in the south is separated by the
Palmyride Fold Zone from the northern Aleppo Plateau
which is covered by relatively undeformed Palaeozoic
and Mesozoic sedimentary rocks (Best et al. 1990; Searle
1994; Sharkov et al. 1994). Seismic studies have shown
that the depth of the metamorphic basement beneath the
plateau is about 6 km and that a crustal thickness of
about 40 km is reached in Syria similar to Jordan and
Saudi Arabia (El-Isa et al. 1987; Best et al. 1990;
Sandvol et al. 1998; Walley 1998; Kumar et al. 2002).
Furthermore, geophysical and geochemical data indicate
an upper crustal layer of presumably granitic rocks,
ranging in depths from about 5 to 20 km and a lower
crust, composed of mafic rocks, at depths of about
20–27 km for the NW Arabian plate and southern Syria
(Nasir 1992; Nasir and Safarjalani 2000).

The samples for the present study were collected in
the NW part of Syria close to the northern termination
of the Dead Sea Fault system and its transition into the
East Anatolian Fault zone (Fig. 1). The volcanic units in
this region are part of a broader volcanic belt occurring
on both sides of the Eastern Anatolian Fault zone.
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The largest volcanic field located in this part of NW
Syria forms the mountain range Jabal El-Hass, with a
maximum relief of 300 m and altitude of 640 m (Fig. 1).
The volcanic field consists of several lava flows of
Miocene age, reaching a total thickness of about 50 m
and lying on Paleogene and Neogene sediments (Poni-
karov et al. 1963). Single flows vary in thickness from 1
to 10 m and some are separated by thick layers of
limestone. Other major volcanic fields, composed of
several lava flows, are situated near the villages of Qirata
on the eastern side of the Euphrates and around Aazaz
and El Wakif (Fig. 1). A lava sequence of about 350 m
thickness occurs north of the town Bulbul and was
sampled stratigraphically in order to study temporal
changes in the petrogenesis (Fig. 1). Petrographically the
sequence at Bulbul can be divided into two parts which
are separated by a soil horizon suggesting a longer
period of volcanic quiescence. Even though Ponikarov
et al. (1963) suggested that most of the NW Syrian
volcanic units are of upper Pliocene age, Lower Qua-
ternary volcanism occurred around Qirata as indicated
by Ar–Ar ages of the upper and lower lavas north of
Bulbul yielding Miocene ages between 12 and 10 Ma
(Krienitz et al., unpublished data).

Analytical methods

After sawing the freshest parts from each sample, the
pieces were washed with deionized water in an ultrasonic
bath for 15 min, crushed to coarse sand size with a screw
press and washed again. For chemical analysis samples
containing fresh glass were handpicked under a binoc-
ular microscope. Whole rock samples were reduced to
powder in an agate ball mill for major and trace element
as well as for radiogenic isotope analysis. Several sam-
ples were studied petrographically in thin section and
mineral phases were analyzed with a JEOL JXA 8900
electron microprobe operating in wavelength dispersive
mode with a beam current of 15 mA (10 mA for glass
measurements) and an accelerating voltage of 15 kV.
The beam diameter was usually 2 lm and was defocused
for feldspar and glass analyses. The measurements were
calibrated with mineral standards for the specific ele-
ments, and representative mineral and glass analyses are
listed in Table 1. Other electron microprobe data of the
Syrian samples are given in Electronic Supplementary
Material (Table 1).

Major and selected trace (Cr, Ni, Zn, Rb, Sr) ele-
ments in Table 1 were analyzed at the Universität Kiel
with a Philips PW 1400 XRF using international rock
standards for calibration and data quality control. A
total of 0.6 g of sample powder was mixed with 3.6 g of
flux (lithiumtetraborate) and melted to glass tablets. The
accuracy of standard analyses relative to reference val-
ues is generally better than 3% for most of the major
and trace elements. Only Na2O and P2O5 show higher
deviations (8 and 3%, respectively). Replicate measure-
ments of the BHVO-1 standard gave a precision better

than 0.30% (SD) for all major elements and generally
better than 7.5% (SD) for trace elements (Table 2).

A total of 100 mg of sample material was used for
trace and rare earth element (REE) analyses. Measure-
ments were made at the Universität Kiel with an up-
graded PlasmaQuad PQ1 ICP-MS following the method
of Garbe-Schönberg (1993). Comparison of duplicate
digestions of the same sample gave a precision generally
better than 1% (SD). The accuracy of the data based on
the international rock standard BHVO-1 is better than
7% except for Nb, Ta (<9%), Sc, Cs and Th (>9%)
and can be estimated from the standard analyses shown
in Table 2. A complete list of major, trace, and rare
earth element data of the Syrian sample set is given in
Electronic Supplementary Material (Table 2).

