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The objective of our paper is to compute images of
reflecting–scattering elements in the investigated geo-
logical medium for a given velocity model, i.e., for a
model that describes the traveltime of waves with a suf-
ficient degree of accuracy. At present, many approaches
exist for computing wave images. Following [1], all of
them can be divided into two main (kinematic and
dynamic) families. In our work, we shall deal with the
dynamic approach. We shall be interested in the proce-
dures for computing the images in true amplitudes, i.e.,
in amplitudes whose realizations are used to compute
images free of the influence of the overlying strata and
the system of perturbation and recording (illumination
conditions).

The most popular approaches for computing such
images were initiated in [2, 3]. They are based on the
application of various types of asymptotic decomposi-
tion of the Green’s function in a nonuniform medium.
Up to the present, the most widely used approach is the
application of the zero term in ray decomposition.
Unfortunately, it is correct only when the ray field is
regular. A migration procedure free of this drawback
was suggested in [4]. It is based on a representation of
the Green’s function in the form of a superposition of
Gaussian beams. However, this approach is associated
with extremely cumbersome calculations. Unfortu-
nately, we are not familiar with its realizations that pro-
vide true-amplitude seismic imaging.

In our work, we suggest a procedure for true-ampli-
tude imaging that differs significantly from others, pri-
marily because it is not based on any asymptotic
decomposition of the Green’s function and it assumes
the application of individual Gaussian beams rather
than their superposition.

FORMULATION OF THE PROBLEM
We assume that the velocity of wave propagation

can be presented as a superposition of a smooth compo-
nent 
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, which is responsible for the traveltime of
the wave and does not cause any variation in its direc-
tion, and a sharply varying component 
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, which
does not have any strong influence on the traveltime,
but significantly changes its direction (in particular, it
determines the return of energy to the free surface). We
shall use the Born approximation to describe the reflec-
tion–scattering processes occurring at this component
of the velocity (see, for example, [3]). The full wave
field is presented as a sum of two components,
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where 
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 is the wave field propagating in a medium
described by a smooth component and 
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1

 

 is generated
by the presence of reflecting–scattering objects, whose
images we want to obtain. In the Born approximation,
this component of the wave field satisfies the following
boundary problem:
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 are radiation conditions at infinity.

We assume that from hereon the problem of true-
amplitude seismic imaging is restoration of the contrast
pattern of perturbation of the smooth component of the

medium 

 

 

 

on the basis of multi-shot multi-offset

data:
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DESCRIPTION OF THE METHOD 
AND FORMULATION OF THE MAIN RESULT

In order to compute an image at point (

 

, 

 

) located
in a target area, let us initiate a couple of rays from this
point in the direction of the free surface using the given
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smooth component 
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 (Fig. 1). Let us compute a
Gaussian beam for each of these rays (see Chapter 8 in [5])
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points, where the aforementioned rays cross the free
surface. We shall discuss the choice of the Gaussian
beams later, but we now recall that the Gaussian beam
is a specific asymptotic solution of the Helmholtz equa-
tion characterized by concentration in the vicinity of a
fixed ray and global regularity. Double application of
the Green’s theorem allows us to obtain the following
integral identity:
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Let us now describe the choice of the Gaussian beams
used in Eq. (1). It is known (Chapter 8 in [5]) that a
Gaussian beam in the ray system of coordinates (
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) is
specified in the following form:

Below, we shall consider that the ray length is calcu-
lated from the free surface into the interior of the
medium. It is equal to 
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 at the internal point (
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Now, 
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Q–1(s), where functions Q(s) and P(s)
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satisfy the following system of ordinary differential
equations:

Q(s0) = Q0, P(s0) = P0

and the additional condition

(s0)P(s0) – (s0)Q(s0) = i

with dimensionless constant k, which governs the width
of the Gaussian beam. In all further considerations, ini-
tial data Q0 and P0 are selected to provide the minimal
beam width precisely at that point where imaging is
performed.

Now we shall use the concentration of the Gaussian
beams in a near neighborhood of the ray to reduce the
integration in the right part of Eq. (1) to integration over
a small neighborhood of point ( ). Neglecting the
variability of the smooth component of the velocity
structure in this neighborhood, we can use explicit rela-
tions for representing the Gaussian beams in a polar
coordinate system with the center at the selected point:

where τ0g(s)( , ) denotes traveltime of the wave from
the current point ( , ) to point (x0g(s), 0) at the free sur-
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Fig. 1. General view of the SIGSBEE2A model. Here and in Figs. 2 and 4, the distance in axes is given in ft ×104.
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Fig. 2. Restored (on the right) and true (on the left) structures of the location of reflecting levels in the SIGSBEE2A model for the
salt inclusion-free region.

Fig. 3. Restored (solid line) and true (dashed line) reflectivity of the model along a vertical section at x = 22000 ft.
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face. Now, it is not difficult to obtain the main integral
identity that determines the true-amplitude imaging:
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This is indeed a true-amplitude imaging, because the
right-hand part of Eq. (2) includes an averaging of the
perturbation contrast of the surrounding medium with
the following kernel:
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Fig. 4. Restored (on the right) and true (on the left) velocity structure beneath the left flank of the salt inclusion.
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(3)

which does not depend on the structure of the overlying
column and is fully determined by the spectrum of the
sounding signal, selected geometry of the rays, and
local properties of the surrounding medium.

DESCRIPTION OF NUMERICAL EXPERIMENTS

Synthetic data for the SIGSBEE2A model placed at
our disposal by the SMAART Company were used for
the numerical experiments.1 The general shape of the
model is shown in Fig. 1. The objective of processing is
to determine the detailed structure of this model (thin
layers, fractures, pinchouts, and location of point scat-
terers) especially under a salt inclusion. It is worth not-
ing that, currently, these synthetic data are a specific
touchstone designed for testing new approaches to the
solution of an inverse problem of the theory of wave
propagation for especially complex models of media.
Our main objective in their processing was to demon-
strate the efficiency of the suggested approach for real-
istic models of different media.

Figure 2 presents restored (on the right) and true (on
the left) parts of the SIGSBEE2A model related to the
salt intrusion-free region. One can clearly see the coin-
cidence between true and restored boundaries of the
interface, location of fractures, and solitary scattering
objects specially included into the model. In order to
estimate the accuracy of the restored contrasts of the
perturbation in the surrounding medium, we present
Fig. 3, in which the restored and true reflectivity pat-
terns of the medium along vertical line x = 22000 ft are
shown. From hereon, we understand reflectivity as the
normalized value of velocity discontinuity.

1 These data are freely available at <smaart2-admin@chevron.com>.

It is noteworthy that along with insignificant dis-
placement of the boundaries caused by the application
of a smoothed model instead of a stratigraphic one,
there are also false increases in the amplitudes unre-
lated to any reflecting–scattering objects. In our opin-
ion, their appearance is caused by the fact that the aver-
aging kernel has an oscillating character. Hence, imag-
ing of any fraction would be accompanied by
fluctuations of amplitudes at its boundaries, and the
amplitude of these oscillations would positively corre-
late with the fracture amplitude. However, as one can
see from Fig. 3, the amplitudes of the main oscillations
coincide quite well with the amplitude of the fractures.

The result of application of this approach to imaging
the subsalt structure is shown in Fig. 4. One can clearly
see two bands of image aberration related to the diffrac-
tion of the Gaussian beams at the left flank of the salt
body. At the same time, this approach is undoubtedly
successful; one can see a clear image of the fracture in
the subsalt region and an absolutely correct image of the
thin layered structure immediately beneath the left flank
of the salt body at a depth interval of 10 000–14 000 ft.
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