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In paper [1], the title of which differs from that of
the present paper by a question mark at the end,
Welander suggested the possibility of existence of a
new (unstudied) type of convective instability in a two-
component medium, in particular, in seawater stratified
both in temperature and admixture (salt) concentration.
According to this hypothesis, a medium stably stratified
by density can, nevertheless, lose its stability not due to
the difference in the transport coefficients of heat and
admixture (a known mechanism) but owing to the dif-
ference in boundary conditions at the horizontal bound-
ary for two substances. The possibility of such an insta-
bility would be of significant interest owing to the fol-
lowing reason: unlike the known mechanism (double or
differential diffusion), it could also be realized by tur-
bulent exchange, when effective transport coefficients
for heat and salt are practically equal. This process cor-
responds to a greater degree to the real conditions in the
upper oceanic layer. However, to our knowledge, the
hypothesis mentioned above was neither proved theo-
retically nor confirmed experimentally. The author of
[1] considered a simplified theoretical scheme (inviscid
fluid, strongly idealized and strictly fixed boundary
conditions, and so on). In the present paper, we perform
a sufficiently strict analysis of linear stability with
respect to monotonous perturbations in a semibounded
problem. We demonstrate the real possibility of appear-
ance of instability, although significantly different from
that suggested by Welander [1]. In particular, we found
monotonous (rather than the previously supposed oscil-
latory) instability, which appears during heating from
above rather than from below.

We consider semibounded medium layer 

 

z

 

 

 

≤

 

 0

 

 (the

 

z

 

 axis is directed vertically upward) stratified by tem-
perature and admixture concentration (for definiteness,
we shall speak about seawater) so that the hydrostatic
balance is stable (however, temperature and salinity
stratifications can be unstable separately, but the gen-
eral density stratification is stable).

The physical idea is as follows. We assume, for
example, that at stable temperature stratification and
unstable salinity stratification, a volume of medium
near the surface would slightly displace upward. Since
the density stratification is stable, this volume should
apparently obtain negative buoyancy (because it is
cooler than the environment) and be subject to the influ-
ence of a returning force. However, its buoyancy also
depends on the exchange with the environment. If the
temperature of the horizontal surface of the medium at

 

z

 

 = 0 is fixed more strictly than salinity (boundary con-
ditions for the two substances differ), the temperature
deviation in the displaced volume considered here
would relax faster than salinity perturbation, other con-
ditions being the same. Since the latter perturbation in
this case makes a positive contribution to the buoyancy
of the volume considered here and is better conserved
than the negative temperature perturbation, a principal
possibility of the positive feedback is seen. In some
respects, such mechanism is similar to the instability
caused by double diffusion [2–4], but the effect is
related to the difference between the boundary condi-
tions rather than between the exchange coefficients.

According to the usually applied approximation, we
suppose that the density of the medium depends lin-
early on the perturbations of temperature 

 

T

 

 and concen-
tration of admixture (salinity) 

 

s

 

:

where 

 

ρ

 

0

 

 is the mean (reference) density of the
medium, 

 

α

 

 is the thermal coefficient of expansion, and

 

β

 

 is the coefficient of haline contraction 

 

s

 

. The linear-
ized system of dynamics, as well as transport of heat
and admixture, in the Boussinesq approximation is
written as [2, 3]:

 

(1)

 

Here, 

 

v

 

 is the vector of velocity field perturbation, 

 

t

 

 is
time, 

 

p

 

 is the pressure perturbation, 

 

e

 

z

 

 is a unit vector in
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the direction of the 

 

z

 

 axis, 

 

ν

 

 is the kinematic coefficient
of viscosity, 

 

λ

 

 is the coefficient of temperature conduc-
tivity, 

 

χ

 

 is the coefficient of admixture diffusion, and

 

g

 

 is acceleration due to gravity. As mentioned above,
constant values of background vertical gradients for
each of the substances 

 

γ

 

T

 

 and 

 

γ

 

s

 

 are assumed to maintain
the hydrostatic stability of the background state [2–4].

In the analysis of the possibility of instability
appearance related to surface effects, we shall consider
the perturbations attenuating at a distance from the sur-
face at 

 

z

 

 

 

→ 

 

–

 

∞

 

. We neglect the deformations of the fluid
surface so that the vertical component of velocity 

 

z

 

 = 0
at surface 

 

w

 

 turns to zero. We also assume that the fol-
lowing conditions are satisfied at the surface:

 

(2)

 

Here, 

 

u

 

 is the component of velocity perturbation in the
direction of horizontal coordinate 

 

x

 

 (for simplicity, we
limit ourselves with a 2D problem, which contains all
of the main new results); 

 

h

 

T

 

 and 

 

h

 

s

 

 are given scales of
length.

