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S U M M A R Y
Due to the Earth’s inhomogeneity, seismogram envelopes increase in duration and decrease
in amplitude with increasing travel distance. Those features have been explained on the basis
of the forward scattering in random media using the Markov approximation. Since the con-
ventional studies assumed isotropic random media, they were not realistic enough to represent
the anisotropic lithosphere characterized by long horizontal and short vertical correlation dis-
tances. Using the Markov approximation, the present study formulates the envelope synthesis
in 2-D weakly anisotropic random media characterized by Gaussian and von Kármán-type
autocorrelation functions (ACF). Also, wave propagation is numerically simulated with the
finite-difference (FD) method; 2 Hz Ricker wavelets propagate through the random media
characterized by 4 km s−1 average velocity and the Gaussian ACF with 5 km horizontal cor-
relation distance, 2.5 km vertical correlation distance, and 5 per cent rms fractional velocity
fluctuation. We find a good coincidence between the envelopes of the Markov approximation
and those of the FD simulations, which supports the reliability of the synthesis method using
the Markov approximation. The envelopes of the Markov approximation are scaled by using
a characteristic time, which is a function of propagation direction and other model parame-
ters. It predicts that envelopes increase in duration and decrease in maximum amplitude more
rapidly in the horizontal propagation than in the vertical when the media are characterized
by long horizontal and short vertical correlation distances. In the case of the vertical wave
propagation, the envelope of the anisotropic random media has shorter duration and larger
maximum amplitude than those of the isotropic random media. It means that the intensity of
the inhomogeneity is underestimated when one analyses seismogram envelopes of deep events
considering anisotropic lithosphere as isotropic random media.
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1 I N T RO D U C T I O N

The concept of random media, fluctuation from the average medium property is random in space, is widely accepted for modelling velocity

inhomogeneity distributed from the very shallow crust to the upper mantle. The inhomogeneity at the very shallow crust can be directly

measured in boreholes; fluctuations of P- and S-wave velocities can be considered as random (e.g. Shiomi et al. 1997), and are considered

to be anisotropic with long horizontal and short vertical correlation distances (e.g. Wu et al. 1994; Dolan et al. 1998). Holliger & Levander

(1992) reported the anisotropic inhomogeneity in the lower crust from a surface exposure at the Iverea Zone, Italy. Analyses of seismic array

records also detect the anisotropic inhomogeneity in the lower crust (e.g. Hestholm et al. 1994; Matsumoto et al. 2001). Ryberg et al. (2000)

employed the anisotropic random media in the upper mantle to explain the Pn-wave trains appearing in the observed seismograms of peaceful

nuclear explosion. Furumura & Kennett (2005) distributed anisotropic inhomgeneity in the subducting plate to simulate regional seismograms

observed in northern Japan. Kamei et al. (2005) proposed the anisotropic random media for modelling methane hydrate-bearing zones. In this

study, we use the term ‘anisotropic random media’ to represent the random media where the characteristic scale length of the inhomogeniety

depends on direction. It should be noted that some papers used the term ‘anisomeric media’ to distinguish the anisotropy of elastic tensor

(e.g. Kravtsov et al. 2003). This study does not consider the anisotropy of the elastic tensor.

For interpretations of observed seismograms, it is useful to simulate wave propagation in anisotropic random media and to investigate its

effects on wavefield. Iooss (1998) and Müller & Shapiro (2003) theoretically investigated traveltime and amplitude fluctuations in anisotropic

random media on the bases of the Rytov method (e.g. Chernov 1960; Rytov et al. 1989). In those papers, they compared the theoretical
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predictions using the Rytov method with those from finite-difference (FD) wave simulations, and found a good coincidence between them.

Supposing the geometry of reflection seismic survey, Kravtsov et al. (2003) calculated traveltime fluctuation in anisotropic random media as

a function of the incident angle. Scattered waves also strongly depend on the anisotropic inhomogeneity. Numerical simulations of wavefields

with the FD method show that the anisotropy significantly affects the excitation of later phases (e.g. Ikelle et al. 1993). Jannaud et al. (1992)

investigated coda-wave excitation in anisotropic random media on the basis of the single-back scattering model with the Born approximation;

they also mentioned a possibility of the estimation of the anisotropy from coda-wave analysis.

Due to the wave scattering and the excitation of later phases, wave envelopes usually have long duration compared to source duration.

Waves impulsively radiated from a source fluctuate due to the inhomogeneous media and the envelopes show increases in duration with travel

distances. This is one of the prominent features of wave envelopes observed in inhomogeneous media. Using the parabolic approximation and

the Markov approximation, we can theoretically synthesize wave envelopes without numerical wave propagation simulations (e.g. Ishimaru

1978; Sato & Fehler 1998). The method considers small-angle scattering around the forward direction and neglects large-angle scattering;

small-angle scattering dominates over large-angle scattering when the characteristic scale of the inhomogeneity is larger than the wavelength.

We refer to the envelopes synthesized by using the Markov approximation as Markov envelopes, hereinafter. Fehler et al. (2000) confirmed

the validity of this method by comparing the Markov envelopes with the envelopes of wave traces from FD simulations in 2-D case. Sato

(1989) first used the Markov envelopes to explain the increase of seismogram-envelope duration with travel distance, which is referred to

as envelope broadening. Later, Saito et al. (2002) extended the method under more realistic assumptions. They explained not only envelope

broadening but also maximum-amplitude decay of envelopes (Saito et al. 2005). Based on the envelope modelling, one can estimate the power

spectral density function (PSDF) of velocity inhomogeneity in the lithosphere (e.g. Scherbaum & Sato 1991; Obara & Sato 1995). Also, one

can roughly estimate the hypocentral distance analysing the initial part of a P-wave envelope observed at a single station (Tsukada et al.
2004). Recently, the Markov envelope was incorporated in the radiative transfer theory to simulate not only small-angle scattering but also

large-angle scattering (Saito et al. 2003; Sato et al. 2004). Furthermore, Korn & Sato (2005) extended the Markov envelope to the elastic wave

propagation case; they showed that the scalar-wave equation can be used for the envelope synthesis even in elastic media when the conversion

scattering is negligibly small. We may say that the envelope modelling using the Markov approximation is one of the useful methods for

interpreting seismogram envelopes. However, the conventional studies have supposed only isotropic inhomogeneity.

The present study formulates a method of scalar-wave envelope synthesis in anisotropic 2-D random media using the Markov approxima-

tion. In Section 2, we mention 2-D wave propagation in anisotropic random media and statistical characterization of the media. In Section 3,

we numerically calculate the wave propagation with the FD method to obtain reference envelopes (FD envelopes) that will be compared with

the Markov envelopes. In Section 4, the envelope synthesis method is formulated using the Markov approximation. We compare the Markov

envelopes and the FD envelopes to examine the reliability of the theoretical calculations. In Section 5, we discuss the dependence of envelopes

on the propagation direction in the anisotropic random media. Also, we compare the envelopes in anisotropic random media and those in

isotropic random media. Finally, Section 6 presents some conclusions.

