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(geo)chemical modeling, and a creator of the convex-programming GEM method based on the bdual thermodynamicsQ ideas.
Abstract

The dual-thermodynamic (DualTh) approach is shown to provide a useful alternative to other methods in: (i) forward modelling

of equilibrium speciation, activities, and element partitioning in a heterogeneous system involving several variable-composition

phases, such as the aqueous–solid solution system; (ii) estimation of interaction parameters of a non-ideal mixing model from

known bulk compositions of coexisting aqueous and solid-solution phases; and (iii) retrieval of unknown stoichiometries and

apparent standard chemical potentials of trace solid-solution end-members. Inverse-modelling tasks (ii) and (iii) can be performed

when the solid solution of interest is shown experimentally to co-exist with the aqueous phase either in the equilibrium or at the

minimum stoichiometric saturation state.

DualTh calculations exploit the ability of Gibbs energy minimisation (GEM) algorithms to find simultaneously two numerical

solutions of the isobaric–isothermal chemical equilibrium speciation problem: (1) primal solution x — a vector of amounts of

components (species) in phases; and (2) dual solution u — a vector of chemical potentials of stoichiometry units (usually chemical

elements and charge). Conversely, the chemical potential of a phase component can be found in two complementary ways: (i)

primal via its standard-state potential, concentration and activity coefficient (the latter two are functions of the x vector); and (ii)

dual through its formula stoichiometry multiplied by the u vector. The DualTh methods compare primal and dual values of the

chemical potential in simple and straightforward equations that can be easily computed in a spreadsheet, or implemented in GEM

geochemical modelling codes.
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1. Introduction

Many environmental contaminants can be immobi-

lized by solid solution formation. However, the data on

thermodynamic properties of solid solutions are still

scarce because it is not easy to retrieve them unequiv-

ocally from the experimental information. This contri-
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bution summarizes the dual-thermodynamic (DualTh)

methods that can be helpful in determining unknown

solubility products of pure end-members or non-ideal

mixing parameters.

DualTh calculations use the ability of Gibbs energy

minimisation (GEM) convex programming algorithms

(Karpov et al., 1997) to find two numerical solutions of

the isobaric–isothermal chemical equilibrium speciation

problem. The primal solution x is a vector of amounts

of chemical species (dependent components, grouped
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into phases). The dual solution u is a vector of chemical

potentials of stoichiometry units (independent compo-

nents, usually chemical elements and charge). Accord-

ingly, there are two possibilities of computing the

chemical potential of any component at equilibrium:

(1) primal via the standard-state potential, concentra-

tion and activity coefficient (the latter two are functions

of the x vector); and (2) dual through the formula

stoichiometry multiplied by the u vector.

The complementary primal and dual chemical poten-

tials are connected via the necessary and sufficient

conditions of equilibrium in Karpov–Kuhn–Tucker for-

mulation (Karpov et al., 1997, 2001). Based on the so-

called duality theorem of mathematical programming

(hence the bdual solutionQ), these conditions make the

GEM algorithm capable of eliminating unstable com-

ponents and phases from the mass balance. For all

components of stable phases, primal and dual chemical

potentials must be numerically equal. Hence, for an

end-member of a solid solution phase known to be in

equilibrium with the rest of (aquatic) system, the ele-

ments of dual-solution u vector and, thus, the dual

chemical potential can be obtained from a GEM calcu-

lation not including this phase in the mass balance

(Karpov et al., 2001).

This leads to the DualTh equations that simplify

modelling of heterogeneous systems involving several

variable-composition phases, such as aqueous–solid

solution (AqSS) systems. As will be shown in this

contribution, the DualTh approach also provides a use-

ful alternative to Lippmann functions (cf.(Gamsjäger et

al., 2000; Glynn, 2000)): (i) in computing the equilib-

rium partitioning between solid solutions, gas, and

aqueous electrolyte, and retrieving activities and their

functions such as pH or pe (Karpov et al., 2001)); (ii) in

retrieving unknown stoichiometries and apparent stan-

dard chemical potentials of solid-solution minor end-

members (Curti et al., 2005; Kulik and Kersten, 2002);

and (iii) in estimating activity coefficients and/or para-

meters of the non-ideal mixing model from the known

experimental bulk compositions of coexisting aqueous

and solid-solution phases (Kulik et al., 2000). From

experimental viewpoint, the DualTh concept requires

that the compositions of coexisting aqueous and solid

solutions were reported in detail sufficient to compute

aqueous equilibria, to estimate the extent of reaction,

and to obtain end-member mole fractions in the solid

solution.

The DualTh is, of course, not the only available

method for determining end-member solubility pro-

ducts or interaction parameters from the results of

co-precipitation, re-crystallization, or dissolution
experiments. Such retrieval has been done earlier

using the least squares fitting, the bactivity ratiosQ,
the Lippmann diagrams (see bDiscussionQ section),

the bunified theory of solid solution solubilityQ, and

other methods. In comparison, the DualTh technique

is quite straightforward in that all the details of aquatic

equilibrium are packed only into one dual solution

vector, which is then simply transferred onto the

solid solution of interest.

As long as the aqueous thermodynamic model, re-

gardless of its complexity, remains adequate for the

(experimental) system, the dual solution vector can be

applied to any set of possible solid solution end-mem-

ber stoichiometries. Perhaps, this is the main advantage

of DualTh calculations, which, in the case when many

experiments at different solid phase compositions are

available, can be enhanced by simple statistical proce-

dures. The statistical DualTh method, for the first time

systematically described in this contribution, can select

optimal end-member stoichiometries together with the

solubility products and their uncertainty intervals. Last,

but not least, after the dual solution of the aqueous

phase equilibrium is obtained with the GEM algorithm,

the remaining calculations are simple and can be per-

formed with an ordinary spreadsheet program. The

whole statistical DualTh calculation can also be done

using the DualTh module of GEMS-PSI package v.2.1

(Kulik et al., 2004, 2003).

First DualTh calculations in GEM forward and in-

verse modelling have been performed only for the equi-

librium case, using the criterion of equality of chemical

potential of a component in all co-existing phases. Later

on, it became possible to apply the inverse DualTh

calculations to solid solutions at the minimum stoichio-

metric saturation state using a different criterion formu-

lated by Gamsjäger and Königsberger (Gamsjäger,

1985; Königsberger and Gamsjäger, 1992a). The GEM

DualTh implementation of this idea is described below

for the first time, illustrated by a numerical example for

the Mg-calcite-aqueous system.

Other goals of this paper are: to provide a systematic

outlook of DualTh techniques based on the GEM algo-

rithm, in both forward and inverse modelling; to de-

scribe a statistical variant of inverse DualTh

calculations; and to highlight the specifics of DualTh

interpretation of the minor/trace solid solution end

members in common host minerals such as calcite.

2. Methods

The Law of Mass Action (LMA) method (Bethke,

1996; Parkhurst and Appelo, 1999) and the GEM con-
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vex programming approach (Karpov et al., 1997, 2001)

are complementary. The latter (GEM) is suited better to

compute AqSS equilibria that include two or more

multi-component phases than the former (LMA)

which usually considers only one multi-component

phase (usually aqueous electrolyte) in the mass balance

and cannot find the dual solution of the equilibrium

chemical speciation problem.

2.1. Gibbs energy minimization

In GEM, total amounts of chemical elements and

(zero) charge comprise the input bulk composition

of the system (vector b). All stoichiometrically fea-

sible chemical species are taken into the mass bal-

ance through their chemical formulae. A chemical

species (dependent component) belongs to a single-

or multi-component aqueous, gaseous, fluid, liquid,

solid, or sorption phase. Stability of j-th chemical

species at temperature T and pressure P of interest

is defined by its input standard molar Gibbs energy

function gj
o. Activities and concentrations of depen-

dent components are treated separately in each

phase, taking into account the appropriate standard

and reference states, concentration scales, and mix-

ing models. Conversely, GEM algorithms can solve

complex AqSS equilibria in a straightforward way,

without supporting tools such as Lippmann functions

(Glynn, 1991) required in LMA AqSS speciation

models.

2.2. The GEM forward modeling problem

Forward modeling means here a calculation of (un-

known) equilibrium phase assemblage and speciation in

the system defined by T, P, bulk composition, thermo-

dynamic data for dependent components belonging to

the set L, and, optionally, parameters of mixing in

multi-component phases. Solving this problem is equiv-

alent to finding a vector of amounts of dependent

components x ={xj, jaL} such that

G xð ÞZmin subject to Ax ¼ b ð1Þ

where b ={bi, iaN} is the input vector of amounts of

independent components belonging to the set N;

A={aij, iaN, jaL} is a matrix made of the formula

stoichiometry coefficients of dependent components;

and G(x) is a total Gibbs energy function of the

system

G xð Þ ¼
X
j

xjyj; jaL ð2Þ
In Eq. (2), tj is the normalized chemical potential of j-

th dependent component, written in a simplified di-

mensionless form as:

yj ¼
goj

RT
þ lnCj þ lncj þ N; jaL ð3Þ

where gj
o is the standard molar Gibbs energy function

at temperature of interest (pressure dependence is

omitted for simplicity); R is the universal gas constant;

T is temperature (K); Cj = f(xj) is the concentration

(mole fraction vj for a component of gas or solid

solution phase, molality mj for aqueous electrolyte

species, and so on); cj is the activity coefficient of

j-th dependent component in its respective phase

(unity in a Raoultian ideal mixture). The conversion

term N depends on the chosen standard state, e.g.,

N =lnP for gas phase components, N =1�vw for

aqueous species (vw is the mole fraction of water),

and N =0 for solid solution end-members and single-

component phases. Full expressions for tj and N in

aqueous and sorption phases can be found in (Karpov

et al., 2001; Kulik, 2002). Activity coefficients cj (as
functions of the phase composition) are calculated at

each iteration of the GEM algorithm according to the

mixing model chosen for each phase (see Section

2.2.2 for solid solutions).

The Interior Points Method (IPM) non-linear GEM

algorithm finds simultaneously two vectors— primal x̂

and dual u solutions of the problem (1)— using the

necessary and sufficient conditions for equilibrium in

the Karpov–Kuhn–Tucker formulation (Karpov et al.,

1997)

y� ATuz0;

Ax̂x ¼ b; x̂xz0;

x̂xT y� ATu
� �

¼ 0 ð4a; b; c; dÞ

where T is the transpose operator. Condition Eq. (4a),

re-written with indices using Eq. (3),

goj

RT
þ lnCj þ lncj þ N �

X
i

aijuiz0; jaL; iaN

ð5Þ

implies that for any j-th species present at some equi-

librium concentration Cj in its phase, the primal chem-

ical potential tj numerically equals the dual chemical

potential

gj ¼
X
i

aijui; jaL; iaN ð6Þ
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From the duality theorem it follows that, at equi-

librium, the total Gibbs energy of the system is

G(x̂)=G(u), where G x̂xð Þ ¼
P
j

x̂xjyj (Eq. (1)) and

G uð Þ ¼
P
i

biui; iaN . Hence, the GEM dual solution

uj values (Lagrange multipliers) are chemical poten-

tials of independent components in the equilibrium

state of interest. The condition of complementary

slackness (4d) complements conditions (4a) or 5 in a

sense of selecting stable components (for which the

equality in Eq. (5) can be achieved at a positive

amount xj or concentration Cj) from the unstable

ones (for which the equality in Eq. (5) cannot be

reached and zero amount xj must be assigned). Con-

ditions (4a, 4c, 4d) have also been extended for the

case when the sought-for amounts xj of some metasta-

ble species are constrained from below and/or above to

model bpartial equilibriumQ states (Karpov et al.,

2001). In this work, GEM calculations were performed

using the GEMS-PSI v.2.1 code (Kulik et al., 2004)

with built-in Nagra/PSI data base (Hummel et al.,

2002).