The formulated stability problem was studied with
respect to the monotonous perturbations using the stan-
dard method of normal modes. We seek a solution with
the following form:

 

(3)

 

(similarly for other unknown variables). Excluding all
unknown variables from the initial system, except for

 

w

 

, at 

 

ω

 

 = 0 (keeping in mind the calculation of neutral
curves), we obtain the following equation:

 

(4)

 

Here,

 

(5)

 

where 

 

N

 

T

 

 

 

= (

 

α

 

g

 

γ

 

T

 

)

 

1/2

 

 and 

 

N

 

s

 

 

 

= (–

 

β

 

g

 

γ

 

s

 

)

 

1/2

 

 are thermal and
haline buoyancy frequencies (Brunt–Väisälä frequen-
cies). Dimensionless parameter 

 

S

 

 is an analog and gen-
eralization of the Rayleigh number [2, 3] for the case of
a two-component medium. However, the parameter
includes a horizontal scale of perturbation 

 

k

 

–1

 

 instead of
the fluid layer thickness (which is infinite in the prob-
lem considered here). As mentioned above, we consider
the situations when the system is stable without account
for the surface effects. For example, unstable salinity
stratification is excessively compensated by the stable

temperature stratification: 

 

γ

 

T

 

 > 0, 

 

γ

 

s

 

 > 0,  > 0,  <

0,  +

 

 

 

 > 0

 

, and 

 

 + 

 

 > 0. The latter inequality

is one of the conditions related to the known effects of
double (differential) diffusion, which can destabilize the
medium even under stable density stratification [2–4].
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According to the latter condition, we consider only pos-
itive values of parameter S.

We seek the solution of Eq. (4) as a sum of expo-
nents. Taking attenuation into account, the solution for
the vertical velocity at z → –∞ is the sum of three expo-
nents. In the general case, the expressions for the roots
of the characteristic equation and the corresponding
analysis of stability are somewhat cumbersome. How-
ever, in order to demonstrate the main new physical
result (possibility of appearance of instability even under
an arbitrarily strong hydrostatic stability of the medium),
it is sufficient to consider asymptotic S � 1. In this case,
the roots of the characteristic equation are approxi-
mately equal to

and the solution for vertical velocity can be presented
as

Here, K = , and C1 is one of the integration con-

stants (two other constants are written using the bound-
ary conditions for w and u). Depth dependence of the
solution for the velocity components (as well as for the
perturbations of pressure and density of the medium) is
a linear combination of three functions: exp(2Kz),

exp(Kz)cos Kz, and exp(Kz)sin Kz.
The exponents in these functions attenuate with

depth at scales H of the order of K–1 ~ (kS1/6)–1. In the
considered approximation S � 1, this is significantly
smaller than in the characteristic horizontal scale of

perturbations L ≡ . The wavelength of sinusoids in

the two latter functions mentioned above is of the same
order H. It is easy to understand that in the solutions for
temperature and salinity perturbations, the three named
functions are supplemented with exponent exp(kz),
which decreases with depth significantly more slowly
(at the scales of the order of L):

(6)

where C2 is one more integration constant. Using
boundary conditions (2), we obtain a system of two lin-
ear equations for C1 and C2. The situation when its
determinant turns to zero corresponds to the threshold
of monotonous instability. Let us formulate the result:
the instability region corresponds to inequality

q1 S1/6, q2 3, S1/6 1
3
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(7)

where ε =  is a dimensionless parameter (small in

the asymptotic considered here). We note that dimen-
sionless parameters khT and khs are inverse to the corre-
sponding analogs of the Bio number [5]. In the expres-
sion for temperature perturbation (6), amplitudes C1
and C2 of the additives, which decrease with depth rap-
idly and slowly, respectively, are interrelated as

(8)

In particular, at hT = 0 (temperature perturbations turn
to zero at the boundary), C2 = –3C1. This expression
depends strongly on the boundary conditions: the fraction
in the right part of (7) increases significantly with increas-
ing hT when parameter khT exceeds a small value ε.

At equal boundary conditions for two substances
(hT = hs), the right part of (7) is equal to unity. This cor-
responds to the known criterion of instability caused by
double diffusion in a binary mixture [2–4]. However, if
the boundary conditions for heat and admixture differ,
condition (7) can be much milder: the instability region
can be expanded significantly so that the appearance of
instability becomes possible at arbitrary stable density
stratification (at S → ∞) even at equal values of the
exchange coefficients for heat and salt.

Let us consider the dependence of the obtained cri-
terion on the length scales hT and hs. The first fraction
in the right part of (7) depends only on hT and is maxi-
mal (equal to ε–1) at hT = 0. The second fraction depends
only on hs and increases monotonously together with
this parameter (tends to unity). Thus, the right part
of (7) is maximal (tends to a large value ε–1) at hT = 0,
hs → ∞. In other words, the development of instability
is most favored by the limiting case, in which one sub-
stance is subject to perturbations at the boundary con-
ditions of the first kind (the temperature at the surface
z = 0 is strongly fixed), while the other substance is sub-
ject to perturbations at boundary conditions of the sec-
ond type. A similar situation is discussed in [1], in
which a more general case of the boundary conditions
of the third type (2) is not considered. As we shall see
(Fig. 1), the solution in the mentioned limiting case is
very sensitive to small variations in the boundary con-

ditions variations of parameter δ = .