2 WAV E P RO PA G AT I O N I N 2 - D A N I S O T RO P I C R A N D O M M E D I A

Let us consider propagation of scalar wave u(x, t) through 2-D space governed by(
� − 1

V (x)2

∂2

∂t2

)
u(x, t) = 0, (1)

where x = (x , z) and � is the Laplacian in 2-D. In randomly inhomogeneous media, wave velocity is written as V (x) = V0{1 + ξ (x)}, where

V0 is the average velocity and ξ the fractional velocity fluctuation. Throughout this study, weak fluctuation |ξ | � 1 is assumed. To obtain

statistical properties of the media and wavefield, we consider an ensemble of the fractional fluctuation {ξ (x)} such that 〈ξ (x)〉 = 0, where

the angular brackets mean the ensemble average. The media are referred to as random media, which are statistically characterized by the

autocorrelation function (ACF) of the fractional fluctuation R(xd ) ≡ 〈ξ (xd +x)ξ (x)〉 or the power spectral density function (PSDF), P(m),

where m is the wavenumber. We suppose that ξ is statistically homogeneous random function in space; the ACF depends on difference vector

xd but is independent of location x. The ACF and the PSDF are generally characterized by rms value of the fractional velocity fluctuation ε

and two correlation distances ax and az, which are the characteristic scale lengths of the inhomogeneity in the x and z directions, respectively.

A Gaussian ACF for 2-D anisotropic random media is given by

R(xd , zd ) = ε2 exp

(
− xd

2

ax
2

− zd
2

az
2

)
, (2)

and the corresponding PSDF is given by

P(mx , mz) =
∫ ∞

−∞

∫ ∞

−∞
R (xd , zd ) exp (−imx xd − imz zd ) dxd dzd

= ε2πax az exp

(
−ax

2mx
2 + az

2mz
2

4

)
,

(3)

where (mx, mz) is the wavenumber vector of the inhomogeneity. Fig. 1(a) shows an example of anisotropic random media characterized by

the Gaussian ACF. In Fig. 1(b), an example of isotropic random media is also shown for comparison. The ACF and PSDF of the anisotropic
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Figure 1. The random media characterized by the Gaussian autocorrelation function (ACF) with ε = 0.05. (a) Anisotropic random media with ax = 5 km,

a z = 2.5 km and (b) isotropic random media with ax = a z = 5 km. The fractional velocity fluctuation is imaged by grey scale and the fluctuations along x =
40 km and z = 40 km are also plotted beside the image.
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Figure 2. (a) The Gaussian ACF with ax = 5 km and a z = 2.5 km. A cross Section along x-axis is plotted by a solid curve and along z-axis by a dashed curve.

(b) The corresponding power spectral density function (PSDF). A cross section along x-axis is plotted by a solid curve and along z-axis by a dashed curve.

random media are shown in Fig. 2. The correlation distances in the x- and z-axes are 5.0 and 2.5 km, respectively. The ACF decreases more

rapidly in the z-axis than in the x-axis (Fig. 2a). The PSDF along the z-axis is richer in the short-wavelength components than that along the

x-axis (Fig. 2b).

A von Kármán type ACF is given by

R(xd , zd ) = ε221−κ

�(κ)

(√
(xd/ax )2 + (zd/az)2

)κ

Kκ

(√
(xd/ax )2 + (zd/az)2

)
, (4)

and the corresponding PSDF is given by

P(mx , mz) = 4πκε2ax az(
1 + ax

2mx
2 + az

2mz
2
)κ+1

, (5)

where � and K κ are the Gamma function and the modified Bessel function of the second kind of the order κ , respectively.

In general, the ACFs for 2-D anisotropic random media, including Gaussian and von Kármán type, can be represented by using a

normalized ACF R̄(r̄ ),

R(xd , zd ) = ε2 R̄

⎛
⎝

√
xd

2

ax
2

+ zd
2

az
2

⎞
⎠ = ε2 R̄(r̄ ), (6)

where the normalized difference distance is defined as

r̄ ≡
√

xd
2

ax
2

+ zd
2

az
2
. (7)
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The corresponding PSDF in 2-D is given by

P (mx , mz) =
∫ ∞

−∞

∫ ∞

−∞
R (xd , zd ) exp (−imx xd − imz zd ) dxd dzd

= 2πε2ax az

∫ ∞

0

J0(m̄r̄ )r̄ R̄ (r̄ ) dr̄

= ε2ax az P̄(m̄), (8)

and J 0 is the Bessel function of zero order. The normalized PSDF is defined as

P̄(m̄) ≡ 2π

∫ ∞

0

J0(m̄r̄ )r̄ R̄(r̄ ) dr̄ , (9)

where the normalized wavenumber is defined as

m̄ ≡
√

ax
2mx

2 + az
2mz

2. (10)

Using the above expressions of the ACF (eq. 6) and PSDF (eq. 8) with the normalized functions, we can represent general type of 2-D

anisotropic random media.

3 F D E N V E L O P E S I N 2 - D A N I S O T RO P I C R A N D O M M E D I A

Wave propagation in 2-D anisotropic random media is numerically simulated before the derivation of the Markov envelopes. Those numerical

simulations would be helpful for intuitively recognizing wave propagation in anisotropic random media. Also, the envelopes obtained from

the numerically calculated wavefield will be compared with the Markov envelopes in order to examine the reliability of the synthesis using

the Markov approximation. We here consider the random media characterized by the Gaussian ACF with ε = 0.05, ax = 5.0 km, a z = 2.5 km

and V0 = 4 km s−1. The orders of those values are consistent with the observed S-wave random inhomogeneity (e.g. Saito et al. 2005) and the

parameters used in the previous works (e.g. Sato et al. 2004). The ratio ax/a z = 2 is consistent with that of the KTB borehole data obtained

by Wu et al. (1994). In the medium with dimensions of 200 km square surrounded by absorbing boundaries, wave propagation from a point

source with isotropic radiation is numerically simulated with the FD method. We use a Ricker wavelet with its dominant frequency fc = 2 Hz

as a source time function. The dominant frequency corresponds to kax ≈ 16 and kaz ≈ 8 where k is the wavenumber given by k = 2π fc/V0.

The FD simulations are accomplished with fourth-order accuracy in space and second-order in time with grid spacing of 50 m and time step

of 4 ms.