2.3. DualTh calculations in forward modeling

For any species in any phase present at equilibrium,

the first Karpov–Kuhn–Tucker condition (Eq. (4a)) can

be combined with Eqs. (3) and (6) into a generic

DualTh equation gj =tj, or

X
i

aijui ¼
goj

RT
þ lnCj þ lncj þ N: ð7Þ

In the forward speciation modelling, equations de-

rived from (7) are internally used (in GEM-Selektor

code) to calculate: (i) activities of gaseous, aqueous,

solid-solution and sorption species, (ii) activity func-

tions such as pH, pe; and (iii) saturation indices of

single-component condensed phases. The activity of

j-th dependent component is understood here as a

relative activity aj = rjcj from the IUPAC definition of

chemical potential

lj ¼ lo
j þ RT lnaj ¼ lo

j þ RT lnrj þ RT lncj ð8Þ

where rj stands for a relative content. Comparison with

Eq. (3) shows that rj is related to concentration as

lnrj =lnCj+N. According to Eqs. (6) and (8), the

DualTh equation for calculation of activity of any

component in any multi-component phase present at

equilibrium is:

lnaj ¼
X
i

aijui �
goj

RT
; jaL; iaN ð9Þ
The usual calculation of activity is lnaj =

lnCj+N +lncj. As both Cj and cj are functions of the

primal solution x vector, thus computed activities are

subject to some numerical limitations. For instance,

neither LMA nor GEM algorithms can consider

amounts (concentrations) below 10�18 to 10�20

moles; smaller values are automatically zeroed off for

convergence reasons. For such bzeroed-offQ species, Eq.
(9) is the only way to compute the activity in GEM

algorithm, applicable also to stoichiometrically feasible

minor species not even included into the mass balance,

for instance, the baqueous electronQ eAQ — a hypothet-

ical species used in the definition of pe — a measure of

redox potential. For the eAQ species (formula charge

Z =�1 and go=0 by convention), Eq. (9) takes the

form lnae=�1 d uCharge; defining pe=� log10 ae, one

gets

pe ¼ � 1

ln10
� uCharge
� �

: ð10Þ

Using the fundamental relation pe d ln10 d RT=

Fd Eh (F is the Faraday constant), pe can be converted

into Eh (in Volts)

Eh ¼ R

F
dT duCharge ð11Þ

In a similar way, pH=� log10 aH+ can be calculated for

any aquatic system, even if the aqueous H+ species is

not explicitly included into the mass balance

pH ¼ � 1

ln10
uH þ uCharge
� �

ð12Þ

In this equation, consistent with the electrochemical

convention go(H+)=0 at any T and P, the activity

coefficient of H+ ion is not required at all. Eq. (12)

always yields a robust numerical value of pH, even in

very alkaline systems, where the H+ molality drops

below 10�12.

In the case of fugacity fj of a gaseous component,

e.g., O2 or CO2, the relative activity can be defined as

lj � lo
j ¼ RT lnaj ¼ RT ln fj � ln f o

� �
(Anderson and

Crerar, 1993). Because the standard-state fugacity

fo=1 bar for any gaseous component, its activity aj
(dimensionless) is numerically equal to the fugacity fj.

Hence, Eq. (9) can be used for computing a gas fugacity

value, even if the gas mixture is not present in a positive

amount at equilibrium, or it has not been included into

the system definition. For example, the fugacity of ideal

CO2 gas at T=25 8C in any system containing C and O

can be found using the DualTh equation:

log10fCO2;g ¼
1

ln10
uC þ 2uO � � 159:1ð Þ½ � ð13Þ
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where �159.1 is the normalized (divided by RT=2479

J mol�1) standard molar Gibbs energy of CO2 gas at

25 8C.
There are two cases of application of Eq. (9) to

condensed (solid) phases. If a mixture end-member is

present in equilibrium in a positive amount then Eq. (9)

directly yields its activity. For instance, for the barite

end-member in (Ba,Sr)SO4 solid solution at 25 8C and

1 bar,

log10aBarite;s ¼
1

ln10
uBa þ uS þ 4uO � � 549:48ð Þ½ �:

For a single-component solid, one can find from Eq. (9)

the value of saturation index (SI) defined as

Xs ¼ log10
Qr

Keq

¼ 1

ln10
lnQr � lnKeq

� �
ð14Þ

where Keq is the equilibrium constant, and Qr is the

dissolution reaction quotient (Langmuir, 1997). For

example, taking calcite CaCO3 as a single-component

phase, Eq. (9) leads to

XCalcite;s ¼
1

ln10
uCa þ uC þ 3uO � � 455:5ð Þ½ �: ð15Þ

At equilibrium, SI is (numerically) zero. The state-

ment that the equation like (15) gives the SI for a pure

phase can be proved as shown in Appendix A. In

GEMS-PSI code, negative values of SI are always

computed for unstable pure solid phases eliminated

from the mass balance; positive SI values can be

obtained only for solids with the amount xj kinetically

constrained from above (Karpov et al., 2001). Eqs. like

(15) apply also to stoichiometrically feasible single-

component solids not included into the mass balance.

Note that the DualTh SI calculation involves neither

reactions nor ion activity or solubility products, as the

usage of the classic Eq. (14) would require.

2.4. Inverse modeling in AqSS equilibrium

Inverse thermodynamic modeling can be performed

when part of the output amount vector x or some

functions of it are independently known (experimental

fugacities, bulk compositions, concentrations of ions,

electrode potentials, etc.), but part of the input data (b,

T, P, go, parameters of mixing) are missing. The goal is

to obtain (or refine) values of unknown or uncertain

input parameters. At earlier times, the recognition of

inverse problems has led to development of specialized

codes such as FITEQL (Herbelin and Westall, 1996)

which could fit chemical speciation models to the ex-
perimental data using the least-squares algorithms. Kar-

pov et al. (1999) suggested another approach to solve

inverse problems in a broader buncertainty spaceQ con-
cept of geochemical modeling under uncertainty of

input data.

The present contribution is intended not to provide

an overview of inverse modeling methods, but, rather,

to focus on three specific cases related to AqSS sys-

tems: (i) determination of unknown standard chemical

potentials and solubility products KSP of end members

with known activity coefficients c; (ii) finding un-

known activity coefficients (and parameters of non-

ideal mixing) at known end-member KSP; and (iii)

finding stoichiometries with apparent standard chemical

potentials of minor and trace end-members when nei-

ther KSP nor c are known separately. All three tasks can

be efficiently solved using GEM DualTh calculations.

For a j-th solid solution end member, the generic Eq.

(7) can be re-arranged as

lo
j þ RT lncj ¼ l uð Þ

j � RT lnvj ð16Þ

where lj
o=goj , lj

(u) =RTgj, gj is defined by Eq. (6), cj is
the activity coefficient, and vj is the (independently

known) mole fraction of end-member stoichiometry in

the solid solution phase. In equilibrium, the criterion

behind Eq. (16) is that the chemical potential of an

independent component is the same in the solid solution

and the co-existing aqueous phase. Hence, the value

lj
(u) can be obtained by solving a GEM problem (Eq.

(1)) for the part of the system without the solid solution

of interest, given that the bulk composition of that part

can be retrieved from experimental data. Then, one

unknown parameter on the left-hand side of Eq. (16)

can be immediately calculated. This idea (in a more

formal notation) has been first expressed by Karpov et

al. (2001) and has already been used in several GEM

applications (Kulik et al., 2000; Kulik and Kersten,

2002; Curti et al., 2005).

2.4.1. Retrieval of end-member standard molar Gibbs

energy and solubility product

The DualTh equation for this case is obtained by

further re-arranging Eq. (16):

goj ¼ l uð Þ
j � RT lnvj þ lncj

� �
: ð17Þ

Eq. (17) implies that the bulk composition (to cal-

culate vj) and the mixing model parameters (to calcu-

late cj) of the solid solution are known. In some ionic

structures (carbonates, sulfates), the binary interaction

parameters can be semi-empirically predicted (Urusov,

1975; Lippmann, 1980; Glynn, 2000; Becker et al.,
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2000). Further development of atomistic modeling

techniques (Vinograd, 2001; Becker and Pollok,

2002) may lead to the prediction of mixing properties

also in oxide and silicate systems. In the worst case of

ill-defined structure, a formally ideal mixing model can

be applied (Kulik and Kersten, 2001). Stoichiometries

of all end-members must be known for the calculation

of vj from the solid bulk composition. This may be a

non-trivial task for the reciprocal solid solution (Wood

and Nicholls, 1978).

The retrieved value of end-member gj
o can be

converted into an equilibrium constant of the reac-

tion, for instance solubility product KSP, using the

relation log10K ¼ � DrG
o

RT ln10
: Other go values needed

to compute DrG
o can be found in chemical thermo-

dynamic data bases.

2.4.2. Retrieval of activity coefficients and mixing

parameters

The DualTh equation for this case results from

another re-arrangement of Eq. (16)

lncj ¼
l uð Þ
j � goj

RT
� lnvj ð18Þ

It is implied that the end-member stoichiometry and

gj
o value are known, and the mole fraction vj can be

calculated from the known bulk composition of solid

solution. Further conversion of the estimated ln cj
depends on the number of available experiments at

different solid compositions, and on the non-ideal mix-

ing model of choice. Among these models, the Gug-

genheim or the Redlich–Kister, and the Margules

models are widely used (Glynn, 1991, 2000; Anderson

and Crerar, 1993; Nordstrom and Munoz, 1994). The

Redlich–Kister model (for binary solutions) is based on

a Guggenheim power-series expression for the excess

Gibbs energy of mixing GE

GE ¼ RT v1lnc1 þ v2lnc2ð Þ ¼ RTv1v2
X
r

ar v1 � v2ð Þr

ð19Þ
where the coefficients ar are called interaction para-

meters, which, in general, depend on temperature and

pressure. The activity coefficients corresponding to Eq.

(19) are expressed as

lnc1 ¼ v22 a0 þ a1 3v1 � v2ð Þ þ a2 v1 � v2ð Þ 5v1 � v2ð Þð
þ . . . Þ ð20aÞ

lnc2 ¼ v21 a0 � a1 3v2 � v1ð Þ þ a2 v2 � v1ð Þ 5v2 � v1ð Þð
þ . . . Þ ð20bÞ
Two parameters a0 and a1 (subregular model), or

even a single parameter a0 (regular model), are usually

sufficient in binary systems; the corresponding equa-

tions for ternary and higher-order systems are available

in the literature. Some theoretical low-temperature bi-

nary systems may require more parameters of Eq. (19)

(Prieto et al., 2000). The subregular model is equivalent

to the asymmetric Margules model in the Thompson–

Waldbaum notation

GE ¼ RT v1lnc1 þ v2lnc2ð Þ ¼ v1v2 W12v2 þW21v1ð Þ
ð21Þ

with the parameters

W12 ¼ RT a0 � a1ð Þ;W21 ¼ RT a0 þ a1ð Þ ð22a; bÞ

and the activity coefficients

RT lnc1 ¼ 2W21 �W12ð Þv22 þ 2 W12 �W21ð Þv32 ð23aÞ

RT lnc2 ¼ 2W12 �W21ð Þv21 þ 2 W21 �W12ð Þv31: ð23bÞ

In the symmetric Margules model, W12=W21=WG

and WG=RTa0, i.e., both Redlich–Kister and Margules

models reduce to the same (regular) type of expression.