Most isotope analyses were performed at the Zen-
trallaboratorium für Geochronologie in Münster using a
VG Sector 54 multicollector mass spectrometer operated
in dynamic mode for Sr and Nd, and in static mode for
Pb isotope ratios (Table 3). A few samples were ana-
lyzed in static mode at the GEOMAR Research Center
for Marine Geoscience in Kiel for Pb on a Finnigan
MAT 262 RPQ2+ and for Sr and Nd on a Finnigan
Triton mass spectrometer. For isotopic determinations,
about 100 mg of powdered sample material and stan-
dard ion exchange techniques were used to separate Sr,
Nd and Pb from the matrix. The isotope ratios were
corrected for fractionation using 86Sr/88Sr=0.1194 and
146Nd/144Nd=0.7219. Multiple measurements of the Sr
isotope standard NBS 987 in Münster gave 0.710299
(2SD = 0.000026, n= 16) and in Kiel 0.710273 (2SD =
0.000005, n = 8). All Sr isotope analyses were normal-
ized to NBS 987 = 0.710250. The Münster 143Nd/144Nd
standard runs gave La Jolla: 0.511862 (2SD = 0.000024,
n = 14) while in Kiel repeated analysis of the Nd Spex
standard yielded 0.511710 (2SD = 0.000005, n = 5)
corresponding to a La Jolla value of 0.511828 on the
same instrument. The Nd isotope data of the samples
were recalculated to a La Jolla value of 0.511850. In
Münster, the Pb isotopes were measured in static mode
and multiple analyses of the NBS 982 standard were
used to correct Pb isotopic ratios for mass fractionation.
Standard runs (n=10) gave 206Pb/204Pb=36.646,
207Pb/204Pb=17.101, and 208Pb/204Pb=36.593 with a
precision of ±0.022, ±0.014, and ±0.038 (2SD),
respectively. In Kiel standard runs (n = 28) gave
206Pb/204Pb=16.903, 207Pb/204Pb=15.447, and
208Pb/204Pb=36.558 with a precision of ±0.018,
±0.024, and ±0.075 (2SD), respectively. Procedural
blanks in both laboratories were generally better than
0.2, 0.1, and 0.04 ng for Sr, Nd, and Pb, respectively.

Results

Classification

According to the total alkali–silica diagram (Le Bas
et al. 1986) samples of NW Syria can be classified as
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basalts and one basanite as well as basaltic andesites,
hawaiites, and mugearites (Fig. 2). Basaltic samples in-
clude both nepheline- and hypersthene-normative com-
positions and can thus be further classified as alkali
basalts and tholeiites.

Petrography

Alkali basalts and basanite

All analyzed Si-undersaturated samples have porphyritic
textures and phenocrysts make up to 20 vol.%. The
groundmass consists of plagioclase (An65-44), clinopy-
roxene (Wo50-47-En41-36), olivine (Fo60-56), and Ti-mag-
netite (Table 1). Some samples show calcite vesicle
fillings. Olivine is the most common phenocryst phase
and is more abundant than clinopyroxene. Most olivine
phenocrysts are subhedral to skeletal and all show
iddingsite rims or are completely altered. The olivine
composition indicate that the alkali basalts represent
melts that are already fractionated and that the most
primitive rocks of the investigated samples are probably
not primary melts. One sample contains a clinopyroxene
cumulate with resorbed and mostly broken crystals.
Sample SY-127 contains an agglomerate of spherical
olivine crystals (Fo85-82) that are interpreted as xeno-
crysts (Table 1).

Tholeiites and basaltic andesites

Plagioclase (An64-12), clinopyroxene (Wo44-30-En52-41),
Ti-magnetite, and rarely olivine (Fo75-73) occur in the
groundmass of tholeiites and basaltic andesites
(Table 1). Some contain vesicles filled with calcite. The
samples SY-023 and SY-024 are glass-breccias contain-
ing fresh glass fragments of basaltic andesitic composi-
tions in a calcareous matrix (Table 1). The samples
contain different amounts of olivine (Fo82-55), clinopy-
roxene (tholeiite: Wo45-44-En44-46), and plagioclase
(An65-29) phenocrysts (Table 1). In the tholeiites olivines
are the most abundant phenocryst phase (<10 vol.%).
In contrast, basaltic andesites contain only up to
5 vol.% phenocrysts and partly resorbed xenocrysts.
Plagioclase phenocrysts (5–10 vol.%) dominate in most
cases over olivine. Cumulate aggregates of plagioclase
and clinopyroxene and minor amounts of olivine are
observed in both the tholeiites and the basaltic andesites.