To investigate statistical properties of wavefield, we make the above numerical simulations with respect to 50 realizations of the random

media. As examples, Fig. 3 shows wave traces calculated by the FD simulations with respect to 3 realizations of the random media. The

wave records after the arrival of reflected waves from the boundaries are excluded. Figs 3(a) and (b) show wave traces along the z- and

x-axes, respectively. We consider Figs 3(a) and (b) as the vertical wave propagation and the horizontal propagation, respectively. Each row

corresponds to each realization of the random media and the four panels in each row correspond to the distances, 50, 75, 100 and 125 km

apart from the source. Wave traces, on the whole, become more complex with increasing propagation distance; later arrivals lengthen the

duration of wave trains. This tendency is more prominent in the horizontal propagation cases, Fig. 3(b), than in the vertical propagation cases,

Fig. 3(a).

From wave traces calculated with respect to 50 realizations of random media, we make mean-square (MS) envelopes and rms envelopes,

as follows. We calculate 50 envelopes at each station by using the Hilbert transform (p. 250, Shearer 1999). At each station, squaring those

50 realized envelopes and averaging the squared envelopes, we obtain an ensemble-averaged squared envelope, which is referred to as MS

envelope. Taking the square root of the MS envelope, we obtain rms envelope. The rms envelopes from FD simulations are referred to as FD

envelopes, hereinafter. Fig. 4 shows the FD envelopes at stations located 50, 75, 100 and 125 km apart from the source. Each bin corresponds

to each propagation direction φ; the directions, φ = 0, 30, 45, 60 and 90 degree, are measured as the angle between the z-axis and the global

ray direction. Solid black curves are the FD envelopes or ensemble-averaged envelopes made from 50 realized envelopes. Grey area around

the solid curve indicates the range of standard deviation of the ensemble-averaged envelope. The range is estimated with bootstrap method;

we estimate the standard deviation over 30 ensemble-averaged envelopes, which are calculated from artificial data sets. Each artificial data set

consists of 40 envelopes, which are randomly sampled from the 50 realized envelopes. Fine grey curves indicate the standard deviation of the

each realized envelope. Note that the large standard deviation of each realized envelope (fine grey curves in Fig. 4) means that the shapes of a

single-realized envelope and the ensemble-averaged envelope are quite different. Although the standard deviation of each realized envelope is

large, we see that the shape of the ensemble-averaged envelope is stable (grey areas in Fig. 4) when we use more than 40 realized envelopes for

the average. In this study, we are interested in the ensemble-averaged envelope. The FD envelopes, or ensemble-averaged envelopes, increase

in their duration and decrease in their maximum amplitude with increasing travel distance. This tendency is more prominent with increasing

the angle φ.
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Figure 3. Wave traces calculated by the finite-difference simulations with respect to 3 realizations of random media characterized by the Gaussian ACF with

ε = 0.05, ax = 5 km, a z = 2.5 km and V0 = 4 km s−1. (a) Wave traces at stations located at 50, 75, 100 and 125 km on the z-axis apart from a source. A set of

four panels in each row is calculated for a single realization of the random media. (b) Wave traces at stations located at 50, 75, 100 and 125 km on the x-axis

apart from a source.

4 M A R KOV E N V E L O P E I N 2 - D R A N D O M M E D I A

4.1 Formulation

4.1.1 General formulation for 2-D random media

Using 2-D polar coordinates (r, φ) shown in Fig. 5(a), we write wavefield as a superposition of harmonic cylindrical waves of angular frequency

ω,

u(x, t) = 1

2π

∫ ∞

−∞

U (r, φ, ω)√
kr

exp {i(kr − ωt)} dω, (11)
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Figure 4. The rms envelopes of finite-difference wave simulations. The envelopes at travel distance 50, 75, 100 and 125 km are plotted. Numerals at upper left

side in each bin show the propagation direction measured from the z-axis. Wave propagations from a 2 Hz Ricker wavelet source are numerically simulated for

50 realizations of the random media characterized by the Gaussian ACF with ε = 0.05, ax = 5 km, a z = 2.5 km and V0 = 4 km s−1. Solid black curves are

the FD envelopes or ensemble-averaged envelopes over 50 realized envelopes. Grey area around the solid curve indicates the range of standard deviation of the

FD envelope. Fine grey curves indicate the standard deviation of the each realized envelopes.

where the wavenumber k = ω/V0 (e.g. Saito et al. 2003). When the correlation distance of the medium inhomogeneity is much larger than

the wavelength ak 
 1, the second derivative of U (r , φ, ω) with respect to radial direction r may be neglected. In addition, when wave travels

much longer than the wavelength rk 
 1, the parabolic wave equation is obtained from eqs (1) and (11),

2ik
∂

∂r
U (r, φ, ω) + 1

r 2

∂2

∂φ2
U (r, φ, ω) − 2k2ξ (r, φ) U (r, φ, ω) = 0. (12)

For the case of ak 
 1, small-angle scattering dominates. Hence, we consider wave propagation around the global ray direction φ. In Fig. 5(a),

the angle φ i is represented by small angle θ i as φ i = θ i + φ where |θ i | � 1. Furthermore, a local coordinate r ⊥ is introduced at a large

distance r from the source (r 
 a); the axis r ⊥ , which is referred to as transverse axis, is tangential to the circle of radius r (Fig. 5a). In order

to derive the envelopes, we introduce a two-frequency mutual coherence function (TFMCF) in the local coordinate. The TFMCF is defined

at two adjacent points r ⊥1 and r ⊥2 on the transverse axis and two angular frequencies ω1 and ω2 as

�2(r⊥1, r⊥2, r, ω1, ω2) ≡ 〈
U (r⊥1, r, ω1) U ∗(r⊥2, r, ω2)

〉
, (13)
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Figure 5. Coordinates used in the formulation of 2-D anisotropic media (x-z space). (a) The global ray direction from a source is in the radial direction r.

A transverse axis r ⊥, which is tangential to the circle of radius r is taken at large distance r from the source. (b) Difference coordinates between two points

(r ⊥1, r ) and (r ⊥2, r ); the origin is chosen at (r ⊥2, r ). An axis r ′ is parallel to the global ray direction and an axis r ⊥d is in the transverse axis r ⊥. Axes xd and

zd are parallel to the axes x and z, respectively.

where asterisk denotes complex conjugate and r ⊥i ≈ rθ i . The equation of �2 is derived from eq. (12) as

2i
∂

∂r
�2(r⊥1, r⊥2, r, ω1, ω2) + 1

r 2

(
1

k1

∂2

∂φ1
2

− 1

k2

∂2

∂φ2
2

)
�2

−2
〈{k1ξ (r⊥1, r ) − k2ξ (r⊥2, r )}U (r⊥1, r, ω1)U ∗(r⊥2, r, ω2)

〉 = 0.