In equilibrium between the aqueous solution and a

binary solid solution, two activity coefficients c1 and c2
(for each end member) can be found using Eq. (18)

even for a single experimental point. Since mole frac-

tions v1 and v2 of both end members are known, the

system of Eqs. (20a,b) can be solved algebraically to

find two parameters a0 and a1

a0 ¼
1

2

lnc1
v22

3v2 � v1ð Þ þ lnc2
v21

3v1 � v2ð Þ
� �

;

a1 ¼
1

2

lnc1
v22

� lnc2
v21

� �
: ð24a; bÞ

Alternatively, the system of Eqs. (23a,b) can be

solved for Margules parameters W12 and W21

W12 ¼ RT
2lnc2
v1

þ lnc1
v22

v2 � v1ð Þ
� �

;

W21 ¼ RT
2lnc1
v2

þ lnc2
v21

v1 � v2ð Þ
� �

: ð25a; bÞ

Consistency of the above expressions for Redlich–

Kister and Margules parameters can be easily checked

by substituting Eqs. (24a,b) and (25a,b) into Eqs.

(22a,b). Clearly, if the calculated a1c0, or

W126W21, the regular binary model should be used

instead, with a parameter

a0 ¼
WG

RT
¼ 1

2

lnc1
v22

þ lnc2
v21

� �
ð26Þ
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Having a single equilibrium point, it is hardly pos-

sible to estimate the errors of thus calculated binary

interaction parameters. For each of several n(Q) experi-

ments performed at different solid phase compositions,

it is possible to calculate activity coefficients of both

end members c1,q and c2,q using the DualTh Eq. (18),

and estimate interaction parameters using Eqs. (24a,b)

or (25a,b). From thus obtained n(Q) values of a pa-

rameter, its average and standard deviation can be

found directly, avoiding the least-squares fitting.

2.4.3. Retrieval of apparent molar Gibbs energy for a

trace end-member

Incorporation of hazardous trace elements into solid

solutions is an important topic in waste geochemistry.

Especially in the case of heterovalent substitutions (e.g.,

EuIII in CaCO3), the trace end-member may not exist as

a pure substance, and a hypothetical stoichiometry of

unknown stability may have to be tested (Curti et al.,

2005). If the structural mechanism of incorporation is

not yet known then the trace end member activity

coefficient cannot be predicted. Although both para-

meters on the left-hand side of Eq. (16) may be un-

known, their sum — the apparent molar Gibbs energy

gTr* =gTr
o+RTlncTr— can still be found:

gTr4 ¼ l uð Þ
Tr � RT lnvTr ð27Þ

At trace mole fraction (vTrb10
�3), the activity co-

efficient cTr can be taken constant even in a strongly

non-ideal binary mixture. This is seen from Eqs. (20a,b)

or (23a,b) if one takes the end-member 1 as trace and

the end-member 2 as major (v2N0.999). Therefore, the

gTr* estimate should have the same value if calculated

with Eq. (27) from multiple experiments along the trace

metal incorporation isotherm. The non-ideality would

not change the isotherm slope, just would shift its

position up or down relative to the ideal isotherm.

2.4.4. Algorithm of the single DualTh calculation at

equilibrium

The main DualTh criterion at equilibrium consists in

equality of chemical potentials of independent compo-

nents in all co-existing phases. The DualTh calculation

(in particular, for the AqSS system) is performed using

a simple algorithm after (Karpov et al., 2001):

1. Define a basis sub-system, i.e., a set L(BS) of chem-

ical species belonging to the aqueous phase and/or

all other equilibrium phases with known go and c for

all components, but excluding any dependent com-

ponents having these properties unknown.
2. Calculate the equilibrium state in the basis sub-sys-

tem only from its known bulk composition b(BS)

using the GEM algorithm to obtain the dual solution

vector u(BS) of chemical potentials of independent

components.

3. Define a non-basis sub-system— a set L(NS) of

solid-solution end-members of interest, some with

unknown gj
o or cj, jaL(NS), n(L(NS))z2. Include

also major end-members.

4. From the known bulk composition b(NS) of the non-

basis sub-system, calculate mole fractions vj,
jaL(NS) for all end-member stoichiometries from

the set L(NS).

5. For each component from the non-basis sub-system:

if the activity coefficient cj is known then use Eq.

(17) to obtain a gj
o estimate; if gj

o is known then use

Eq. (18) to retrieve the activity coefficient cj; and for

a hypothetical trace end-member, use Eq. (27) to

calculate the apparent molar Gibbs energy gj* .

Calculations at steps 4 and 5 are simple and can be

done on a spreadsheet after computing all the basis

subsystem equilibria using the GEM code at step 2.

2.5. Inverse modeling at minimum stoichiometric

saturation

At low temperatures, if the formation of secondary

solid phases is kinetically inhibited, some solid solu-

tions appear to dissolve congruently, as fixed-composi-

tion solids. This process slows down with time to a

metastable state of stoichiometric saturation (Glynn and

Reardon, 1990; Königsberger and Gamsjäger, 1992a;

Glynn, 2000), the relevance of which is still debated

(Gamsjäger et al., 2000). It appears that sparingly sol-

uble solid solutions with similar end member solubility

products are prone to the stoichiometric saturation at

room temperatures and experimental times of about a

week (Gamsjäger, 1985). On a Lippmann diagram, the

minimum stoichiometric saturation states fall to the

bequal-GQ curve EGC (Königsberger and Gamsjäger,

1992a; Glynn, 2000), the criteria of which are: (i) the

equality of end-member mole fractions, and (ii) the

equality of integral molar Gibbs energies of mixture

in both solid and in aqueous phases:

v BSð Þ
j ¼ v NSð Þ

j ¼ vj; ð28aÞ

G
NSð Þ
SS ¼

X
i

l NSð Þ
j vj ¼ G

BSð Þ
SS ¼

X
j

l BSð Þ
j vj ð28bÞ

where the superscript (NS) denotes the value obtained

for the non-basis sub-system (solid solution), and the
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superscript (BS) marks the value derived from the equi-

librium in the basis sub-system (aqueous electrolyte)

alone. There is no true equilibrium between the two

phases, thus lj
(NS) is not necessary equal to lj

(BS). In all

cases below, the bulk composition of solid solution

(NS) and, hence, mole fractions of end-members vj,
are assumed to be experimentally known.

2.5.1. Retrieval of end-member standard molar Gibbs

energy

If the mixing model for the solid is known, Eq. (28b)

can be re-arranged for estimating the go value of one k-

th end-member:

gok ¼
G

BSð Þ
SS � GE

vk
� RT

vk

X
j

vjlnvj �
1

vk

X
jpk

vjg
o
j :

ð29Þ

Here, GE is the known molar excess Gibbs energy

(Eqs. (19) or (21)); the simplest cases are GE=0 for the

Raoultian ideal mixing, and GE=WGv1v2 for the reg-

ular binary model.

2.5.2. Retrieval of the excess Gibbs energy of mixing

If standard molar Gibbs energies of all solid solution

end members are known then the excess Gibbs energy

of mixing can be retrieved by re-arranging Eq. (28b)

GE ¼ G
BSð Þ
SS � RT

X
j

vjlnvj �
X
j

vjg
o
j ð30Þ

keeping in mind thatX
j

vjlj ¼ GSS ¼ Go
SS þ GId þ GE

¼
X
i

vjg
o
j þ RT

X
j

vjlnvj þ RT
X
j

vjlncj:

Further on, the interaction parameters can be found

from Eqs. (19) or (21), perhaps, using the least squares

fitting if many experiments are available. In the case of

regular model, only one interaction parameter (instead

of two at equilibrium) can be found from a single

experiment:

WG ¼ GE

v1v2
ð31Þ

2.6. Statistical DualTh calculations in inverse modeling

From a single DualTh calculation, neither the uncer-

tainty interval of the retrieved gj*, gj
o or a0 value can be

found, nor the criteria for selection of the optimal end-
member stoichiometry can be constructed. However,

both tasks can be done having the data of multiple

AqSS partitioning experiments at different composi-

tions (e.g., an isotherm). Using the statistical DualTh

approach, Kulik and Kersten (2002) selected the Zn-

containing end member stoichiometry using solubility

data on Zn-doped calcium silicate hydrate (C–S–H).

Curti et al. (2005) applied the statistical DualTh in

their study of EuIII incorporation in calcite. Most sta-

tistical DualTh calculations, for the first time systemat-

ically described in this paper, are now being

implemented in a DualTh module of GEM-Selektor

code package (Kulik et al., 2004). The data flow

chart of statistical DualTh calculations is shown on

Fig. 1.

Let Q be a set of n(Q)N2 AqSS partitioning experi-

ments performed at known T and P, and in each q-th

experiment, the basis sub-system (BS, aqueous solu-

tion) is shown to be either in equilibrium or in mini-

mum stoichiometric saturation with the non-basis sub-

system (NS, solid solution). For simplicity reasons, we

assume T and P the same for all experiments.

Input data consists of two matrices: B(BS) com-

posed of n(Q) non-equal bulk composition vectors

for basis sub-systems (taken as columns)

B BSð Þ ¼ jjb BSð Þ
qi jj; qaQ; iaN ð32Þ

and B(NS) containing n(Q) bulk composition vectors for

non-basis sub-systems

B NSð Þ ¼ jjb NSð Þ
qi jj; qaQ; iaN : ð33Þ

In each matrix, columns refer to independent com-

ponents (chemical elements).

Step 1 consists in performing a series of n(Q) GEM

calculations of equilibria in each basis sub-system,

resulting in a dual solution matrix U(BS):

U BSð Þ ¼ jju BSð Þ
qi jj; qaQ; iaN : ð34Þ

Each row in this matrix is a dual solution vector for

the q-th experiment.

At step 2, a set M of n(M)z2 candidate end-mem-

ber stoichiometries for the non-basis sub-system is

defined. Each formula expands into a row in the stoi-

chiometry matrix

A NSð Þ ¼ jja NSð Þ
mi jj; maM ; iaN : ð35Þ

The set M must contain one or more subsets Pm,

n(Pm)bn(M) of solid solution end members (indexed

with p) that complement any m-th (maM \Pm) end

member of interest to a full (binary, ternary, . . .) solid
solution model needed to solve each q-th solid bulk



Fig. 1. Data flow chart of statistical DualTh calculations. Symbols in the boxes for data tables and vectors correspond to Eqs. (32)–(49). Digits in

circles refer to the algorithmic steps described in the text. bXN means baverage XQ.
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composition for the mole fraction(s) vqm of end mem-

bers. The solid solution end-member candidates can be

chosen in many ways — as existing pure solids for the

element of interest, from the phase diagram topology, or

from the consideration of substitution mechanisms. The

number of alternative stoichiometries should be kept

small, and their formulae— as simple as possible.

Step 3 consists in the calculation of mole fractions

v(NS)qm of each of n(M) end-member stoichiometries for

each of n(Q) experiments in the non-basis sub-system,

forming a matrix

X NSð Þ ¼ jjv NSð Þ
qm jj; qaQ; qaM ð36Þ

in which rows correspond to the experiments, and

columns- to end-member candidates. For the q-th ex-

periment, mole fractions v(NS)qm are subject to the mole

balance constraints:

Xq

X
m

a
NSð Þ
mi v NSð Þ

qm þ Xq

X
p

a
NSð Þ
pi v NSð Þ

qp ¼ b
NSð Þ
iq ;

paPm; iaN ; maMqPm ð37Þ

where Xq is the (unknown) amount of the solid solu-

tion with m-th end-member candidate of interest, and
v(NS)
qp is the (unknown) mole fraction of p-th comple-

mentary end member. Eq. (37) defines a system of

n(N) balance equations with n(Pm)+n(M\Pm) +1

unknowns (v(NS)qm , v(NS)
qp and Xq). If n(N)zn(Pm)+

n(M\Pm) (one mole fraction is not independent and

can be calculated from others), the system of Eq. (37)

can be solved algebraically to obtain mole fractions

v(NS)qm , v(NS)
qp . We assume here that v(NS)qm values can be

calculated for all experiments and end-member stoi-

chiometries of interest.