Hawaiites and mugearites

The groundmass of hawaiites and mugearites is com-
posed of plagioclase laths (An62-20), clinopyroxene
(Wo45-42-En41-38), Ti-magnetite, and rare olivine (Fo60-42)
(Table 1). Resorbed quartz crystals occur as xenocrysts
in several samples (e.g., SY-028). Plagioclase pheno-
crysts (An65-48) form euhedral to subhedral, lath-shaped
crystals and make up to 5–20 vol.% and in most samplesT
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are more abundant than olivine (Fo83-50) and clinopy-
roxene (Wo46-41-En48-38) which together make up only
5–10 vol.%. The subhedral to skeletal olivine pheno-
crysts always show iddingsite rims or are totally altered.
Some calcite vesicle fillings are observed and several
samples contain cumulate aggregates of clinopyroxene
and plagioclase crystals.

Chemical alteration

Weathering may cause chemical alteration of rocks
affecting especially the mobile elements (e.g., Cs, Rb, K,
and U) and leading to a loss of these elements and to
elevate H2O (i.e., loss on ignition = LOI) contents.

Concentrations of mobile elements in the whole sample
suite do not correlate with MgO contents and LOI.
Some alkali basalts, tholeiites, and basaltic andesites
have LOI values >2 wt% (up to 3.55 wt%, Table 2)
and show the lowest K2O and U concentrations. If
alteration processes have affected these samples, they
should have high Nb/U ratios with respect to fresh lavas
(Fig. 5a). However, samples with low U concentrations
are indistinguishable from the rest of the sample suite in
terms of Nb/U ratios. Thus, chemical alteration plays no
important role and generally did not affect the mobile
elements and has no significant influence on variations
of other major and trace elements.

Geochemistry

Based on their P2O5 contents (Fig. 3a) the whole sample
suite can be divided into two groups: (1) a high-P group
including most of the alkali basalts and mugearites,
hawaiites and some of the tholeiites and (2) a low-P
group including most of the tholeiites and basaltic
andesites and some of the alkali basalts and mugearites
(Fig. 2). Although the basanitic sample lies off the trends
shown in Fig. 3a, the major and trace element compo-
sitions of the basanite are similar to samples of the
high-P group (Figs. 3, 4) and thus the basanite will be
included in the high-P group. On average samples of the
high-P group also have higher TiO2 and K2O for a given
MgO compared to the low-P group. Even though there
is some overlap in terms of SiO2 contents between the
two groups most of the high-P group lavas have lower
SiO2 for a given MgO (Fig. 3). The MgO concentrations
of the whole sample suite range from about 10 to 4 wt%.
Both lava series generally exhibit negative correlations
of Al2O3 and Na2O versus MgO whereas FeOT, K2O,
and P2O5 concentrations are relatively constant over the
whole MgO range (Fig. 3). For the low-P group samples

Table 3 Sr, Nd and Pb isotopic
compositions of selected
samples of the Syrian lavas

Sample 87Sr/86Sr (2r) 143Nd/144Nd (2r) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

SY 01/09 0.704749 (10) 0.512732 (13)
SY 01/10 0.704592 (11) 0.512749 (12)
SY 01/12 0.704882 (14) 0.512699 (14) 18.844 15.686 38.974
SY 01/23 0.704878 (18) 0.512706 (07)
SY 01/25 0.704526 (22) 0.512752 (05)
SY 01/28 0.704378 (12) 0.512819 (11)
SY 01/29 0.704855 (13) 0.512732 (14) 18.952 15.704 39.050
SY 01/32 0.704745 (22) 0.512749 (06)
SY-010 0.704066 (03) 0.512803 (03) 18.975 15.671 39.057
SY-028 0.704843 (16) 0.512703 (15)
SY-033 0.704570 (17) 0.512721 (11)
SY-037 0.704310 (11) 0.512895 (17) 18.935 15.691 39.036
SY-038 0.704600 (19) 0.512799 (11)
SY-067 0.704215 (10) 0.512899 (12) 18.605 15.656 38.547
SY-074 0.704747 (10) 0.512781 (13) 18.987 15.648 38.818
SY-082 0.704276 (03) 0.512786 (03) 18.666 15.675 38.516
SY-088 0.703947 (13) 0.512899 (10) 18.828 15.657 38.724
SY-123 0.704223 (12) 0.512795 (11) 18.784 15.652 38.875
SY-127 0.703697 (10) 0.512909 (15) 18.843 15.622 38.767
SY-129 0.703882 (11) 0.512940 (11) 18.778 15.610 38.667
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TiO2 concentrations are negatively correlated with
MgO, whereas a positive correlation is shown by the
high-P group samples.

The compatible trace elements such as Cr and Ni
correlate positively with MgO and Cr contents of the
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high-P group samples decrease sharply below 6 wt%
MgO (Fig. 4a, b).