. (14)

When we consider the range such that |r ⊥1 − r ⊥2| � r in homogeneous random media, �2 strongly depends on the difference angle θ d ≡
θ 1 − θ 2, while it is almost independent of the centre of mass coordinate θ c ≡ (θ 1 + θ 2)/2 within the local coordinates. Hence, the derivatives

with respect to angles φ i are approximated as ∂2/∂φ2
1 ≈ ∂2/∂φ2

2 ≈ ∂2/∂θ 2
d . Considering the two points (r ⊥1, r ) and (r ⊥2, r ) on the transverse

axis, we introduce difference coordinates xd = x 1 − x 2 and zd = z1 − z2 at distance r where xi and zi indicate the position of (r ⊥i , r ) in the

x-z coordinates (Figs 5a and b). Introducing difference coordinates (r ⊥d , r ′), where the r ⊥d -axis is parallel to the r ⊥-axis and the r ′-axis is

parallel to the r-axis, we define the longitudinal integral of the ACF along the global ray direction as

A(r⊥d , φ) ≡
∫ ∞

−∞
R(xd )dr ′ = 1

(2π )2

∫ ∞

−∞
dr ′

∫ ∞

−∞

∫ ∞

−∞
P (m) exp {im · xd} dm

= 1

(2π )2

∫ ∞

−∞
dr ′

∫ ∞

−∞

∫ ∞

−∞
P(m) exp{im · (r⊥d e⊥ + r ′er )}dm,

(15)

where r ⊥d = r ⊥1 − r ⊥2, the vectors er and e⊥ are unit vectors in the r′- and r⊥d-axes, respectively. The difference vector xd = (x 1 − x 2, z1

− z2) is given by xd = r ⊥d e⊥ + r ′ er. The third term in eq. (14) is approximated as〈
(k1ξ1 − k2ξ2) U1U2

∗〉 ≈ − i

2

[(
k1

2 + k2
2
)

A (0, φ) − 2k1k2 A (r⊥d , φ)
]
�2, (16)

where Ui means that its argument is (r ⊥i , r , ω i ) and ξ i means that its argument is (r ⊥i , r ) (see Appendix A). During the derivation, large-angle

scattering, or backward scattering, is neglected. Also, we suppose weak anisotropy and the existence of an intermediate scale �r, which is

larger than the correlation distance of inhomogeneity but smaller than the scale of variation of U . The approximation is called the Markov

approximation (e.g. Sato & Fehler 1998). From eqs (14) and (16), the master equation of the TFMCF, for quasi-monochromatic waves ω1 ≈
ω2, is written as

∂

∂r
�2(θd , r, ωc, ωd ; φ) + i

kd

2kc
2

1

r 2

∂2

∂θd
2

�2 + kc
2 [A(0, φ) − A(r θd , φ)] �2 + kd

2

2
A(0, φ) = 0, (17)

where we use r ⊥d ≈ rθ d . Also, the centre of mass and the difference wavenumbers are kc = (k 1 + k 2)/2 and kd = k 1 − k 2, respectively.

Corresponding coordinates for the angular frequency are also used. We introduced 0�2 as �2 = 0�2 exp{−kd
2 A(0, φ)r/2} The term

exp{−kd
2 A(0, φ) r/2} is referred to as the wandering effect term, which corresponds to the travel time fluctuation over each realization of

the envelopes (e.g. Lee & Jokipii 1975b). From eq. (17), we obtain the master equation for 0�2 as,

∂

∂r
0�2(θd , r, ωc, ωd ; φ) + i

kd

2kc
2

1

r 2

∂2

∂θd
2 0�2 + kc

2 [A(0, φ) − A(r θd , φ)] 0�2 = 0. (18)

The squared envelope in a narrow-frequency band �ωc around the centre angular frequency ωc is written as

I (r, t, ωc, φ) ≡ 〈|u|2〉

≈ �ωc

(2π )2kcr

∫ ωc+�ωc/2

ωc−�ωc/2
0�2(θd = 0, r, ωd , ωc; φ) exp{−iωd (t − r/V0)}dωd .

(19)
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By solving the master equation of TFMCF (18) and inserting the solved TFMCF into eq. (19), we can synthesize the MS envelope without the

wandering effect. Square root of the MS envelope is the rms envelope. We refer to the rms envelope derived from the Markov approximation

as Markov envelope, hereinafter.

4.1.2 Anisotropic random media

We derive the master equation of TFMCF and the Markov envelope in the case of anisotropic random media. From Fig. 5(b), the relation

between (xd , zd) and (r ⊥d , r ′) is given by

xd = r⊥d cos φ + r ′ sin φ and zd = −r⊥d sin φ + r ′ cos φ. (20)

Using eq. (20), we calculate eq. (15) as

A (r⊥d , φ) ≡
∫ ∞

−∞
R (xd , zd ) dr ′

=
∫ ∞

−∞
dr ′ 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
P(mx , mz) exp(imx xd + imz zd ) dmx dmz

= 1

(2π )2

∫ ∞

−∞
dr ′

∫ ∞

−∞

∫ ∞

−∞
P(mx (mr , m⊥, φ), mz(mr , m⊥, φ)) × exp(imrr ′ + im⊥r⊥d ) dmr dm⊥

= 1

2π

∫ ∞

−∞
P (mx (mr = 0, m⊥, φ), mz(mr = 0, m⊥, φ)) exp(im⊥r⊥d ) dm⊥, (21)

where

m⊥ ≡ mx cos φ − mz sin φ and mr ≡ mx sin φ + mz cos φ. (22)

Substituting eq. (8) into eq. (21) and considering the coefficient of m⊥ in the PSDF as an correlation distance at along the r ⊥d -axis, we obtain

A(r⊥d , φ) = 1

2π
ε2ax az

∫ ∞

−∞
P̄(at m⊥) exp(im⊥r⊥d )dm⊥

= 1

2π
ε2ar

∫ ∞

−∞
P̄(m̄⊥) exp(i m̄⊥r⊥d/at )dm̄⊥,

(23)

with the normalized PSDF (eq. 9) where m̄⊥ ≡ at m⊥. Here, the values of at and ar are effective correlation distances in the r ⊥- and r-axes,

which are defined as

at ≡
√

ax
2 cos2 φ + az

2 sin2 φ and ar ≡ ax az/

√
ax

2 cos2 φ + az
2 sin2 φ, (24)

respectively. The effective correlation distances are the functions of the angle φ; at = ax and ar = a z when φ = 0, and at = a z and ar = ax

when φ = π/2.

The non-dimensional PSDF’s of the Gaussian and von Kármán-type ACFs are given by

P̄ (m̄) =

⎧⎪⎨
⎪⎩

π exp
(−m̄2/4

)
Gaussian.