At step 4, GEM dual solution matrix U(BS) (Eq.

(34)) with end-member stoichiometry matrix A(NS)

(Eq. (35)) are used in finding dual chemical potentials

of end-member stoichiometries

H BSð Þ ¼ jjg BSð Þ
qm jj; qaQ; maM ð38Þ

by the matrix multiplication:

H BSð Þ ¼ A NSð Þ
	 
T

U BSð Þ ð39aÞ

or, in the index notation,

g BSð Þ
qm ¼

X
i

a
NSð Þ
mi u

BSð Þ
qi ; qaQ; maM ; iaN : ð39bÞ
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The matrix of normalized dual chemical potentials

H(BS) can be converted into the matrix of chemical

potentials M(BS) using a scalar multiplication by the

RT factor:

M BSð Þ ¼ jjl BSð Þ
qm jj ¼ RT djjg BSð Þ

qm jj; qaQ; maM : ð40Þ

Step 5 generalizes the DualTh calculations given by

Eqs. (17), (18) or (27) for the equilibrium case, or those

by Eqs. (29)–(31) for the minimum stoichiometric sat-

uration case by introducing the proper indexation for

each q-th experiment and each m-th end-member. At

equilibrium, the matrix of dual chemical potentials of

end members M(NS) is the same as the matrix of chem-

ical potentials in the basic sub-system M(BS). Hence,

Eq. (17) takes the form:

goqm ¼ l BSð Þ
qm � RT lnv NSð Þ

qm þ lnc NSð Þ
qm

	 

; qaQ; maM

ð41Þ

where c(NS)qm is the activity coefficient found from the

mole fractions v(NS)qm and v(NS)qp , and from known mixing

model. For the minimum stoichiometric saturation, Eq.

(30) can be re-written as

GE
q ¼ G

BSð Þ
SS;q � RT

X
m

vqmlnvqm �
X
m

vqmg
o
m;

qaQ; maM ð42Þ

where gm
o stands for the known standard molar Gibbs

energy of m-th end-member candidate. For instance,

using Eq. (31), the Margules parameter for a regular

solution of end-members 1 and 2 in a q-th experiment

can be found as:

WG;q ¼
1

vq;1vq;2
G

BSð Þ
SS;q �

1

vq;2
go1 þ RT lnvq;1
� �

� 1

vq;1
go2 þ RT lnvq;2
� �

: ð43Þ

Whatever the DualTh equation used, the Step 5

results either in a matrix Go
NS (GNS* ) containing goqm

( gqm* ) values for n(M) end-members in n(Q) experi-

ments, or in a matrix W NS
(r) of the estimated interaction

parameters. Formally,

Go
NS ¼ OgoqmO; qaQ; maM ð44Þ

G4
NS ¼ Og4qmO; qaQ; maM ð45Þ

W
rð Þ

NS ¼ OWqrO; qaQ; ra# ð46Þ

where # denotes the set of n(#) interaction parameters

(1 for symmetric binary, 2 for asymmetric binary, 4 for
symmetric ternary, and so on). It is important that

n(Q)z2n(#) in equilibrium with a binary solid solu-

tion, and n(Q)Nn(#) at the stoichiometric saturation.

At step 6, the statistical analysis of the columns of

either of matrices (Eqs. (44)–(46)) is performed. In the

simplest case, means and standard deviations over each

column are calculated. For the matrix Go
NS (Eq. (44)),

this results in a vector-row of mean values

ḡgo ¼ ḡgo
m

� �
; maM ; ð47aÞ

and a vector-row of standard deviation values

r goð Þ ¼ r gom
� �� �

; maM ð47bÞ

where

ḡgo
m ¼ 1

n Qð Þ
X
q

goqm; qaQ; maM ;

r gom
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n Qð Þ
X
q

goqm � ḡgo
qm

	 
2s
; qaQ; maM :

For the matrix GNS* (Eq. (45)), the mean and stan-

dard deviation vectors are

ḡg4 ¼ ḡgm4; maM ; r g4ð Þ ¼ r gm4ð Þ; maM ð48a; bÞ

and for the matrix W(r)
NS, the mean and standard devia-

tion vectors are

W̄W ¼ W̄W r

� �
; ra#; r Wð Þ ¼ r W̄W r

� �� �
; ra#

ð49a; bÞ

At step 7, the end-member stoichiometry is selected

and the quality of results is assessed. A natural criterion

for selecting the bbestQ (optimal) end-member out of

several candidates is the smallest scatter within vectors

(Eqs. (47b) or (48b)). The selected mean (Eq. (47a),

(48a)) gives the estimated molar Gibbs energy of the

selected end member with 2r uncertainty interval. Av-

erage value(s) of the mixing parameter(s) with 2r
uncertainty interval(s) comprise the result according

to Eqs. (49a,b). An additional criterion to discard end-

member candidates or mixing models is the presence of

a trend over the columns in matrices (Eqs. (44)–(46))

showing inadequacy of the model (e.g., a wrong slope

of the model isotherm). Results for the optimal end-

member stoichiometry or non-ideal model may have

some scatter, but no regular trend. It may happen that

the consideration of output (Eqs. (44) (45) (46) (47a,b)

(48) (49a,b)) will point that more end-member candi-
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dates or yet another mixing model need to be consid-

ered. In this case, statistical DualTh calculations must

be repeated beginning from Step 2, as shown on Fig. 1.

3. Results and examples

DualTh Eq. (7)–(15) used in the forward GEM

thermodynamic modeling can be checked in a printout

(Appendix B). For the case of AqSS equilibrium,

several applications of inverse modeling DualTh meth-

ods have been published (Curti et al., 2005; Kulik and

Kersten, 2002; Kulik et al., 2000). A short summary

of these results is given in Section 3.1 below. A full

numerical example of statistical DualTh calculations at

the stoichiometric saturation is provided for the first

time in Section 3.2 for the magnesium-containing

calcites.

3.1. Inverse DualTh calculations for AqSS equilibria

Interaction parameters for the multi-component reg-

ular mixing model of authigenic Ca-rhodochrosite

(Kulik et al., 2000) have been determined using the

field characterization data for a complex natural Qanoxic
porewater–authigenic mineral phasesQ environment in

organic- and sulfide-rich sediments of the Gotland

Deep, Baltic Sea. A thermodynamic model of pore-

water chemistry at in situ P=25 bar and T=5 8C has

been developed using the GEM approach. Dual chem-

ical potentials for Mn, Ca, Fe, Mg, Sr, Ba, C, and O,

calculated from the porewater composition (basis

sub-system), were used in a DualTh estimation of

end-member activity coefficients (Eq. (18)) in a solid

solution (Mn,Ca,Mg,Sr,Ba,Fe)CO3 taken as a non-basis

sub-system. Regular interaction parameters for the

composing binaries were found to be aMn–Ca=

1.9F0.5, aMn–Mg=0.6, aCa–Mg=3.7, aMn–Fe=0.2,

aCa–Fe=2.8, aMn–Sr=9.7, aCa–Sr=2.15, aMn–Ba=4.0,

aCa–Ba=1.4, all positive, but about 30% smaller than

the values obtained from theoretical predictions accord-

ing to Lippmann (1980). The complete equilibrium

AqSS model including the (Mn,Ca,Mg,Sr,Ba,Fe)CO3

solid solution phase was able to match the measured

porewater and carbonate solid-solution compositions.

The DualTh retrieval of stoichiometry and stability of

a Zn-containing end member of the Zn-doped C–S–H

(calcium silicate hydrate) ternary solid solution has been

done by Kulik and Kersten (2002) in extension to the

previously developed ideal AqSS model for C–S–H gels

at ambient conditions (Kulik and Kersten, 2001). Ex-

perimental data for five synthetic equilibrium C–S–H

systems doped with 0%, 0.1%, 1%, 5%, and 10% Zn at
unity (Ca+Zn) /Si molar ratio were used first to compute

GEM equilibria for aqueous part of each system only, to

obtain dual solution values ui,q for Ca, Zn,O andH. From

the analysis of quasi-ternary composition diagram, six

Zn-containing end-member candidates were identified:

bZn-tobermoriteQ SiO2d Ca(OH)2d 0.25Zn(OH)2d H2O,

bhardystoniteQ Ca(OH)2d 0.5Zn(OH)2, bclinohedriteQ
SiO2d Ca(OH)2d Zn(OH)2, bjunitoiteQ SiO2d 0.5Ca(OH)2
d Zn(OH)2, bhemimorphiteQ SiO2d 2Zn(OH)2, and

the hydrated ZnSiO3, with all respective solubility

products unknown. Other two end-members of Zn–

CSH–II ternary solid solution (non-basis sub-system)

were btobermoriteQ SiO2d 0.83Ca(OH)2d 0.83H2O and

bjenniteQ SiO2d 1.667Ca(OH)2d H2O. Assuming ideal

ternary mixing, the statistical DualTh procedure (Eq.

(41)) has been applied to find the end-member

g298
o values. The bminimum scatterQ criterion pointed

out at the clinohedrite and (with slightly greater r)
the hardystonite as alternative optimal Zn-containing

end members.

When included into the GEM AqSS thermodynamic

model of Zn–C–S–H system, both ternary solid solu-

tion models were shown to reproduce a complex se-

quence of reactions (leaching, carbonation) thought to

occur in a long-term weathering scenario of cementi-

tious waste forms at subsurface repository conditions.

Modelling results predicted that at low to moderate Zn

loading (V1% per mole Si), Zn–C–S–H compounds can

effectively immobilise Zn, but the equilibrium dis-

solved Zn concentrations would strongly depend on

whether the clinohedrite or hardystonite Zn-containing

end-member is chosen.

In a recent work (Curti et al., 2005), thermodynam-

ics of dilute Eu-calcite solid solutions were investigated

using three sets of EuIII uptake experiments under

widely different pH–pCO2 conditions: (a) recrystalliza-

tion in synthetic cement pore water at pH ~13 in the

absence of CO2; (b) coprecipitation in 0.1 M NaClO4 at

pH ~6 and pCO2 ~1 bar; and (c) coprecipitation in

synthetic seawater at pH ~8 and pCO2 from 3	10�4

to 0.3 bar. At the first step, AqSS equilibria with ideal

binary solid solutions between calcite and one of end-

members Eu2(CO3)3, EuNa(CO3)2, Eu(OH)CO3 or

Eu(OH)3 with known pure-solid solubility products

were computed. None of these four variants could

reproduce all three experimental datasets simultaneous-

ly. At the second step, ideal binary solid solutions were

constructed from calcite and one of the hypothetical Eu

end-members EuO(OH), EuH(CO3)2 and EuO(CO3)0.5
with unknown solubility products. The statistical

DualTh procedure (Eqs. (45), (48a,b)) was then used

for estimating the apparent molar Gibbs energy g298*



able 1

dditions of CaCO3 and MgCO3 to bulk compositions of basis

queous+gas) sub-systems for GEM equilibria calculations

xperiment # q index vMg,q pHext CaCO3

added

(mmol)

MgCO3

added

(mmol)

alcite 0 0 7.63 1.1020 0

B 1 0.02 7.64 1.1057 0.02256

B 2 0.04 7.66 1.1248 0.04686

1A 3 0.08 7.68 1.1429 0.09937

7A 4 0.1 7.70 1.1776 0.13085

9A 5 0.125 7.72 1.2001 0.17144

6A 6 0.15 7.73 1.1947 0.21083

ote: Data in the vMg and pHext columns are from Tables 1, 3, 5 in

Bischoff et al. (1987).
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(Eq. (27)) for each of seven end-member candidates.