The high-P group samples are enriched in highly
incompatible elements and, for example, Nb concen-
trations are on average twice as high in high-P lavas
compared to the low-P group (Fig. 4c). Samples of the
high-P group also have chondrite-normalized La/Sm
[(La/Sm)N] ratios >2.5. In contrast, the low-P lavas
have (La/Sm)N generally <2.5 (Fig. 5b). Nb/U ratios of
the sample suite from NW Syria range from values
typical of oceanic basalts (Hofmann et al. 1986) which
were not contaminated with continental crustal material
to values characteristically of average continental lower
crust (Nb/U = 25) and also show a trend to low Nb/U
ratios as representative of continental upper crustal
rocks (Nb/U= 8.93) (Rudnick and Fountain 1995). The
Nb/U ratios correlate negatively with SiO2 (Fig. 5c).
Most of the primitive samples yield high Nb/U ratios
and have low SiO2 contents. In contrast, the most
evolved lavas of the two groups, i.e., the basaltic ande-
sites and the mugearites, with high SiO2 concentrations,
show low Nb/U and high (La/Sm)N ratios trending to
upper continental crustal compositions (Figs. 5, 6).

Due to the young age of the NW Syrian lavas
(<12 Ma) (Krienitz et al., unpublished data) age-cor-
rections of the measured isotope ratios are insignificant
and were not performed. 87Sr/86Sr and 143Nd/144Nd
compositions define a negative linear trend (Fig. 7a) and
basaltic samples of both groups have lower Sr and
higher Nd isotopic compositions compared to the
evolved lavas. The NW Syrian basalts have higher
87Sr/86Sr for a given 143Nd/144Nd relative to rocks from
the Arabian lithospheric mantle and lavas from Saudi
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Marty et al. (1996), Pik et al. (1999), Bertrand et al. (2003)
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Arabia and the Red Sea. Compared to the intraplate
lavas from southern Syria the investigated sample suite
lies on a steeper linear trend in the Sr and Nd isotopes
extending toward the compositions of upper crustal
samples from Jordan (Jarrar et al. 2003) and Saudi
Arabia (Hegner and Pallister 1989) (Fig. 7a). The Pb
isotope compositions of the high-P samples appear to lie
on trends of increasing 207Pb/204Pb and 208Pb/204Pb with
increasing 206Pb/204Pb whereas the low-P samples from
NW Syria show no clear trend (Fig. 7b, c). The NW
Syrian lavas trend toward the Saudi Arabian lavas with
low 206Pb/204Pb of about 18.6. The 206Pb/204Pb and
208Pb/204Pb compositions of the NW Syrian samples
overlap with the compositions of magmas from the Red
Sea but lie outside the range representative for the
Arabian lithospheric mantle (Fig. 7c). The NW Syrian
lavas have higher Sr isotope ratios for a given
206Pb/204Pb compared to the Saudi Arabian and Red Sea
lavas and to isotopic compositions of the Arabian
lithospheric mantle (Fig. 8a). Similarly, most of the NW
Syrian lavas have lower Nd isotope ratios for a given
206Pb/204Pb, even though the most primitive samples
partly overlap with the Saudi Arabian lavas. The NW
Syrian sample suite appears to trend to upper crustal
compositions and only the high-P lavas form a negative
trend (Fig. 8b). The investigated samples exhibit a neg-
ative correlation between Pb/Nd and 143Nd/144Nd as
well as a negative correlation between Nb/U and
87Sr/86Sr ranging between oceanic basaltic and crustal
compositions (Fig. 9a, b). With respect to the (La/Sm)N
ratios the lavas within each group display a slightly
negative correlation with their isotopic composition
(Fig. 9c).

Discussion

Fractional crystallization and depths of stagnation
of the NW Syrian magmas

Primitive, mantle derived magmas in equilibrium with
mantle olivine have Mg-numbers of 0.68–0.72 and Ni
concentrations in the range of 300–500 ppm (Frey et al.
1978). Although some tholeiites and alkali basalts from
NW Syria have relatively primitive Mg-numbers, rang-
ing from 0.65 to 0.60, and Ni concentrations of about
300 ppm (Table 2), most of the rocks show lower values.
The decreasing MgO contents in combination with
decreasing Ni and Cr contents (Fig. 4a, b) imply crystal
fractionation of olivine, clinopyroxene, and spinel.
However, the different incompatible element composi-
tions (Fig. 4c) and especially the different (La/Sm)N
(Fig. 5b) of the high-P and the low-P lava series indicate
that both groups formed from different parental mag-
mas and cannot be related by fractional crystallization.
The observed range of MgO contents within each lava
series suggests that each series roughly lies along one
liquid line of descent and the lavas from each rock suites
are most likely related by crystal fractionation processes.

Olivine and clinopyroxene extraction causes the increase
in Al2O3 (Fig. 3d) and the positive correlation of CaO/
Al2O3 ratios with decreasing MgO (not shown) in the
residual melt. The increasing SiO2 and decreasing Cr at
MgO 6 wt% suggests increasing spinel fractionation.
Positive Sr anomalies [average Sr/Sr* = 1.34; Sr/
Sr*=SrN/SQR (PrN · PN)], the lack of Eu anomalies
[average Eu/Eu* = 1.00; Eu/Eu*=EuN/SQR (SmN ·
GdN)], and constantly rising Al2O3 concentrations
indicate that low pressure plagioclase fractionation did
not play a major role in the petrogenesis of the NW
Syrian magmas.