The most “dangerous” mode corresponds to value

k = k∗ = , at which the right part of (7) reaches
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the maximal value . The horizontal scale of

this mode slightly exceeds the geometrical mean of
scales 

 

h

 

T

 

 and 

 

h

 

s

 

:

Figure 1 shows expansion of the instability region
when differences between boundary conditions for the
two substances increase (at decreasing dimensionless

ratio 

 

δ ≡ 

 

 from unity to zero). The abscissa axis cor-

responds to dimensionless value 

 

kh

 

s

 

. The region below
straight line 

 

1

 

 corresponds to the known instability
mechanism caused by double diffusion. At 

 

kh

 

s

 

 

 

→ ∞

 

,
curve 

 

4

 

 asymptotically approaches the 

 

ε

 

–1

 

 value men-
tioned above.

Figure 2 shows an example of vertical profiles of
neutral perturbations for the case of very stable back-
ground density stratification (an analog of the Rayleigh
number 

 

S

 

 = 3 

 

·

 

 

 

10

 

7

 

). We consider the case only when
salinity makes a small destabilizing contribution to the
background stable density stratification (

 

ε ≈ 

 

0.1

 

) and the
exchange coefficients for the two substances are equal
(e.g., effective coefficients of turbulent exchange).
Such situation corresponds, for example, to the follow-
ing values of the parameters: 

 

α

 

 = 2 

 

·

 

 

 

10
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 ä

 

–1
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= 0.76

 

·

 

10
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‰
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= 1.5 K/m, 
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s

 

 = 0.04 

 

‰ m

 

–1

 

, 
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= 
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=

 

 χ 

 

=
10

 

–3 

 

m

 

2

 

/s, and 

 

k

 

 = 0.1 m

 

–1

 

. In this case, the known
mechanisms of instability have no effects. The profiles
of temperature and salinity perturbations in Fig. 2 are
normalized so that they are related to the buoyancy per-
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Fig. 1. 

 

Right part of inequality (7) as a function of dimen-
sionless parameter 

 

kh

 

s

 

 at 

 

ε

 

 = 0.1 and different values of ratio

 

δ ≡ 

 

: 0.1 (

 

2

 

), 0.01 (

 

3

 

), 0 (

 

4

 

). Dashed line 

 

1

 

 corresponds

to equal boundary conditions for two substances (

 

δ

 

 = 1).
Regions of instability are below the corresponding curves.
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turbations proportionally to the contributions of these
substances. As seen from the figure, owing to the differ-
ence between the boundary conditions for perturbations
of the two substances (hT � εk–1, hs � k–1), the deviation
of buoyancy at the surface of the medium appears pos-
itive according to the physical mechanism described
above. Thus, upwelling motions should appear at the
surface (curve 1). Below the layer with a thickness of
the order of H ~ K–1 ~ (kS1/6)–1 � L, the signs of the per-
turbations of buoyancy and velocity change. Neutral
perturbations in the velocity field are a vertical series of
circulation cells, which attenuate rapidly with depth.
The perturbations of buoyancy and pressure attenuate
with the same rate (at the scales of the order of H).
However, the perturbations of temperature and salinity
considered separately attenuate with depth significantly
more slowly (at a scale of the order of the horizontal
wavelength L). Thus, although the instability found
here is related to the boundary effects, the perturbations
can generally penetrate sufficiently deep into the
medium.

In addition to monotonous instability, the earlier-
known mechanisms of double diffusion can lead to the
appearance of oscillatory instability (that depends first
of all on the relation between the background stratifica-
tion of the two substances). It is not excluded that an
analog of such region of oscillatory instability exists for
the mechanism considered above. Welander’s hypothe-
sis [1] is to a greater degree related to such version,
which strictly has not been studied so far.

Thus, the analysis described above points to the
existence of a new type of convective instability of
hydrostatically stable binary mixture. Previously, insta-
bility of such media was considered possible only when
the transport coefficients differ strongly (χ � λ). How-

ever, instead of the known condition  < 1, we

obtained in this paper condition (7), which, generally
speaking, can be significantly milder. This means that if
the transport coefficients are equal, even a weakly unsta-
ble stratification of one of the substances (|Ns| � |NT|)
can, in principle, destabilize a medium stably stratified
by density. We also note a principal possibility for man-
ifestation of instability of the type considered here not
only in saline water but also in humid air, where the tra-
ditionally considered effects of double diffusion are
excluded due to virtual equality of the exchange coeffi-
cients of heat and moisture.
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