Applying both the bminimum standard deviationQ and
the babsence of trendQ criteria for each experimental

data set, it was found that no binary solid solution can

describe all three sets of experimental data. Thus, the

ternary solid solution models with CaCO3 as a major

end-member and any two of the seven possible Eu trace

end-members had to be tested. All data could be mod-

eled simultaneously only assuming an ideal solid solu-

tion EuHCO3–EuO(OH)–CaCO3, with gEuHCO3* =

�1733.0F2.3 kJ mol�1 and gEuO(OH)* =�955.0F1.8

kJ mol�1, while other end-member combinations

failed. This result is thought to be consistent with

the spectroscopic data for CmIII and EuIII indicating

that two distinct species are incorporated in calcite.

The study by Curti et al. (2005), essentially based on

statistical DualTh results, demonstrates that heterova-

lent substitutions in carbonate crystal structures may

need a consideration of multicomponent solid solution

models.

3.2. DualTh calculations for Mg-calcite at stoichiomet-

ric saturation

This example is intended rather to illustrate some of

DualTh methods described in Section 2 than to perform

a sophisticated fitting of subregular interaction para-

meters or to review the aqueous solubility of different

Mg-calcites.

Results of free-drift dissolution experiments for

synthetic Mg-calcites in water (Bischoff et al., 1987)

carried out at P=1 bar, T= 298 K and pCO2=316 Pa

have been shown (Königsberger and Gamsjäger,

1992b) to plot at the equal-G curve on a Lippmann

diagram, meaning that stoichiometric saturation states

have been reached in these experiments. Because sol-

ubility products KSP of calcite CaCO3 and of possible

Mg-containing end members magnesite MgCO3 or

dolomite CaMg(CO3)2 are, in principle, known, the

data (Bischoff et al., 1987) can be used in DualTh

calculations aimed at estimation of the regular Mar-

gules parameter WG.

The basis sub-system (aqueous solution) can be

GEM-modelled using the following recipe for the

bulk composition of the system: 997 g H2O+100 kg

of C0.00315N1.99364O0.0064 plus certain additions of

CaCO3 and MgCO3 such that the mole fraction of

dissolved MgCO3 vMg,aq=mMg/ (mMg+mCa) would

correspond to vMgCO3 in the initial synthetic solid

carbonate phase. These aqueous-gas equilibria (H2O

vapor excluded from the gas phase, pCO2=315F2

Pa) were computed using the GEM-Selektor code to
reproduce minimum stoichiometric saturation states

fixed by values of pHext after kinetic extrapolation

(Bischoff et al., 1987) of measured pH to the infinite

time. Because, in GEM method, pH cannot be given as

input variable, binverse titrationQ runs were conducted,

in which additions of CaCO3 and MgCO3 to the bulk

composition bq
BS were varied simultaneously while

keeping vMg constant, until the calculated equilibrium

pH was equal to the reported pHext within 0.01 units.

The required additions (+CaCO3 and +MgCO3 in milli-

moles) for seven selected experiments are listed in

Table 1.

The source of input thermodynamic data was the

Nagra-PSI data base 01/01 (Hummel et al., 2002) in

GEMS-PSI version. Activity coefficients cj of aqueous
ions of charge Zj were calculated using the Davies equa-

tion log10cj¼�ADHZ
2
j

I0:5m

1þ I0:5m

�0:3Im

� �
; Im¼1

2

P
j mjZj;

where Im is effective molal ionic strength, and

ADH=0.509 at 1 bar, 25 8C (Langmuir, 1997).

The aqueous solution was in most cases oversatu-

rated with the calcite phase, constrained at the amount

b10�9 mol. Typical output of GEM-solved equilibrium

in the basis sub-system is given in Appendix B. The

dual solutions u vectors (Eq. (34)) for all seven-basis

sub-systems are collected in Table 2. To represent the

synthetic Mg-calcites, five non-basis end-member stoi-

chiometries (CaCO3, Ca2(CO3)2, MgCO3, CaMg(CO3)2
and Ca0.5Mg0.5CO3) were combined into alternative

regular binary mixtures CaCO3–MgCO3, Ca2(CO3)2–

CaMg(CO3)2, and CaCO3–Ca0.5Mg0.5CO3. Table 3

contains basis-system chemical potentials (Eq. (40))

calculated for the five end-members, solubility products

KSP of which are given in Tables 4,6 and 8.

In the first statistical DualTh calculation, a regular

CaCO3–MgCO3 (calcite–magnesite) solid solution was

considered as the non-basis sub-system. Solving Eq.
T
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1
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Table 2

Calculated dual solution values for basis sub-systems (in kJ mol�1)

q index uCa,qd RT uMg,qd RT uC,qd RT uCharge,qd RT

0 �708.1547 – �384.1225 68.9022

1 �708.0439 �618.8768 �384.1226 68.8468

2 �707.8372 �616.9002 �384.1226 68.7579

3 �707.5442 �614.7828 �384.1226 68.6205

4 �707.2464 �613.8761 �384.1226 68.4988

5 �706.9978 �613.0037 �384.1226 68.3888

6 �706.9039 �612.3855 �384.1226 68.3315

Notes: Dual solution value of oxygen is equal to uO,qd RT=�12.2753

kJ mol�1 in all systems; uH,qd RT=�112.4532 kJ mol�1 in all

systems; uN,qd RT=�0.004 kJ mol�1 in all systems. RT=2.47897

kJ mol�1 at T=298.15 K (25 8C).

Table 4

DualTh estimation of the Margules parameter WG (GSS and WG,q in

kJ mol�1) for the calcite–magnesite (CaCO3–MgCO3) solid solution

at minimum stoichiometric saturation

q index v2,q GSS,q WG,q aq=WG,q/

(RT)

c2,q c1,q

1 0.02 �1127.21 10.82 4.365 66.17 1.002

2 0.04 �1125.15 11.67 4.709 76.69 1.008

3 0.08 �1121.07 10.92 4.403 41.54 1.029

4 0.1 �1118.86 12.60 5.083 61.40 1.052

5 0.125 �1116.20 13.03 5.258 56.00 1.086

6 0.15 �1113.67 12.27 4.949 35.72 1.118

End-member 1: CaCO3; go298(calcite)=�1129.18 kJ mol�1

logKSP=�8.48.

End-member 2: MgCO3; go298(magnesite)=�1029.28 kJ mol�1

logKSP=�8.29.

Values of logKSP from Nagra-PSI 01/01 data base (Hummel et al.

2002).
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(37) is trivial in this case — the mole fractions of end

members simply inherit those of Ca and Mg from Table

1. The integral molar Gibbs energy of mixture GSS,q is

calculated using Eq. (28b), the excess Gibbs energy of

mixing Gq
E — from Eq. (42), and the regular interaction

parameter WG,q — from Eq. (43). These results are

collected in Table 4, where aq =WG,q / (RT). It can be

seen that aq estimates somewhat increase with the mole

fraction v2 of MgCO3. Statistics for six estimated

values of WG,q and aq (Eq. (49a,b)) are given in

Table 5. The model is strongly non-ideal and suggests

a quite large miscibility gap, consistent with theoretical

predictions (Urusov, 1975).

Magnesite MgCO3 seems not to be the best choice to

describe stability of Mg calcites because in this case,

any mixing model would fail to predict the presence of

two miscibility gaps and the existence of an intermedi-

ate stable phase (dolomite). Is there a better solid

solution model? This can be checked by repeating the

statistical DualTh calculation for the Mg end-member

stoichiometries based on dolomite CaMg(CO3)2.

Busenberg and Plummer (1989) selected a half disor-

dered dolomite (hd-dolomite Ca0.5Mg0.5CO3, logKSP=

�8.27) as a Mg-containing end member for the crys-

talline bGroup IQ Mg-calcites, with logKSP=�8.48 for

calcite end member. The above solubility product of hd-

dolomite (Table 10 in Busenberg and Plummer, 1989)
Table 3

Calculated basis-subsystem chemical potentials l(BS)
qm of end-member stoichiometries (in kJ mol�1)

q index l(CaCO3)q l(MgCO3)q l(Ca0.5Mg0.5CO3)q l(Ca2(CO3)2)q l(CaMg(CO3)2)q

0 �1129.103 – – �2258.206 –

1 �1128.992 �1039.825 �1084.409 �2257.984 �2168.818

2 �1128.786 �1037.849 �1083.317 �2257.572 �2166.634

3 �1128.493 �1035.731 �1082.112 �2256.986 �2164.224

4 �1128.195 �1034.824 �1081.510 �2256.390 �2163.020

5 �1127.946 �1033.952 �1080.949 �2255.892 �2161.898

6 �1127.852 �1033.334 �1080.593 �2255.704 �2161.186
,

,

,

has been derived from the standard-state data of Helge-

son et al. (1978, p.98–108) who interpreted the dolo-

mite mineral reactions at 450–650 8C with account for

partial disorder using the Bragg–Williams equation.

The reason for selecting bdisordered dolomiteQ most

probably was that the bGroup IQMg-calcites were either

natural crystalline samples or partially disordered syn-

thetic phases prepared at 2 kbar, 700 8C or even higher

pressures and temperatures (Bischoff et al., 1983,

1987).

Tables 6 and 7 contain results of DualTh calculations

for the calcite–hd-dolomite solid solution variant, per-

formed in the same way as for Tables 4 and 5. The mole

fractions v2,q of hd-dolomite end-member in Table 6 are

double that of the magnesite end-member in Table 4.

The comparison shows that the hd-dolomite–calcite

solid solution model requires a smaller interaction pa-

rameter with about two times less the uncertainty inter-

val. Besides, the WG,q values in Table 6 display no

significant trend; both criteria point to the hd-dolo-

mite–calcite model as bmore optimalQ for these synthetic
Mg calcites. This is also corroborated by a comparison

of WG=8.93F0.8 kJ mol�1 (Table 7) with the subre-

gular Guggenheim parameters a0 d RT=9.86F0.2 kJ



Table 5

Statistical DualTh results for the calcite–magnesite solid solution

Parameter WG, kJ mol�1 a0

Average 11.89 4.79

F2r F1.65 F0.67

able 7

tatistical DualTh results for the calcite–hd-dolomite solid solution

arameter WG, kJ mol�1 a

verage 8.93 3.60

2r F0.78 F0.31
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mol�1 (a0=3.98) and a1 d RT=3.5F1.0 kJ mol�1

regressed on a much larger set of experimental data

by Busenberg and Plummer (1989), and of our

a0=3.6F0.3 (Table 7) with the reported values of

a0 between 2.54 and 5.08 for Mg-calcites (Glynn,

2000).

What would happen with the DualTh results, if

stoichiometries of calcite and hd-dolomite were scaled

up twice together with the logKSP and go298 values (to

preserve the same solubility of pure end-members)?

As shown in (Curti et al., 2005), such scaling would

result in a different slope of the AqSS isotherm for the

minor end member. Can this be detected in a statistical

DualTh calculation at stoichiometric saturation? The

answer is contained in Tables 8 and 9. The average

interaction parameter is not much different from that

in Table 7, but its standard deviation is almost three

times greater. Inspection of the WG,q column in Table

8 shows that there is an increase of WG,q values with

the mole fraction of dolomite. The trends are com-

pared among all three solid solution models on Fig. 2,

where it is seen that the calcite–hd-dolomite regular

model is the optimal one according to the babsence of

trendQ criterion.
Königsberger and Gamsjäger (1992b) have mea-

sured log10KSP=�9.47 for the crystalline (ordered?)

half-dolomite, 1.2 pK units (16 times) less soluble
Table 6

DualTh estimation of the Margules parameter WG (GSS and WG,q in

kJ mol�1) for the calcite–hd-dolomite (CaCO3–Ca0.5Mg0.5CO3) solid

solution

q index v2,q GSS,q WG,q aq=WG,q/

(RT)

c2,q c1,q

1 0.04 �1127.21 9.357 3.775 32.42 1.006

2 0.08 �1125.15 9.115 3.677 22.47 1.024

3 0.16 �1121.07 8.169 3.295 10.23 1.088

4 0.2 �1118.86 8.990 3.626 10.19 1.156

5 0.25 �1116.20 9.187 3.706 8.042 1.261

6 0.3 �1113.67 8.739 3.525 5.626 1.373

End-member 1: CaCO3; go298(calcite)=�1129.18 kJ mol�1,

logKSP=�8.48.