In order to estimate the pressure–temperature range
of the crystallization of the NW Syrian lavas we use the
clinopyroxene-melt thermobarometer of Putirka et al.
(1996). The high-P group samples reveal pressure con-
ditions between 0.7 and 0.4 GPa corresponding to
depths of 25–14 km using a crustal density of 2.8 g/cm3,
but mostly give a range of 0.6–0.5 GPa (21–18 km) for
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the crystallization process. In contrast, clinopyroxene
crystallization of the low-P group takes place at
shallower depths of about 0.3 GPa (�11 km). Thus, the

crystallization pressure conditions indicate that the high-
P group magmas stagnated deeper in the crust than the
low-P group but both magma series crystallized within
the uppermost �20 km of the continental crust but be-
low the sediment cover (�6 km thickness). These esti-
mates are similar to observations made by Baker et al.
(1997) for lavas from western Yemen which have
undergone polybaric fractionation of olivine, clinopy-
roxene, plagioclase, and Fe-Ti oxides.

For quantitative modeling of fractionation processes
the software MELTS from Ghiorso and Sack (1995) was
used and the results for two parental magmas are shown
in Table 4 and Fig. 3. Although the low-P lava series
can be matched reasonably well, the fit of the model to
the high-P lava series is poor due to the scatter of the
lavas within this group. According to the MELTS model
the most evolved lavas from the low-P group have
fractionated about 22% clinopyroxene and 8% plagio-
clase. In contrast, the high-P group has fractionated
about 37% clinopyroxene, 6% olivine, 3% plagioclase,
and 7% spinel to evolve from an alkali basalt to a
mugearite (Table 4). The removal of plagioclase as
suggested by the model do not agree with the observed
positive Sr anomalies and the lack of Eu anomalies in
lavas indicating that other processes in addition to
fractional crystallization have affected the composition
of lavas. However, the model results are consistent with
the mineral phases observed in thin sections with the
exception of olivine which occurs in larger amounts than
suggested by the model. The fractionation of olivine at
even greater depth may account for the generation of the
primitive alkali basalts the compositions of which were
used in the MELTS software to model the fractional
crystallization trends of the Syrian lavas. The results for
high-P lavas are similar to Pleistocene volcanic rocks
from Israel that have undergone up to 30% of mainly
clinopyroxene and olivine fractionation and only minor
amounts of other phases (Weinstein et al. 1994).

Crustal contamination

Both groups of the NW Syrian lavas show similar but
variable ranges of Sr and Nd isotope ratios and highly
incompatible element ratios versus isotopes implying
that more than one end member is involved in magma
genesis (Figs. 7a, 9). The presence of quartz xenocrysts
in some of the basaltic lavas suggests a reaction of the
ascending magmas with country rocks. Hofmann et al.
(1986) showed that oceanic magmas have Nb/U ratios of
49±10 implying that this range represents the Nb/U of
the upper mantle. In contrast, the average upper conti-
nental crust has a Nb/U of 9 and the lower crust of 25
(Rudnick and Fountain 1995). The decrease of the Nb/
U ratios observed during magmatic differentiation of the
NW Syrian magmas cannot be achieved by crystal
fractionation only because the removal of mineral pha-
ses would not fractionate these elements. Consequently,
the negative correlation between SiO2 and Nb/U
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indicates the crustal contamination of the magmas
(Fig. 5c). Assimilation of continental crust is also indi-
cated by the isotopic compositions of the lavas (Fig. 7)
and the trends of Pb/Nd versus 143Nd/144Nd and Nb/U
versus 87Sr/86Sr (Fig. 9a, b). Especially the most evolved
samples exhibit Nd and Sr isotope compositions clearly
outside the fields of any mantle source in the region but
trend toward the composition of the upper continental
crust (Figs. 7a, 8). The observed correlations between
Pb/Nd and Nb/U ratios and isotopic compositions
throughout the differentiation trends are interpreted as
the combined effects of assimilation and fractional
crystallization (AFC) in the NW Syrian magmas
(Fig. 9a, b). However, even though the AFC processes
can also account for the observed negative correlation
between Nd isotopes and (La/Sm)N within each group of
lavas (Fig. 9c), the differences between the high-P and
the low-P group cannot be due to the contamination but
must have formed during the magma genesis in the
mantle. Because both the high-P and the low-P group
share an isotopically similar mantle source the observed
differences in incompatible element enrichment between

both groups are caused either by variable degrees of
partial melting or by a relatively young depletion or
enrichment event of parts of this source which did not
affect the radiogenic isotopes (Figs. 3, 4, 5, 9).