4πκ

(1 + m̄2)κ+1
, κ > 0 von Karman.

(25)

For the case of the Gaussian ACF, eq. (23) is given by

A(r⊥d , φ) = √
πε2ar exp

(
−r⊥d

2

at
2

)
. (26)

At a long distance from the source, the correlation of the wavefield at two points spatially separated on the transverse axis rapidly decreases to

zero with increasing the lag distance (see p. 245, Sato & Fehler 1998). Hence, the value of A(0, φ) − A(r ⊥d , φ) at small transverse distance

r ⊥d � at is dominant in eq. (18). The value is approximated as

A(0, φ) − A(r⊥d , φ) ≈ √
πε2ar

(
r⊥d

at

)2

. (27)

For the case of the von Kármán type ACF, eq. (23) is given by

A(r⊥d , φ) = 23/2−κ
√

πε2ar

�(κ + 1)

(
r⊥d

at

)κ+1/2

Kκ+1/2

(
r⊥d

at

)
, (28)

and the value of A(0, φ) − A(r ⊥d , φ) is approximated as

A(0, φ) − A(r⊥d , φ) ≈ C(κ) ε2ar

(
r⊥d

at

)p(κ)

, (29)

where C(κ) and p(κ) are numerically calculated in Saito et al. (2002). From eqs (27), (29) and (18), the master equation of TFMCF is given

by
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Table 1. Parameters C and p for differ-

ent type of random media.

Random media type C p

Gaussian ACF
√

π 2

κ (von Kármán-type ACF)

0.1 0.56 1.19

0.2 1.06 1.38

0.3 1.56 1.56

0.4 2.00 1.71

0.5 2.28 1.83

0.6 2.31 1.91

0.7 2.14 1.95

0.8 1.90 1.98

0.9 1.68 1.99

1.0 1.50 1.99

∂

∂r
0�2(θd , r, ωc, ωd ; φ) + i

kd

2kc
2

1

r 2

∂2

∂θd
2 0�2 + kc

2Cε2ar

(
rθd

at

)p

0�2 = 0, (30)

for the cases of the Gaussian and von Kármán-type ACFs. The values of C and p depend on the type of random media. For the Gaussian ACF,

p = 2 and C = √
π . For the von Kármán-type ACF, the values of C and p depend on the order κ (Table 1). Eq. (30) is the same as that in

isotropic random media except the use of at and ar (Fehler et al. 2000; Saito et al. 2003; Sato et al. 2004). Introducing the characteristic time

for angular frequency ωc at travel distance r0 as

tM ≡ V0r0

2ωc
2at

2

(
Cε2ωc

2arr0

V 2
0

)2/p

, (31)

and the non-dimensional travel distance and difference angle as,

τ ≡ r/r0 and χ ≡
√

2r0ωc
2tM/V0 θd , (32)

respectively, we rewrite eq. (30) as

∂

∂τ
0�2 + i tMωd

1

τ 2

∂2

∂χ2 0�2 + τ pχ p
0�2 = 0. (33)

When p = 2, we can use the analytic solution of 0�2 derived by Fehler et al. (2000) since eq. (33) is the same as eq. (30) in Fehler et al.
(2000). When p �= 2, we numerically solve eq. (33) with the FD method (see Saito et el. 2002). Inserting the solved 0�2 into eq. (19), we can

obtain squared-amplitude Markov envelopes without the wandering effect. Here, we consider the case of an isotropic source radiation of the

delta-function source time function, I (r → 0) = 1/(2πr ) δ(t − r/V0). For the corresponding conditions, we take 0�2 to be 0�2 = kc/�ωc,

and suppose the integration range of ωd in eq. (19) to be infinity at the source, r = 0. In practice, the integration range of ωd is finite at a travel

distance r since 0�2 decreases to zero with increasing ωd . Fig. 6 plots the squared-amplitude Markov envelopes for the radiation condition

I (r → 0) = 1/(2πr ) δ(t − r/V0), where the square amplitude is normalized by the geometrical spreading factor and the characteristic time

(eq. 31), and the reduced time is normalized by the characteristic time. We may consider the characteristic time as the duration time of the

envelopes. As the characteristic time increases, the duration increases and the amplitude decreases.

4.1.3 Validity range of the Markov envelopes

When we derive eqs (12) and (16), we assume small-angle scattering around the forward direction and neglect large-angle scattering. We

evaluate the large-angle scattering to discuss the validity range of the Markov envelopes as follows. By using the Born approximation, the

scattering coefficient in 2-D anisotropic random media is calculated as a function of scattering angle θ for the case of incident angle φ measured

from the z-axis (Jannaud et al. 1992):

g(θ ) = ε2k3ax az P̄(k̄), (34)

where

k̄2 = k2a2
x {sin(θ + φ) − sin φ}2 + k2a2

z {cos(θ + φ) − cos φ}2 . (35)

It should be noted that the scattering coefficient (eq. 34) is not always a symmetric function with respect to θ , while that of isotropic random

media is a symmetric function. Using a cut-off angle θ c, we introduce a value:

r0gL ≡ r0

1

2π

∫
|θ |>θc

g(θ ) dθ = ε2(r0k)(kax )(kaz)
1

2π

∫
|θ |>θc

P̄(k̄(θ )) dθ, (36)

as a measure of large-angle scattering. This value is related to the scattering attenuation for the main part of envelope, or around the maximum

amplitude, at travel distance r 0 (Sato 1982; Wu 1982). Also, the value is related to coda-wave excitation since the attenuated wave energy
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Figure 6. Theoretical mean-square (MS) envelopes in 2-D random media calculated by using the Markov approximation. Square amplitude is scaled by using

the characteristic time tM and geometrical spreading factor. Reduced time is scaled by tM . The value of p depends on the type of random media. For the Gaussian

ACF, p = 2. For the von Kármán-type ACF, the value of p is a function of the order κ (see Table 1).

appears again as coda-wave energy. Hence, the value of eq. (36) would be one of the appropriate parameters for judging the applicability of

the envelope synthesis using the small-angle scattering approximation. When r 0gL � 1, we may consider that the effects of the large-angle

scattering are small enough within travel distance r 0. On the value of the cut-off angle θ c, we have no consensus at present. Recently, Kawahara

(2002) theoretically predicted θ c ≈ 65◦ by using the Kramers-Krönig relation (e.g. Aki & Richards 1980). On the other hand, this study uses

θ c = 30◦ referring to Sato (1982) since the case of θ c = 30◦ predicting larger gL than θ c = 65◦ is preferable for judging the condition r 0gL �
1. It should be noted that the condition r 0gL � 1 would be satisfied when kax 
 1 and ka z 
 1 for the case of the Gaussian ACF since the

order of k̄ is the same as kax and ka z .