End-member 2: Ca0.5Mg0.5CO3; go298(hd-dolomite)=�1078.59 kJ

mol�1, logKSP=�8.27.

Values of logKSP from Nagra-PSI 01/01 data base (Hummel et al.,

2002); go298 for hd-dolomite is 1 /2 of that for disordered dolomite

(logKSP also from Busenberg and Plummer, 1989).
T

S

P

A

F

than the hd-dolomite considered above. How the

DualTh results (Tables 6 and 7) would change if the

more stable bhalf-dolomiteQ end member had been used

instead of the bdisorderedQ hd-dolomite end member?

Denoting a new standard Gibbs energy of the

dolomite end-member as g2
o=go2,new�dg2

o, we obtain

dgo2=�1.2 d RTln10=�6.85 kJ mol�1. Substitution

into Eq. (43) and re-arrangement leads to WG,q,new=

WG,q,old+dWG,q where dWG;q ¼
� dgo2
vq;1

because other

terms in Eq. (43) remain the same. The difference

dWG,q between the new and the old estimate of the

Margules parameter should increase with the mole

fraction of the half-dolomite end member. Table 10

contains new aq values obtained with the above two

equations from boldQ values of Table 6. It is seen that

WG,q values for q =4, 5 and 6 are 1 to 2 kJ mol�1 above

those for q =1, 2 and 3, i.e., show some trend. TheWG,q

or aq averages have more than twice larger 2r uncer-

tainty intervals than in Table 7 for the hd-dolomite end-

member. Thus, both statistical DualTh criteria tell that

half-dolomite (log10KSP=�9.47) is a less favorable

choice of the Mg-containing end member than hd-do-

lomite (log10KSP=�8.27) for modelling this set of

stoichiometric saturation data.

Königsberger and Gamsjäger (1992b) re-interpreted

stabilities of Mg-calcites in terms of the bdilute solid

solution formalismQ (Bale and Pelton, 1990), consider-

ing a binary solid solution made of a bsolventQ A
able 8

ualTh estimation of the Margules parameter WG (GSS and WG,q in

J mol�1) for the calcite–d-dolomite (Ca2(CO3)2–CaMg(CO3)2) solid

olution

index v2,q GSS,q WG,q aq=WG,q/

(RT)

c2,q c1,q

0.04 �2254.42 7.873 3.176 18.67 1.005

0.08 �2250.30 8.841 3.566 20.46 1.023

0.16 �2242.14 8.229 3.320 10.40 1.089

0.2 �2237.72 10.23 4.125 14.02 1.179

0.25 �2232.39 10.94 4.413 11.97 1.318

0.3 �2227.35 10.27 4.142 7.610 1.452

nd-member 1: CaCO3; go298(2calcite)=�2258.35 kJ mol�1,

gKSP=�16.96.

nd-member 2: CaMg(CO3)2; go298(d-dolomite)=�2157.15 kJ

ol�1, logKSP=�16.54.

gKSP of dolomite from Nagra-PSI 01/01 data base (Hummel et al.,
o
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2002); g298 for b2calciteQ is twice that of calcite.



Table 9

Statistical DualTh results for the 2 calcite–d-dolomite solid solution

Parameter WG, kJ mol�1 a

Average 9.40 3.79

F2r F2.28 F0.92

Table 10

Estimated parameter WG (in kJ mol�1) for the calcite–half-dolomite

(CaCO3–Ca0.5Mg0.5CO3) solid solution

q index WG,q aq=WG,q/ (RT

1 16.492 6.653

2 16.561 6.680

3 16.324 6.585

4 17.553 7.080

5 18.320 7.390

6 18.525 7.473

Using logKSP=�9.47 (Königsberger and Gamsjäger, 1992a) of the

half-dolomite end member and boldQ WG,q values from Table 6 (see

text for explanations). Averages (with 2r uncertainty): WG=17.30F
1.78 kJ mol�1; a =6.98F0.72.
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(calcite) and a bsoluteQ B (e.g., magnesite) end mem-

bers. The molar Gibbs energy of this solution is

GSS ¼ 1� vð ÞgoA þ vgoB þ RT 1� vð Þln 1� vð Þ½

þ vlnv� þ RT vlnclB þ eV
2

v2 þ eW
2

v3 þ . . .

� �
ð50Þ

where v is the mole fraction of the solute; cB
l is the

activity coefficient of the solute at infinite dilution

vY0; eV,eW,. . .are the . . .first-, second-, . . .order inter-

action coefficients. The last term in Eq. (50) is the

excess Gibbs energy of mixing GE. The activity coeffi-

cients are:

lncA ¼ � eV
2

v2 � eW
2

v3 � . . . ð51Þ

lncB ¼ lnclB þ lncA þ eVv þ eWv2 þ . . . ð52Þ

When only the first-order parameter eV is retained

(eW=. . .=0), the relationship lncB
l=-eV / 2 reduces the

bdilute formalismQ to the regular mixing model

(Königsberger and Gamsjäger, 1992b) with a0= -eV / 2.
These authors, using the solutus (equilibrium) co-pre-
Fig. 2. Comparison of trends in DualTh-estimated values of regular

Margules parameter a0=W / (RT) versus mole fraction of Mg (X(Mg))

for three alternative solid solution models: a1 — Table 4; a2 — Table

6; a3 — Table 8. The a2 model (calcite–hd-dolomite) seems to

produce aq values independent of X(Mg) and having the smallest

scatter. Lines are just guides for the eye and do not represent any

regressions or model fits.

Table 11

Estimated parameter eV for the dilute solid solution of hd-dolomite

Ca0.5Mg0.5CO3 (solute B) in calcite (solvent A)

q index vB,q GSS,q Gq
E eVq

1 0.04 �1127.21 0.3627 2.9032

2 0.08 �1125.15 0.6739 �5.0528

3 0.16 �1121.07 1.1055 �10.159

4 0.2 �1118.86 1.4425 �6.9057

5 0.25 �1116.20 1.7265 �6.5132

6 0.3 �1113.67 1.8473 �7.4402

Values of GSS,q and Gq
E in kJ mol�1.

Using logKSP=�8.27 (Table 6) of the hd-dolomite end member (see

text for explanations). Average of eV (with 2r uncertainty)

�5.53F8.91. Average without the outlying value of eVq at q =1

eV=�7.214F3.74.
)

cipitation data (Mucci and Morse, 1984), have estimat-

ed for the solution of magnesite in calcite

lncB
l=4.96F0.2. This compares (fortuitously?) well

with our result (a0=4.79F0.67, Table 5) obtained from

a different set of experimental data. However, their eV
parameter estimate (eV=3.69F1.79) is inconsistent

with lncB
l=4.96 that would lead to eVc�10 in the

case of regular mixing.

Is our boptimalQ regular model with hd-dolomite

end member B (Tables 6 and 7) consistent with the

bdilute formalismQ truncated to the first interaction

parameter? To check this, the excess Gibbs energy of

mixing has been calculated using the modified DualTh

Eq. (42):GE
q ¼ G

BSð Þ
SS;q�RT vqlnvqþ

�
1�vq
� �

ln 1� vq
� ��

� vqg
o
B þ 1� vq

� �
goA

� �
:Parameter eV values were found

from the equation eqV ¼
2

v2q

GE
q

RT
� vqlnc

l
B

 !
taking

lncB
l=ao=3.6 (Table 7). Results are presented in

Table 11. The eVq outlier at q =1 points that the estima-

tion of solute–solvent interaction parameter eV may be

very sensitive to the experimental errors in solid solute

mole fraction vq. Hence, the average and standard devi-

ation were also computed over 5 remaining points (with-
:

:
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out q=1). Thus obtained value of eV=�7.21F3.74,

although rather uncertain, is consistent with the theoret-

ical requirement lncB
l=-eV / 2 for the regular mixing.

This result corroborates our earlier conclusion about

the hd-dolomite with log10KSP=�8.27 as the optimal

end-member for the regular model description of syn-

thetic Mg-calcites. Note that all attempts to repeat esti-

mation of eV using a different solubility product of hd-

dolomite or another Mg end-member (magnesite, full

dolomite) resulted in inconsistent a0 and eV values or in a
very large scatter of eVq (not shown). The DualTh meth-

ods and criteria seem to be useful also if applied with the

dilute solid solution formalism.

4. Discussion

4.1. Comparison of DualTh with earlier methods

The GEM DualTh technique is just one of existing

methods for estimating thermodynamic properties of

solid solution end members or mixing parameters

using experimental data for the co-existing aqueous

phase. Below, some earlier methods are outlined for

comparison.

4.1.1. The bactivity ratiosQ technique
McCoy and Wallace (1956) evaluated free energies

of mixing in KCl–KBr solid solutions at 25 8C from

known solubilities of the pure salts and the solid solu-

tions in water and measured activity coefficients in the

saturated aqueous ternary systems. The chemical poten-

tial difference of KCl (component 1) in solid solution

and in pure solid is (l1�l1
o)=RT(lna1W� lna1

V), where

a1W is the activity of KCl in the saturated aqueous phase,
and a1V is the activity of KCl in the aqueous phase

saturated with pure KCl at the same temperature. In

the same manner for KBr (component 2), (l2�l2
o)=

RT(lna2W� lna2V). The molar Gibbs energy of mixing in

the solid solution, GSS
(mix)=GSS�GSS

o, now becomes

(see also Eqs. 1 and 7 in (Christov, 1996)):

G
mixð Þ
SS ¼ RT v1lna1 þ v2lna2ð Þ ¼ GSS � v1g

o
1 þ v2g

o
2

� �
ð53Þ

or

G
mixð Þ
SS ¼ v1 l1 � lo

1

� �
þ v2 l2 � lo

2

� �
¼ RT v1 lna1W� lna1Vð Þ þ v2 lna2W� lna2Vð Þ½ �

ð54Þ

By combining Eqs. (53) and (54), it is possible to

eliminateGmix
SS and to find either gj

o of a solid solution
end member, or GE and interaction parameter(s), if

mole fractions of end-members in solid solution vj,
dissolved molalities mj, and mean aqueous activity

coefficients cj
(aq) of the components are known. The

values of mj can be measured; the values of cj
(aq) can

also be measured with isopiestic techniques, or calcu-

lated using individual ion activity coefficients obtained

from the Debye–Hückel, SIT, or Pitzer equations,

depending on the ionic strength. For highly soluble

salt-water systems, the Pitzer equations have routinely

been used (Christov et al., 1994; Filippov and

Rumyantsev, 1990; Harvie et al., 1984). Results of

inverse calculations using Eq. (54) will depend on the

applicability of the electrolyte model of choice to the

system of interest. For instance, the Debye–Hückel ion

association models (cf.(Langmuir, 1997; Morel and

Hering, 1993)) can be used with reasonable accuracy

up to 0.1–0.5m effective ionic strengths. The SIT model

(Grenthe et al., 1997) can be used up to 3 m ionic

strength. The Pitzer model is applicable to mixed elec-

trolytes of any ionic strength with accuracy of 2% to 6%

(Pitzer and Kim, 1974). Of course, the same limitations

related to the account for aqueous non-ideality apply

also to GEM DualTh calculations.