Based on Sr and Nd isotopic compositions of the
NW Syrian lavas AFC-processes were modeled using
the energy-constrained assimilation-fractional crystalli-
zation (EC-AFC) model of Spera and Bohrson (2001).
Because the clinopyroxene-melt thermobarometry
indicates magma stagnation at upper crustal levels, the
assimilants were most likely the upper crustal rocks.
The composition of the assimilant with high (La/Sm)N,
Pb/Nd, and low Nb/U also supports an upper crustal,
i.e., granitic component rather than mafic lower crustal
material (Figs. 6, 9). Thus, in the model we used as-
similant compositions similar to upper crustal rocks
and an average Sr and Nd isotopic composition of
hypothetical parental magmas which can be estimated
on the basis of the relatively constant Pb/Nd and Nb/U
ratios in mantle melts (Hofmann et al. 1986; Mahoney
et al. 1994) and EC-AFC parameters for the ‘‘stan-
dard’’ upper crustal case as given by Bohrson and

Table 4 Fractional crystallization modeling for lavas of NW Syria using MELTS

Input values Initial values recalculated by MELTS

Low P-group High P-group Low P-group High P-group

T range (�C) 1,300–850 1,300–850 Tliquidus (�C) 1,239 1,268
P (kbar) 3 3 P (kbar) 3 3
log(10) fO2 0 0 log(10) fO2 �6.87 �6.57
QFM +1 +1 QFM +1 +1
SiO2 (wt%) 49.62 43.79 SiO2 (wt%) 50.57 45.78
TiO2 (wt%) 1.68 2.50 TiO2 (wt%) 1.71 2.61
Al2O3 (wt%) 13.34 12.30 Al2O3 (wt%) 13.59 12.86

FeOT (wt%) 10.45 11.50 FeOT (wt%) 10.88 12.29
MnO (wt%) 0.14 0.17 MnO (wt%) 0.14 0.18
MgO (wt%) 8.66 10.16 MgO (wt%) 8.83 10.62
CaO (wt%) 9.54 10.49 CaO (wt%) 9.72 10.97
Na2O (wt%) 2.80 2.34 Na2O (wt%) 2.85 2.45
K2O (wt%) 0.64 1.00 K2O (wt%) 0.65 1.05
P2O5 (wt%) 0.23 0.35 P2O5 (wt%) 0.23 0.37
H2O (wt%) 0.50 0.50 H2O (wt%) 0.51 0.52
CO2 (wt%) 0.30 0.30 CO2 (wt%) 0.31 0.31
Total (wt%) 97.90 95.40 Total (wt%) 99.99 100.01

Low P-group
Fractionated phases at Phase wt% Composition

T 1,119�C cpx 21.56 Di 29, En 22, He 22, Jd
3.0

MgO 3.92 wt% plag 8.43 Ab 38, An 61, Sa 1.1
Total 29.99

High P-group
Fractionated phases at Phase wt% Composition

T 1,108�C ol 6.28 Fo 79
MgO 3.67 wt% cpx 36.96 Di 36, En 18, He 17, Jd

3.1
plag 2.93 Ab 37, An 61, Sa 1.7
spinel 6.86 Usp 31, Mt 47, Sp 5.1
Total 53.03
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Spera (2001) (Table 5, Fig. 9a, b). Figure 10 shows that
the isotopic and incompatible element variations of the
two different Syrian lava groups can be modeled by the
EC-AFC processes using two different parental magma
compositions. These two parental magmas have
approximately similar Sr and Nd isotopic compositions
but very different Sr and Nd concentrations, i.e., the
high-P group is much more enriched than the low-P
group lavas. The model indicates that the evolved high-
P group lavas have fractionated between 40 and 60%
and have assimilated between <5 and about 25% of
upper crustal material but suggests higher assimilation
rates of up to 45% on the basis of Nd versus
143Nd/144Nd (Fig. 10b). In contrast, only <10%
assimilation and 45–50% fractionation are needed to
produce the isotopic composition of the low-P group
lavas (Fig. 10). The results of the EC-AFC modeling
are in accordance with the quantitative modeling of the
crystallization processes using MELTS (Table 4,
Fig. 3), although the results of the EC-AFC calcula-
tions are slightly higher for the low-P group samples.
The contamination of an alkali basalt with �48 wt%
SiO2 by 45% of upper crustal material with �68 wt%
SiO2 (Jarrar et al. 2003) produces lava compositions
with about 63 wt% SiO2. Thus, the modeled assimila-
tion rates of 45% appear too high for the high-P group,
because only lavas with silica contents <56 wt% can
be observed in NW Syria (Fig. 2). However, an exact
quantification of AFC processes is limited due to:
(1) the unknown incompatible element concentrations
of the parental magmas, (2) the heterogeneous

geochemical nature of the crust, and (3) the uncer-
tainties of the bulk distribution coefficients of Sr during
assimilation and fractional crystallization.