Another limitation of the Markov envelope would come from the approximation used in eq. (16); we suppose the existence of an

intermediate scale �r, which is larger than the correlation distance in r-axis, but smaller than the scale of the wavefield variation in the r-axis

(see p. 243 and 246, Sato & Fehler 1998). It is difficult to discuss the existence of �r quantitatively. However, we expect that the existence of

the intermediate scale �r would be easily assured for the wave propagation along the z-axis when ax > a z since the correlation distance az is

small. On the other hand, when the anisotropy is strong ax 
 a z , the existence of �r would not always be assured for the wave propagation

along the x-axis.

4.2 Comparisons between Markov envelopes and FD envelopes

For the FD envelopes plotted in Fig. 4, the condition (eq. 36) is satisfied; the values of r 0gL with θ c = 30 degree are estimated as the order

of 10−7, 10−5, 10−3, 10−2 and 10−2 for the angles φ = 0, 30, 45, 60 and 90 degree, respectively. In those cases, the Markov envelopes are

expected to be synthesized properly. In Fig. 7, the Markov envelopes are plotted by solid black curves, where the Markov envelopes in different

incident angles are calculated with the same source radiation energy. The Markov envelopes are convoluted with the wandering effect, in

other words, �2 is used instead of 0�2. Additionally, the temporal change in the power of a 2 Hz Ricker wavelet is convoluted with the MS

envelopes since the Ricker wavelet is used as the source time function in the FD simulations. The Markov envelopes (solid curves) are in

good agreement with the FD envelopes (grey curves) for all the travel distances for all the incident angles. This supports the reliability of the

envelope synthesis using the Markov approximation. There are some slight discrepancies. As example, for the envelopes at the distance r =
75 km with the incident angle φ = 60 degree, the later phase excitation of the FD envelope at the time around 22 s cannot be explained by the

Markov envelope. Such larger later-phase excitation in the FD envelopes would be caused by large-angle scattering, which is neglected in the

formulation of the Markov envelope.
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Figure 7. The rms envelopes for a 2 Hz Ricker wavelet source in 2-D random media characterized by the Gaussian ACF with ε = 0.05, ax = 5 km, a z =
2.5 km and V0 = 4 km s−1. The envelopes at travel distance 50, 75, 100 and 125 km are plotted. Numerals at upper left side in each bin show incident angle

measured from the z-axis. Solid-black curves show rms envelopes based on the Markov approximation (Markov envelopes) Bold-grey curves and grey areas

around the curves show rms envelopes by FD simulations (FD envelopes) and their standard deviations, respectively.

5 D I S C U S S I O N

5.1 Dependence of wave propagation on the propagation direction

The characteristic time tM (eq. 31), which can be considered as the envelope duration or a measure for distortion of envelopes, is almost

the same as that of isotropic random media (see eq. 16 in Sato et al. 2004). Incident-angle dependence is additionally included in eq. (31)

through the effective correlation distances, at and ar. Fig. 8(a) shows the effective correlation distances (eq. 24) against the incident angle φ.

As the incident angle changes from φ = 0 to φ = π/2, at changes from ax to a z and ar changes from a z to ax. Fig. 8(b) shows the traveltime

fluctuation at a travel distance r = 200 km for the Gaussian ACF with ε = 0.05, ax = 5 km, a z = 2.5 km and V0 = 4 km s−1. This is calculated

on the basis of the geometrical optic approximation (p. 234, Sato & Fehler 1998) as√√√√〈(∫ r

0

dr ′

V (x)
− r

V0

)2
〉

=
√

r A(0, φ)

V0

. (37)

It should be noted that the geometrical optic approximation does not include the finite-wavelength effect on the traveltime fluctuation. The

traveltime fluctuation increases with increasing the incident angle. When wave propagates along the x-axis (φ = π/2), the traveltime fluctuation
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Figure 8. Incident angle dependence of (a) effective correlation distances at and ar, (b) traveltime fluctuation predicted by the geometrical optics (eq. 37) and

(c) characteristic time (eq. 31). Those values are calculated at travel distance of 200 km in the random media characterized by the Gaussian ACF with ε = 0.05,

ax = 5 km, a z = 2.5 km and V0 = 4 km s−1. Broken lines show the values in the case of isotropic random media with ax = a z = 5 km and 2.5 km.
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Figure 9. Squared-amplitude Markov envelopes at travel distance of 200 km for vertical (along the z-axis) wave propagation through 2-D random media

characterized by the Gaussian ACF with ε = 0.05. The envelope in anisotropic media with ax = 5 and a z = 2.5 km is plotted by a solid curve. The envelopes

in isotropic media with ax = a z = 5 and 2.5 km by dashed curves.

takes the maximum value, which is the same as that calculated from the isotropic random media of a correlation distance ax. The traveltime

fluctuation at φ = 0 is the same as that from the isotropic random media of a correlation distance a z . This behaviour is easily predicted

since the value of A(0, φ) is proportional to ar (see eq. 23). Fig. 8(c) shows the characteristic time (eq. 31) against the incident angle. The

characteristic time also increases with increasing the incident angle. However, the behaviour is not so simple as the traveltime fluctuation

predicted by the geometrical optic approximation; neither of the minimum value of tM nor the maximum value corresponds to that predicted

from the isotropic random media. It is because that tM is proportional to a combination of the effective correlation distances; the combination

is given by ar/at
2 for the case of the Gaussian ACF. This makes the variation range of tM wider than the range calculated from the isotropic

random media of correlation distance ax and a z .

5.2 Envelopes in anisotropic lithosphere

Fig. 9 shows squared-amplitude Markov envelopes in anisotropic random media and isotropic random media for the case of vertical wave

incidence (φ = 0 in Fig. 8). The envelope of the anisotropic random media has larger maximum amplitude and shorter duration than those of

the isotropic random media with a correlation distance ax or a z . This discrepancy between the anisotropic and isotropic cases causes serious

problems when estimating the random inhomogeneity from observed seismogram envelopes. We shall consider a case as follows. One analyses

wave envelopes of the vertical wave incidence, or of deep events, to estimate the random inhomogeneity assuming isotropic random media,

even though those envelopes actually propagate through anisotropic random media. The estimated correlation distance of isotropic random

media would be larger than ax and a z . In other words, one would underestimate the spectral amplitude of the inhomogeneity. Analysing

seismogram envelopes of the intermediate-depth events on the basis of the Markov envelopes of isotropic random media, Saito et al. (2005)

estimated the PSDF of the inhomogeneous lithosphere in northeastern Honshu, Japan. They discussed that the estimated PSDF would not

give enough coda excitation observed in past studies. The anisotropic inhomogeneity in the lithosphere may be one of the keys to solve this

discrepancy. Although this study is limited to 2-D case, the formulation for the 3-D case is necessary for more rigorous and quantitative

discussions of the anisotropic lithosphere.