What are then the advantages of the inverse model-

ing DualTh methods over the estimation of G(mix)
SS from

equations like (54)? Firstly, it is the simplicity of

DualTh determination of equilibrium chemical potential

of a solid solution end member using Eq. (16), which

does not involve molalities or aqueous activity coeffi-

cients directly. Secondly, in Eq. (54), the mean activity

coefficients are used, whereas in most computer speci-

ation codes, individual ionic species and complexes

are considered with the respective activity coefficients.

Thirdly, DualTh equations do not depend on the com-

plexity of the basis sub-system; the only requirement

is that the underlying thermodynamic model is adequate

for the system of interest. The parameterized non-

basis sub-system can be included later into the GEM

forward model for checking or sensitivity studies, if

necessary.

4.1.2. Lippmann diagrams and MBSSAS code

In aquatic geochemistry, the Lippmann phase dia-

gram and total solubility product (Lippmann, 1977,

1980, 1982) became a popular tool for analyzing pseu-

do-binary AqSS equilibria after publications by Glynn

(Glynn and Reardon, 1990; Glynn et al., 1990; Glynn,

2000) enhanced with the MBSSAS code for calculating

and plotting such diagrams and retrieval of Margules

parameters and equilibrium relations (Glynn, 1991).

The Lippmann concept has been extended and deep-
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ened in the framework of the bunified theory of solid

solution solubilityQ by Gamsjäger and Königsberger

(Gamsjäger et al., 2000; Königsberger and Gamsjäger,

1992a), as well as Prieto et al. (2000) and many others.

The equilibrium between the aqueous electrolyte and

the mixed ionic solid (B, C)A is expressed by two law-

of-mass action equations:

Bþ½ � A�½ � ¼ KBAaBA ¼ KBAvBAcBA ð55aÞ

Cþ½ � A�½ � ¼ KCAaCA ¼ KCAvCAcCA ð55bÞ

where [A-], [B+], [C+] are the aqueous activities of A�,

B+,C+(or A2�, B2+, C2+); KBA and KCA are the solu-

bility products of pure BA and CA end-members with

activities aBA, aCA, mole fractions vBA, vCA, and activ-

ity coefficients cBA, cCA, respectively. Using the Lipp-

mann total solubility product, RP =[A-]([B+]+ [C+]),

the equilibrium RP value can be expressed as

RPeq ¼ KBAvBAcBA þ KCAvCAcCA ð56Þ

defining the solidus curve. The Lippmann solutus curve

equation is (e.g., (Glynn, 1991)):

RPeq ¼
1

vB;aq
KBAcBA

þ vC;aq
KCAcCA

	 
 ð57Þ

where the aqueous activity fractions of B and C are

defined as

vB;aq ¼
Bþ½ �

Bþ½ � þ Cþ½ � ; vC;aq ¼
Cþ½ �

Bþ½ � þ Cþ½ � : ð58a; bÞ

The solidus and solutus curves drawn on a Lipmann

diagram with the common ordinate RPeq and two

superimposed abscissas vCA and vC,aq (note that

vBA=1�vCA and vB,aq=1�vC,aq) define a series of

possible equilibrium states for a pseudo-binary AqSS

system. It is inherently assumed that activity–concen-

tration relations in the aqueous phase are set by the

appropriate aqueous speciation model, just as in other

methods described above. Other useful curves drawn on

Lippmann diagrams include (Glynn, 1991): the mini-

mum stoichiometric saturation curve for the solid

B1� xCxA

RPmss ¼
Kx
CAK

1�x
BA axCAa

1�x
BA

v1�x
BA vxCA

ð59Þ

where vBA=vB,Aq (this curve can be drawn for the

entire solid-solution range regardless of the miscibility

gap); and the distribution coefficient defined as

D ¼ vBA=vCA
Bþ½ �= Cþ½ � ¼ KCAcCA

KBAcBA
ð60Þ
which depends on the composition of the solid in

the case of non-ideal mixing. For instance, in the

regular binary Margules model, Eq. (60) takes the

form D ¼ KCAexpðav2BAÞ
KBAexpðav2CAÞ

By equating Eqs. (56) and (57) and using Eq. (60),

one obtains

1� Dð Þ 1� vC;aq
� �

vCA þ 1� 1

D

� �
1� vCAð ÞvC;aq ¼ 0

ð61Þ

By solving it algebraically, the solid mole fraction

vCA is found from aqueous fraction vC,aq

vCA ¼ 1þ D
1� vC;aq

vC;aq

 !�1

ð62Þ

Finding vCA from known vC,aq at equilibrium may

be more useful:

vC;aq ¼ 1þ 1� vCA
DdvCA

� ��1

: ð63Þ

If vC,aq and vCA are known from equilibrium experi-

ments then solving Eq. (62) for D yields

D ¼
vCA � 1ð ÞvC;aq

vCA vC;aq � 1
� � : ð64Þ

Then, using Eq. (60), either the activity coefficient

or the solubility product of the solid solution end

member can be found. In the case of regular mixing,

the interaction parameter WG can be retrieved even

from a single experiment:

WG ¼ RT lnDþ lnKBA � lnKCAð Þ
1� vCAð Þ2 � v2CA

: ð65Þ

Lippmann diagrams also help determining the bino-

dal and spinodal miscibility gaps, and finding the critical,

peritectic, eutectic and alyotropic points (Glynn, 1991,

2000). An example Lippmann diagram for the calcite–

hd-dolomite AqSS system (already parameterized using

DualTh calculations in Section 3.2) is shown on Fig. 3.

The main limitation of Lippmann functions and

diagrams seems to lie in the fact that they were

developed for the aquatic pseudo-binary ionic sys-

tems such as (B,C)A or C(A,B), and become intrac-

table for ternary or higher-order systems, or for

complex solids. Alike the bactivity ratioQ method

(Eq. (54)), Lippmann functions use ionic activities

and activity fractions and, thus, depend on the choice

of aqueous speciation and activity coefficient model.

Note that any quantity defined in Eqs. (57)–(65) can be



Fig. 3. Lippmann diagram of the CaCO3–Ca0.5Mg0.5CO3 binary

AqSS system, constructed using the MBSSAS code (Glynn, 1991)

from logKBA=�8.27 (hd-dolomite, end-member 2 or B), logKCA=

�8.48 (calcite, end-member 1 or C), see Table 6, and a0=3.6

(see Table 7), a1=0. The solidus is the uppermost curve; the solutus

is the lowermost curve with a eutectic point E; and the equal-G

(minimum stoichiometric saturation) curve is dot-dashed. The dashed

horizontal line through the E point at logRP =�8.0745 crosses the

solidus at two binodal compositions B1 and B2 defining a miscibility

gap at 0.034bv2b 0.966. Two maxima on the solidus curve point to

the spinodal compositions S1 at v2=0.167 and S2 at v2=0.833.

Squares show selected experimental points (Bischoff et al., 1987)

also used in the GEM DualTh calculations (Table 1). The RPq values

for experimental points were calculated from the equation RPq ¼ a

CO2�
3

� �
q
d a Ca2þ
� �

q
þ a Ca2þ
� �0:5

q
da Mg2þ
� �0:5

q

h i
(Eq. (50) in Glynn,

1991) where a()q denote aqueous activities taken from GEM calcula-

tions of equilibria in q-th basis sub-system. These RPq values were

then plotted against solid mole fractions of hd-dolomite v2,q from

Table 6.
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computed in forward GEM calculations of AqSS equi-

libria. For instance, Lippmann diagrams can be plotted

from a series of GEM-calculated activities and mole

fractions at varying bulk composition of the AqSS

system.

4.1.3. Weighted least-squares and Bayesian estimation

techniques

Least-squares regression methods (e.g., (Box et al.,

1978)) can yield robust statistical estimates of e.g.,

interaction parameters, if many AqSS experimental

points at different compositions are available. In

general, such methods minimize the (scalar) error

function

E pð Þ ¼ f pð Þ � y½ �TC�1
y f pð Þ � y½ � ð66Þ

where y is a vector of experimental data (e.g., n(Q)

distribution coefficients), p is a vector of n(M) ad-

justable parameters (e.g., Margules parameters), and

Cy is the covariance matrix of the experimental data
vector. The inverse Cy
- 1 of Cy equals the weighting

matrix.

Königsberger (1991) has suggested an improved

bBayesian least squaresQ technique of thermodynamic

parameter estimation, also implemented as a subroutine

in the ChemSage modeling code (Königsberger and

Eriksson, 1995). In this technique, the objective func-

tion E( p) consists of two parts: (1) the difference

between predicted and experimental data (Eq. (66)),

and (2) the difference between estimated ( p) and a

priori parameter values (po):

E pð Þ ¼ f pð Þ � y½ �TC�1
y f pð Þ � y½ � þ p� po½ �TC�1

po

	 p� po½ � ð67Þ

where C�1
po equals the weighting matrix for the a

priori parameters vector. In this way, it is possible

to weight the two parts of the deviation function E( p)

differently, depending on whether more confidence is

put on the experimental data or on the inherent model

properties that can be independently estimated or

predicted.

Due to the progress in atomistic modeling of

mixing in solid solution structures (Becker et al.,

2000; Becker and Pollok, 2002), more predicted

parameters, in principle, can be collected in the a

priori vector po (Eq. (67)). This indicates a potential

importance of the Bayesian estimation approach, which

can also be applied to the results of DualTh retrieval of

solid solution parameters, thus enhancing the quality of

bstatisticalQ DualTh techniques. However, the effect of

advanced statistic or regression methods applied to the

data on (sparingly soluble) AqSS systems is quite often

marred by the scarcity of experimental points at differ-

ent solid compositions, kinetic problems in attaining

equilibrium at low temperatures, and large experimental

errors in measured compositions of co-existing aqueous

and solid solution phases.

4.2. Is the aquatic basis sub-system the only possible

one?

In this contribution, only AqSS systems have been

considered. In such systems, the dual chemical poten-

tials ui are extracted from the GEM-modeled equilib-

rium in the basis sub-system that includes the

aqueous electrolyte. In general, other basis sub-sys-

tems containing either the gas mixture or the mixed

fluid phase, but no aqueous electrolyte, can also be

considered (I.K.Karpov, personal communication). In

such cases, the non-basis sub-system may include
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solid (or liquid) solution end members, components

of the silicate melt, etc. The bulk composition of the

gas phase (e.g., volcanic gas) can be sampled in the

field and measured; the composition of the fluid

can be estimated e.g., from studies of fluid inclusions

in rock-forming minerals; and that of the solid solu-

tion or volcanic glass can be measured using the

(microprobe) X-ray techniques. As in the case of

AqSS systems, the ultimate requirements are that

the basis sub-system composition must be represen-

tative for all chemical elements that comprise the

non-basis sub-system, and the thermodynamic model

of non-ideal fluid or gas mixture must be adequate.

The latter requirement appears difficult to meet, es-

pecially for near- and supercritical hydrothermal

aqueous fluids.

5. Conclusions

1. Dual-thermodynamic (DualTh) calculations sim-

plify both forward and inverse thermodynamic model-

ling of heterogeneous systems involving several

variable-composition phases, such as AqSS (aqueous–

solid solution) systems. The DualTh approach exploits

the ability of Gibbs energy minimisation (GEM) algo-

rithms to find simultaneously two numerical solutions

(primal and dual) of the isobaric–isothermal (geo)-

chemical equilibrium speciation problem. DualTh

methods compare primal and dual values of chemical

potential for a given chemical species and also between

the components of equal stoichiometry in the co-exist-

ing phases.