Deep seismic refraction data of El-Isa et al. (1987)
and geochemical studies of crustal rocks and xenoliths
(Nasir 1992; Nasir and Safarjalani 2000; Jarrar et al.
2003) have shown that the upper crust in NW Arabia
consists of mafic and intermediate to presumably felsic
rocks while the lower crust below 20 km depth is more
mafic. Since magmas of the two NW Syrian groups
stagnated in the upper crust at maximum depths of
<20 km, it is likely that the magmas have assimilated
upper crustal material. Although the EC-AFC model
yields realistic results for the assimilation of upper
crustal rocks, the possibility to generate low-P group
samples by addition of a felsic crustal component to
primitive high-P group magmas can be excluded. For
example, the assimilation of felsic upper crustal rocks
(e.g., granitic crust of southern Jordan; Jarrar et al.
2003) could account for the relatively high SiO2 con-
centrations in the low-P group lavas (Fig. 3b), but the K
contents of the melts from granitic upper crust
(>3.4 wt% K2O, Jarrar et al. 2003) would lead to high
K2O concentrations in melts whereas the low-P lavas
have relatively low K contents (Fig. 3h). However,
concerning lavas with alkali basaltic and tholeiitic
compositions, the results of this study gave similar
masses of assimilation for the NW Syrian magmas
compared to basanites and alkali basalts of Jordan,
which have assimilated up to 20% of upper crust (Shaw
et al. 2003).

Table 5 Input parameters for EC-AFC computations

Thermal parameters T (�C)

Magma liquidus temperature 1,300 Isobaric specific heat of magma 1,484 J/kg K
Magma initial temperature 1,300 Isobaric specific heat of assimilant 1,370 J/kg K
Assimilant liquidus temperature 1,000 Crystallization enthalpy 396,000 J/kg
Assimilant initial temperature 350 Fusion enthalpy 270,000 J/kg
Solidus temperature 900
Equilibration temperature 1,030

Compositional parameters Sr Nd

Magma A
Magma initial concentration (ppm) 600 15
Magma isotope ratio 0.7035 0.51305
Magma trace element distribution
coefficient

0.7 0.25

Magma B
Magma initial concentration (ppm) 330 7
Magma isotope ratio 0.7035 0.51305
Magma trace element distribution
coefficient

0.7 0.25

Assimilant
Assimilant initial concentration (ppm) 63 22
Assimilant isotope ratio 0.7220 0.5123
Assimilant trace element distribution
coefficient

0.08 0.25

Computations were performed using the computer program EC-AFC as cited in Spera and Bohrson (2001)
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The mantle sources of the NW Syrian magmas

Sr and Nd isotope ratios and highly incompatible
element ratios versus isotope ratios of both lava series
define similar trends implying that the sources of the
high-P and low-P magmas must have been similar in

terms of isotopic and highly incompatible element ratios
(Figs. 7a, 9a, b). It is suggested that the least contami-
nated high-P lavas lie close to the isotopic composition of
the mantle source and on the basis of the contamination
(AFC) trends (Figs. 7a, 9, b) we suggest that this source
must have 87Sr/86Sr=0.7035, 143Nd/144Nd=0.51305,
and 206Pb/204Pb=18.6 and thus resembles the depleted
mantle component C2 in the Ethiopian lavas studied by
Pik et al. (1999). The voluminous volcanism in the Red
Sea region probably reflects the presence of the Afar deep
mantle plume which has also been detected by seismic
tomography studies (Daradich et al. 2003). Two different
sources appear to reside in this plume and have been
observed in lavas in NE Africa and on the Arabian
Peninsula; (1) an ocean island basalt-like mantle com-
ponent in high-Ti magmas of the Ethiopian flood basalt
province with high 3He/4He ratios (Marty et al. 1996; Pik
et al. 1999), and (2) a source with 206Pb/204Pb isotope
ratios >19.3 which occurs in lavas from Saudi Arabia
(Bertrand et al. 2003) and the southern Red Sea and Gulf
of Aden (Schilling et al. 1992). Both of these plume
sources are different from the source of the NW Syrian
lavas and thus there is no evidence for an inflow of Afar
plume material from the south as has been suggested by
Camp and Roobol (1989) (Figs. 7, 8). Stein and
Hofmann (1992) proposed that the volcanism in Israel
may be the result of lithospheric extension and melting of
a fossil plume head beneath the base of the lithosphere.
However, the lavas from Israel have lower 87Sr/86Sr and
more radiogenic 206Pb/204Pb ratios compared to NW
Syrian lavas implying that such a fossil plume component
does not contribute to the mantle source of Syrian lavas
(Fig. 8a). In terms of Nd and Pb isotope compositions
the source of the NW Syrian magmas lies at the relatively
enriched end of the Red SeaMORB field but it has higher
87Sr/86Sr than Red Sea MORB (Figs. 7, 8). Conse-
quently, it may represent an enriched component of the
lower part of the continental thermal boundary layer in
accordance with Pik et al. (1999), or the asthenosphere
beneath NW Syria contains enriched portions with a
higher Sr isotope composition than Red Sea MORB.
Interestingly, higher 87Sr/86Sr for a given 143Nd/144Nd is
observed in basalts from the northernmost Red Sea deeps
compared to MORB from the southern Red Sea (Haase
et al. 2000), indicating an increasing 87Sr/86Sr in the up-
per mantle toward the northern Red Sea. The lavas from
Red Sea MORB with the lowest 143Nd/144Nd have
(La/Sm)N of up to 1.3 (Fig. 9c) suggesting that they
formed from a source with only little depletion or even
enrichment relative to primitive mantle (Haase et al.
2000). We propose that the NW Syrian magmas may
have formed from relatively enriched portions of the
asthenosphere beneath this region.