6 C O N C L U S I O N S

The present study formulates a method of envelope synthesis using the Markov approximation in 2-D weakly anisotropic random media

characterized by the Gaussian and von Kármán-type ACFs. The reliability of the formulation is examined by FD numerical simulations;

wave propagation of a 2 Hz Ricker wavelet source through the random media characterized by the Gaussian ACF with ε = 0.05, ax = 5 km,

a z = 2.5 km and V0 = 4 km s−1 is numerically solved in the travel distance ranging from 50 to 125 km. The envelopes of the Markov

approximation are in good agreement with the envelopes obtained from wave traces of the FD simulations. This supports the reliability of the

envelope synthesis using the Markov approximation. As in the case of isotropic random media, the Markov envelopes are scaled by using the

characteristic time. The characteristic time is represented as a function of the propagation direction, the travel distance, the wave frequency

and the parameters of random media. It predicts that envelopes increase in duration and decrease in maximum amplitude more rapidly in

the horizontal propagation than in the vertical when the media are characterized by long horizontal and short vertical correlation distances.
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Especially, in the case of the vertical wave propagation, the envelopes of the anisotropic random media have shorter duration and larger

maximum amplitude than those of the isotropic random media. This implies that the intensity of the inhomogeneity is underestimated when

one consider anisotropic lithosphere as isotropic random media.

A C K N O W L E D G M E N T S

I thank H. Sato for leading my research interest in the study of seismogram envelopes and O. Nishizawa for his encouragement in the study

of anisotropic media. Their comments are very helpful for improving this manuscript. I also thank M. Korn, U. Wegler and an anonymous

reviewer for their helpful comments to the manuscript. This study was supported by JSPS and the Earthquake Research Institute cooperative

research program.

R E F E R E N C E S

Aki, K. & Richards, P.G., 1980. Quantitative Seismology, W.H. Freeman,

New York.

Chernov, L.A., 1960. Wave Propagation in a Random Medium, Mc-Graw

Hill, New York.

Dolan, S.S., Bean, C.J. & Riollet, B., 1998. The broad-band fractal nature

of heterogeneity in the upper crust from petrophysical logs, Geophys. J.
Int., 132, 489–507.

Fehler, M., Sato, H. & Huang, L.-J., 2000. Envelope broadening of outgo-

ing waves in 2-D random media: a comparison between the Markov ap-

proximation and numerical simulations, Bull. seism. Soc. Am., 90, 914–

928.

Furumura, T. & Kennett, B.L.N., 2005. Subduction zone guided

waves and the heterogeneity structure of the subducted plate: in-

tensity anomalies in northern Japan, J. geophys. Res., 110, B10302,

doi:10.1029/2004JB003486.

Hestholm, S.O., Husebye, E.S. & Ruud, B.O., 1994. Seismic wave propa-

gation in complex crust-upper mantle media using 2-D finite-difference

synthetics, Geophys. J. Int., 118, 643–670.

Holliger, K. & Levander, A., 1992. A stochastic view of lower crustal fabric

based on evidence from the Ivrea zone, Geophys. Res. Lett., 19, 1153–

1156.

Ikelle, L.T., Yung, S.K. & Daube, F., 1993. 2-D random media with ellip-

soidal autocorrelation functions, Geophysics, 58, 1359–1372.

Ishimaru, A., 1978. Wave Propagation and Scattering in Random Media,

Academic Press, New York.

Iooss, B., 1998. Seismic reflection traveltimes in two-dimensional statisti-

cally anisotropic random media, Geophys. J. Int., 135, 999–1010.

Jannaud, L.R., Adler, P.M. & Jacquin, C.G., 1992. Wave propagation in

random anisotropic media, J. geophys. Res., 97, 15 277–15 289.

Kamei, R., Hato, M. & Matsuoka, T., 2005. Random heterogeneous model

with bimodal velocity distribution for methane hydrate exploration,

Butsuri-Tansa, 58, 41–49.

Kawahara, J., 2002. Cutoff scattering angles for random acoustic media,

J. geophys. Res., 107(B1), 20120, doi:10.1029/2001JB000429.

Korn, M. & Sato, H., 2005. Synthesis of plane vector wave envelopes in

two-dimensional random elastic media based on the Markov approxima-

tion and comparison with finite-difference simulations, Geophys. J. Int.,
161, 839–848.

Kravtsov, Y.A., Müller, T.M., Shapiro, S.A. & Buske, S., 2003. Statistical

properties of reflection traveltimes in 3-D randomly inhomogeneous and

anisomeric media, Geophys. J. Int., 154, 841–851.

Lee, L.C. & Jokipii, J.R., 1975a. Strong scintillations in astrophysics: I. The

Markov approximation, its validity and application to angular broadening,

Astrophys. J., 196, 695–707.

Lee, L.C. & Jokipii, J.R., 1975b. Strong scintillations in astrophysics: II.

A theory of temporal broadening of pulses, Astrophys. J., 201, 532–

543.

Matsumoto, S., Obara, K. & Hasegawa, A., 2001, Characteristic of coda en-

velope for slant-stacked seismogram, Geophys. Res. Lett., 28, 1111–1114.

Müller, T.M. & Shapiro, S.A., 2003. Amplitude fluctuations due to

diffraction and refraction in anisotropic random media: implications

for seismic scattering attenuation estimates, Geophys. J. Int., 155, 139–

148.

Obara, K. & Sato, H., 1995. Regional differences of random inhomogeneities

around the volcanic front in the Kanto-Tokai area, Japan, revealed from

the broadening of S wave seismogram envelopes, J. geophys. Res., 100,

2103–2121.

Ryberg, T., Tittgemeyer, M. & Wenzel, F., 2000. Finite difference modelling

of P-wave scattering in the upper mantle, Geophys. J. Int., 141, 787–

800.

Rytov, S.M., Kravtsov, Y.A. & Tatarskii, V.I., 1989. Principles of Statisti-
cal Radio Physics (Vol. 4) Wave Propagation Through Random Media,

Springer-Verlag, Berlin.

Saito, T., Sato, H. & Ohtake, M., 2002. Envelope broadening of spherically

outgoing waves in three-dimensional random media having power-law

spectra, J. geophys. Res., 107(B5), 2089, doi:10.1029/2001JB000264.

Saito, T., Sato, H., Fehler, M. & Ohtake, M., 2003. Simulating the envelope

of scalar waves in 2D random media having power-law spectra of velocity

fluctuation, Bull. seism. Soc. Am., 93, 240–252.