2. In the forward GEM modelling of the equilibri-

um speciation and element partition between solid

solutions, gas, and aqueous electrolyte phases, the

DualTh relations resulting from the Karpov–Kuhn–

Tucker conditions of chemical equilibrium, are used

in a simple and straightforward retrieval of activities

and their functions such as pH and Eh directly from

the species stoichiometry and the dual solution chem-

ical potentials.

3. Application of DualTh methods in the inverse

modelling requires to subdivide the chemical thermo-

dynamic system of interest into: (i) basis sub-system

(containing a multi-component phase such as aqueous

electrolyte with known thermodynamic data and mixing

properties for all species), in which the dual chemical

potentials are found by computing equilibrium states

using the GEM algorithm; and (ii) non-basis sub-sys-

tem containing species or phases with some unknown

input parameters, to which dual chemical potentials are

applied later on.
4. The DualTh approach is shown to provide a useful

alternative to other existing methods (e.g., Lippmann

diagrams, bactivity ratiosQ): (i) in finding (apparent)

standard chemical potentials of (trace) solid-solution

end-members; (ii) in estimating activity coefficients

and mixing parameters using known experimental

bulk compositions of co-existing aqueous and solid-

solution phases. These tasks can be performed when

the solid solution is experimentally shown to co-exist

with the aqueous phase either at the equilibrium or at the

minimum stoichiometric saturation state.

5. When multiple AqSS partitioning experiments

are available, the GEM inverse modelling results can

be much improved by using the statistical DualTh

calculations that allow the selection of an boptimalQ
end-member stoichiometry out of several alternative

candidates. As demonstrated in example calculations

for Mg-calcites, the parameters of interest are then

found with both mean values and uncertainty inter-

vals. This procedure can be further enhanced by the

application of Bayesian weighted least-squares regres-

sion methods.

6. The main motivation for using GEM DualTh

techniques consists in the simplicity of DualTh deter-

mination of equilibrium chemical potential of a solid

solution end member, without involving molalities or

aqueous activity coefficients explicitly. DualTh equa-

tions do not depend on the complexity of the basis sub-

system; the only requirement is that the underlying

thermodynamic model is adequate for the system of

interest. The (parameterized) non-basis sub-system can

be included later into the GEM forward model for

checking or sensitivity studies, although this is gener-

ally not necessary.

Acknowledgments

The author is indebted to I.K. Karpov and M.Ker-

sten for many years of exchange of ideas that have led

to implementation of DualTh concepts in the GEM-

Selektor code and their application to various AqSS

systems. Fruitful discussions with E. Curti, U. Berner,

J. Tits, W. Hummel at the PSI, and with D. Bosbach,

J. Bruno, Th. Fanghanel, H. Gamsjäger, P. Glynn, E.

Königsberger, V. Kurepin, L. Lakshtanov, M. Prieto,

Th. Wagner, and others are greatly appreciated.

Thoughtful reviews by H. Gamsjäger and E. Königs-
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Appendix A

For a pure substance phase, any equation like (Eq.

(15)) yields the numerical value of its saturation index

SI. To prove this statement, compare the definition of SI

with the definition of the reaction quotient Qr =aM+aL�
for the ML ionic solid (reaction ML=M++L� with

equilibrium constant KS assuming the unity activity of

the solid):

10XS ¼ Qr=KS ¼ aMþaL�ð Þ=KS: ðA1� 1Þ

Regardless of presence of the solid in the system,

activities of aqueous ions M+ and L� can be found
Table A2-1

Parameters of independent components (IC, stoichiometry units)

IC name Input bulk composition, moles Residua

ICnam b yb

C 11.22543476 �2.35e�
Ca 0.00117762 2.909e

H 110.6836991 �2.117e

Mg 0.000130847 1.938e

Nit 7103.767147 1.819e

O 78.15034841 �6.726e

Zz 0 9.432e

Aqueous phase: I (molal)=0.003855 pH=7.7 pe=12 Eh(V)=0.7085.

Table A2-1A

Total dissolved independent components

IC name Molality (mol/kg H2O) log(molality)

ICnam mTot log10mTot

C 0.002715394 �2.56617

Ca 0.00118119 �2.92768

H 0.002592608 �2.58626

Mg 0.0001312438 �3.88192

Nit 0.00129373 �2.88816

O 0.008039658 �2.09476

Zz �9.46184e�16 0
using Eq. (9), and, in turn, the reaction quotient can be

calculated as

lnQr ¼ uM þ uCharge � goMþ=RT
� �

þ uL � uCharge
�

� goL�=RT
�
¼ uM þ uL � goMþ þ goL�

� �
= RTð Þ:

The solubility product KS can be found as

�RTlnKS=( g
o
M++g

o
L�)�goML. By substituting it and

the above equation into Eq. (A1-1), one obtains

XS ¼
1

ln10
ln Qr=KSð ÞÞ ¼ 1

ln10
uM þ uL � goML=RT
� �

;

ðA1� 2Þ
the rightmost part of which has exactly the same form

as Eq. (15). This gives the proof which can be repeated

for any pure solid dissolution reaction.
Appendix B

Example printout of GEM-calculated basis-system equilibrium state ( q =4, experiment #17A).

GEM-Selektor v.2-PSI: Calculation of equilibrium state in the system: DualTh:G:MgCalcBMB:1050:0:1:25:000:

14/12/2004 09:49.

Basis sub-system for Mg-calcite (Bischoff et al., 1987), exp. 17A.

State variables: P(bar)=1 T=25 (C)=298.15 (K) V(cm3)=88333779 Mass(kg)=100.9971313 Min.poten-
tial (moles): G(x)=�7159.06733.
l of mass balance IC chemical potential

mol/mol J/mol

u ud RT

12 �154.9524 �384122.6

�13 �285.2983 �707246.4

�12 �45.36284 �112453.2

�13 �247.6334 �613876.1

�12 �0.0016024 �4.0

�12 �4.951755 �12275.3

�16 27.63197 68498.8

log(molarity) Concentration (g/kg-soln)

log10MTot CTot

�2.56747 0.03260648

�2.92899 0.04732873

�2.58757 0.002612612

�3.88323 0.003189139

�2.88946 0.01811668

�2.09607 0.1285998

0 –0



Table A2-2

Parameters of dependent components (DC, species)

Species name Type Quantity in the system Concentration Activity coeff. Log activity Chemical potential

DCnam DCC xj (mol) mj c j log10aj lj (J/mol)

Ca(CO3)@ S 8.22493e-06 8.2499e-06 1 �5.084 �1128195

Ca(HCO3)
+ S 2.84424e-05 2.8529e-05 0.9347 �4.574 �1172149

Ca+2 S 0.00114094 0.0011444 0.7635 �3.059 �570249

CaOH+ S 7.7591e-09 7.7826e-09 0.9347 �8.138 �763476

Mg(CO3)@ S 5.25726e-07 5.2732e-07 1 �6.281 �1034824

Mg(HCO3)
+ S 2.9324e-06 2.9413e-06 0.9347 �5.564 �1078779

Mg+2 S 0.00012737 0.00012776 0.7635 �4.011 �476878

MgOH+ S 1.90951e-08 1.9153e-08 0.9347 �7.75 �670106

CO2@ S 0.000106896 0.00010722 1 �3.97 �408673

CO3
-2 S 7.35176e-06 7.3741e-06 0.7635 �5.249 �557946

HCO3
- S 0.00255281 0.0025606 0.9347 �2.621 �601900

CH4@ S 0 0 1 �140.1 �833935

H2@ S 0 0 1 �42.51 �224906

N2@ S 0.000644909 0.00064687 1 �3.189 �8

O2@ S 6.55102e-08 6.5709e-08 1 �7.182 �24551

OH- S 5.3531e-07 5.3693e-07 0.9347 �6.299 �193227

H+ T 2.12437e-08 2.1308e-08 0.9347 �7.7 �43954

H2O@ W 55.3406 0.99992 1 �3.627e-05 �237182

CO2 G 11.2227 0.0031495 1 �2.502 �408673

CH4 G 0 0 1 �137.2 �833935

H2 G 0 0 1 �39.4 �224906

N2 G 3551.88 0.9968 1 �0.001392 �8

O2 G 0.17816 4.9999e-05 1 �4.301 �24551

Gr O 0 1 1 �67.29 �384123

Cal O 1e-09 1 1 0.1719 �1128195

Portlandite O 0 1 1 �10.46 �956703

Mgs O 0 1 1 �0.9722 �1034824

Brc O 0 1 1 �5.449 �863333

Concentration and activity are given for aqueous species in mol/(kg H2O), for other species–in the mole fraction scale. For single-component

minerals, log10aj equals the saturation index SI.

Table A2-3

Parameters of phases at equilibrium state

Phase name Type N. of spec. Quantity in the system Phase mass Phase volume Stability criterion

PHnam PHC L1 Xa (moles) phM (g) phVol (cm3) Fa

aq_gen a 18 55.3452 997.21 999.98 �2.411e�09

gas_gen g 5 3563.28 1e+05 8.8333e+07 3.326e�11

Graphite Gr s 1 0 0 0 0

Calcite Cal s 1 1e�09 1.001e�07 3.6934e�08 0.4856

Portlandite s 1 0 0 0 0

Magnesite Mgs s 1 0 0 0 0

Brucite Brc s 1 0 0 0 0

Use the L1 column (number of species per phase) to locate the species in Table A2-2. Note that calcite amount was constrained from above at

10�9 mol.
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Appendix C. Main symbols and abbreviations
Symbol Explanation Symbol Explanation

A Stoichiometry matrix M Matrix and a set used in Eq. (40)

a Activity (of a component) m Molal concentration (mol kg�1)

AqSS Aqueous-solid solution (system) lo Standard chemical potential

a Redlich–Kister interaction parameter l Primal chemical potential

B Matrices defined in Eqs. (32),(33) N Set of stoichiometry units

b Bulk composition vector n(N) Number of elements in the set N
(BS) Basis sub-system superscript (NS) Non-basis sub-system superscript

C Concentration (of a component) XS Saturation index (Eq. (14))

Cy Covariance matrix (Eqs. (66), (67)) P Pressure (bar)

D Distribution coefficient (Eq. (60)) Qr Reaction quotient

DrG
o Standard Gibbs energy of reaction Q Set of experimental compositions

Ep Objective function (Eqs. (66), (67)) q Index of experiment

eV, eW,. . . bDilute formalismQ parameters R Universal gas constant, 8.3145 J K�1 mol�1

F Faraday constant, 96485 C mol�1 r Relative content (Eq. (8))

fo, f (Standard) fugacity (of a gas) Rj Lippmann total solubility product

G(x) Total Gibbs energy function SI Saturation index of a pure phase (XS)

Go Matrix defined in Eq. (44) r Standard deviation

G* Matrix defined in Eq. (45) T Temperature (K), 8C if indicated

GE Excess Gibbs energy (of mixing) T Transpose operator

GSS Integral Gibbs energy of mixture U Matrix defined in Eq. (34)

go Standard Gibbs energy function u Dual solution (vector)

g* Apparent Gibbs energy (Eq. (27)) t Normalized primal chemical potential

GEM Gibbs energy minimization W Margules interaction parameter

c Activity coefficient WG Regular Margules parameter

cl Infinite-dilution activity coefficient W(r) Matrix defined in Eqs. (46)

H Matrix defined in Eq. (38) x Primal GEM speciation (vector)

g Dual chemical potential x̂ Primal GEM solution (at equilibrium)

Im Molal ionic strength v Mole fraction (of a component)

i Index of stoichiometry unit X Matrix defined in Eq. (36)

j Index of dependent component y Vector of experimental data (Eq. (66))

K Equilibrium constant of reaction Z Formula charge (of a component)

L Set of dependent components N Conversion term (Eq. (3))
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