Magma generation and its causes beneath NW Syria

P2O5 as well as Nb concentrations are twice as high in
the high-P group compared to lavas of the low-P group
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(Figs. 3, 4), suggesting that low-P lavas may have
formed from a mantle source which was depleted in
incompatible elements relative to the high-P group.
However, in the volcanic succession sampled near Bul-
bul the high-P lavas lie above low-P lavas implying that
increasing depletion of the mantle source with time
cannot explain the generation of the magmas (Fig. 11).
Rather, the chemical evolution of the two compositional
groups at Bulbul suggests that the observed differences
are controlled by variable degrees of partial melting.
Because the enrichment of incompatible elements in-
creases by a factor of two the decrease of partial melting
must be of the order of 50%. Since garnet has a large
distribution coefficient for heavy rare earth elements
(HREE), melting of a garnet-bearing mantle source
would fractionate those from light rare earth elements
(LREE) resulting in higher LREE/HREE ratios (e.g.,
Ce/Yb) compared to middle REE/HREE ratios (e.g.,
Sm/Yb). Therefore, the variations of the REE ratios

shown in Fig. 12 indicate that melting occurred in the
garnet stability field. Assuming an enriched mantle
source the early low-P magmas can be generated by
about 8% of melting and the younger high-P lavas by
about 4% melting of an identical source (Fig. 12).

The SiO2 contents of uncontaminated primitive
magmas for the high-P and low-P lava series are 44 and
48 wt%, respectively (Figs. 3b, 5b). The SiO2 content of
magma is indicative for pressure conditions during
partial melting (Hirose and Kushiro 1993) and we esti-
mate average melting pressures on the basis of the
algorithm developed by Haase (1996). According to this
model melting of NW Syrian magmas occurred at
pressures of about 3.9 GPa for high-P lavas and at
about 2.2 GPa for low-P lavas, corresponding to aver-
age melting depths of about 120 and 70 km, respectively.
Based on xenolith data McGuire and Bohannon (1989)
place the lithosphere–asthenosphere boundary in W
Arabia at a depth of about 75 km. Assuming a similar
lithospheric thickness for NW Syria, the calculated
depths of the Syrian lavas indicate that first stage melt-
ing occurred at the lower boundary of the lithosphere
and during the second stage (high-P group lavas) partial
melting occurred in the asthenosphere. The lava suc-
cession at Bulbul suggests that during the first melting
stage relatively large degree melts were formed in the
shallow mantle and during the second stage lower degree
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melts were produced at greater depths. At a normal
potential mantle temperature of 1,280�C the lithosphere
should be stretched by a factor of �2 to generate partial
melts from dry mantle (McKenzie and Bickle 1988).
However, there are no indications for extensional pro-
cesses during the magmatic activity in NW Syria and
hence volcanism cannot be a consequence of lithospheric
extension. Several of the NW Syrian volcanic units, like
the Bulbul lavas, belong to a belt of alkaline volcanoes
extending across the Eastern Anatolian Fault zone
(Fig. 1). Keskin (2003) suggested that this volcanism
may be due to the slab-breakoff which occurred at

11–10 Ma ago and thus coincides with the eruption of
the Bulbul lavas (Krienitz et al., unpublished data)
(Fig. 13). Asthenospheric upwelling above the sinking
slab could then generate melts. Magmatism caused by
slab-breakoff has been suggested by Davies and von
Blankenburg (1995) but these authors proposed that the
hot asthenosphere upwelling leads to melting of the
metasomatized lithosphere of the upper plate of a for-
mer subduction zone. This cannot be the case in NW
Syria and eastern Turkey because the lavas are clearly
alkaline and do not show an enrichment of the fluid-
mobile elements which would be expected from litho-
spheric mantle above a former subduction zone. We
propose that the NW Syrian magmas were formed by
melting of an enriched and possibly volatile-rich portion
of upwelling asthenospheric mantle which was triggered
by sinking of the slab (Fig. 13). This could also explain
the different depths of melting because upwelling will
proceed to greater depths with time as the slab sinks
deeper and deeper into the mantle.
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