Saito, T., Sato, H., Ohtake, M. & Obara, K., 2005. Unified explanation of

envelope broadening and maximum-amplitude decay of high-frequency

seismograms based on the envelope simulation using the Markov approx-

imation: forearc side of the volcanic front in northeastern Honshu, Japan,

J. geophys. Res., 110, B01304, doi:10.1029/2004JB003225.

Sato, H., 1982. Amplitude attenuation of impulsive waves in random media

based on travel time corrected mean wave formalism, J. acoust. Soc. Am.,
71, 559–564.

Sato, H., 1989. Broadening of seismogram envelopes in the randomly inho-

mogeneous lithosphere based on the parabolic approximation: Southeast-

ern Honshu, Japan, J. geophys. Res., 94, 17 735–17 747.

Sato, H. & Fehler, M., 1998. Seismic Wave Propagation and Scattering in
the Heterogeneous Earth, Springer-Verlag, New York.

Sato, H., Fehler, M. & Saito, T., 2004. Hybrid synthesis of scalar wave en-

velopes in two-dimensional random media having rich short-wavelength

spectra, J. geophys. Res., 109, B06303, doi:10.1029/2003JB002673.

Scherbaum, F. & Sato, H., 1991. Inversion of full seismogram envelopes

based on the parabolic approximation: Estimation of randomness and

attenuation in southeastern Honshu, Japan, J. geophys. Res., 96, 2223–

2232.

Shearer, P.M., 1999. Introduction to Seismology, Cambridge University

Press, Cambridge.

Shiomi, K., Sato, H. & Ohtake, M., 1997. Broad-band power-law spectra of

well-log data in Japan, Geophys. J. Int., 130, 57–64.

Tsukada, S., Odaka, T., Ashiya, K., Ohtake, K. & Nozaki, D., 2004. Analysis

of the envelope waveform of the initial part of P-waves and its application

to quickly estimating the epicentral distance and magnitude, Zisin II, 56,

351–361 (in Japanese with English Abstract).

Wu, R.S., 1982. Attenuation of short period seismic waves due to scattering,

Geophys. Res. Lett., 9, 9–12.

Wu, R.S., Xu, Z. & Li, X.-P., 1994. Heterogeneity spectrum and scale

anisotropy in the upper crust revealed by the German continental deep-

drilling (KTB) holes, Geophys. Res. Lett., 21, 911–914.

C© 2006 The Author, GJI, 165, 501–515

Journal compilation C© 2006 RAS



Envelopes in anisotropic random media 515

A P P E N D I X A : D E R I VAT I O N O F E Q. ( 1 6 )

In this appendix, we derive the eq. (16) following the derivations of Lee & Jokipii (1975a) and Sato & Fehler (1998). From the parabolic

eq. (12), we can write the wavefield at (r ⊥ j , r ) by using the wavefield at (r ⊥ j , r − �r ),

U (r⊥ j , r, ω j ) ≈ U (r⊥ j , r − �r, ω j ) + i

2k j

∫ r

r−�r

1

r ′2
∂2

∂φ2
U (r⊥ j , r ′, ω j )dr ′ − ik j

∫ r

r−�r
ξ (r⊥ j , r ′)U (r⊥ j , r ′, ω j )dr ′

≈ U j (r − �r ) + i

2k j

1

r 2

∂2

∂φ2
U j (r − �r )�r − ik j U j (r − �r )

∫ r

r−�r
ξ j (r

′)dr ′, (A1)

where Uj(r − �r ) and ξ j (r ′) mean U (r ⊥ j , r − �r ) and ξ (r ⊥ j , r ′), respectively. In the approximation used in eq. (A1), we suppose the

existence of an intermediate scale �r, which is larger than the scale of inhomogeneity along the r-axis, or the correlation distance, but smaller

than the scale of variation of U along the r-axis. It should be noted that the second and third terms in the last equation are small compared to

the first term. Neglecting smaller terms, we calculate an ensemble-averaged value as follows,

〈ξ1(r )U1(r )U ∗
2 (r )〉 ≈ 〈ik2ξ1(r )U1(r − �r )U ∗

2 (r − �r )

∫ r

r−�r
ξ2(r ′′) dr ′′〉 − 〈ik1ξ1(r )U1(r − �r )U ∗

2 (r − �r )

∫ r

r−�r
ξ1(r ′)dr ′〉

−
〈

iξ1(r )�r

2k2r 2
U1(r − �r )

∂2

∂φ2
2

U ∗
2 (r − �r )

〉
+

〈
iξ1(r )�r

2k1r 2
U ∗

2 (r − �r )
∂2

∂φ1
2

U1(r − �r )

〉

+ 〈ξ1(r )U1(r − �r )U2(r − �r )〉

≈ ik2〈U1(r − �r )U ∗
2 (r − �r )〉

〈 ∫ r

r−�r
ξ1(r )ξ2(r ′′)dr ′′

〉
− ik1〈U1(r − �r )U ∗

2 (r − �r )〉
〈 ∫ r

r−�r
ξ1(r )ξ1(r ′) dr ′

〉

= ik2〈U1(r − �r )U ∗
2 (r − �r )〉

∫ �r

0

R(r⊥1 − r⊥2, r ′) dr ′ − ik1〈U1(r − �r )U ∗
2 (r − �r )〉

∫ �r

0

R(0, r ′)dr ′

≈ 1

2
ik2〈U1(r − �r )U ∗

2 (r − �r )〉
∫ ∞

−∞
R(r⊥1 − r⊥2, r ′)dr ′ − 1

2
ik1〈U1(r − �r )U ∗

2 (r − �r )〉
∫ ∞

−∞
R(0, r ′)dr ′

≈ i

2
{k2 A(r⊥1 − r⊥2, φ) − k1 A(0, φ)} �2. (A2)

At the derivation of the third equation, the causality deduced from the forward scattering approximation is used; there is no contribution of the

inhomogeneity at r to the wavefield at r − �r . At the derivation of the fifth equation, the integration at the fourth equation is approximated

by the infinite integration since we supposed �r is larger than the correlation distance. Also, we supposed R(r ⊥k − r ⊥m , − r ′′) ≈R(r ⊥k −
r ⊥m , r ′′) in weakly anisotropic random media considering that the contribution of R(r ⊥k − r ⊥m , r ′′) is larger as |r ⊥k − r ⊥m | become smaller.

At the derivation of the last equation, we suppose 〈U 1(r − �r ) U ∗
2 (r − �r )〉 ≈ 〈U 1(r ) U ∗

2 (r )〉 considering the existence of small �r which

is smaller than the scale of variation of U along the r-axis. By using the eq. (A2), we obtain the following relation,〈
(k1ξ1 − k2ξ2)U1U ∗

2

〉 ≈ − i

2

[(
k1

2 + k2
2
)

A(0, φ) − 2k1k2 A(r⊥1 − r⊥2, φ)
]
�2. (A3)
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