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S U M M A R Y
We present a new approach, based on neural networks, to predict the thermal conductivity of
sedimentary rocks from a set of geophysical well logs. This method is calibrated on Ocean
Drilling Program (ODP) data, which provide several thousands of conductivity measurements
combined with five geophysical well logs (sonic, density, neutron porosity, resistivity and
gamma ray). This data set is used to train multilayer perceptrons (MLP) and to find an empirical
relationship between well logs (MLP inputs) and thermal conductivity (MLP output). Validation
tests suggest that MLP provide better estimates of thermal conductivity (within ∼15 per cent
confidence level) than classical linear models, and still give satisfying results with sets of only
four well logs if neutron porosity is included. In two ODP sites (863B and 1109D), MLP’s
predictions are compared to conventional ‘mixing’ methods. Although this latter technique
gives reliable results provided that rocks description is precise enough, the MLP is more
straightforward, does not need any extra parameter and makes predictions in good agreement
with the experimental trends. This method will be useful in the estimation of heat flow from
data acquired in scientific and industrial boreholes.

Key words: geophysical well logs, marine sediments, multilayer perceptrons, neural net-
works, thermal conductivity.

1 I N T RO D U C T I O N

Surface heat flow is an important constraint in many Earth prob-

lems (mantle convection, Earth’s cooling, dynamic evolution and

deformation of the lithosphere, hydrothermalism, radioactive heat

production) as well as for oil exploration (present-day basin temper-

atures, hydrocarbon maturation). In the marine domain, heat flow is

usually measured with a Bullard type probe (Bullard 1954), which is

capable of recording at several depths temperature and, for modern

instruments, in situ thermal conductivity (Von Herzen 1987). How-

ever, its short length (≤10 m) limits its use to areas where water

depth is large enough (>1000 m) to damp the seasonal variations

of surface temperature. Consequently large areas of major interest

such as passive margins have been scarcely investigated and their

thermal regime remains poorly known (Lucazeau et al. 2004). This

makes desirable the use of the large amount of data acquired in deep

boreholes, drilled principally for petroleum exploration purposes.

Several types of temperature measurements are routinely available,

such as bottom-hole temperatures (BHT), or fluid temperatures ac-

quired during reservoir tests (drillstem tests, DST), with uncertain-

ties around 5–10◦C after correction (Brigaud 1989). This leads to

thermal gradients known with a precision of a few ◦C km−1 due

to large boreholes depth. However, thermal conductivity is almost

never measured, and indirect methods are generally applied to obtain

estimates when no measurement on core is available. As pointed out

by Hartmann et al. (2005), such methods fall broadly in two cate-

gories. A commonly used technique is to decompose the host rock

in ‘elementary’ constituents, for example, lithologies or minerals,

whose conductivity is supposed to be known. A mixing law—most

often a geometric mean (Woodside & Messmer 1961a,b)—is then

applied to deduce the global thermal conductivity (Brigaud et al.
1990, 1992; Della Vedova & Von Herzen 1987; Demongodin et al.
1991; Hartmann et al. 2005; Vasseur et al. 1995; Villinger et al.
1994; Williams et al. 1988). This method is flexible and, accord-

ing to Brigaud et al. (1990), may yield estimates with an accu-

racy of 10–15 per cent. On the other hand the decomposition is not

straightforward, and can be subjective and/or imprecise if based on

lithologic logs. Moreover the description is often made in terms of

lithologies, whose mineralogic composition, structural characteris-

tics, and hence thermal conductivity, can vary significantly from

one geographical area to another (Clauser & Huenges 1995). An-

other class of methods relates directly a number of known physical

properties (like density, porosity, compressional wave speed. . .) to

thermal conductivity based on a reference data set (Anand et al.
1973; Evans 1977; Goss et al. 1975; Houbolt & Wells 1980;

Molnar & Hodge 1982; Vacquier et al. 1988), with the obvious aim

of deriving continuous conductivity logs from geophysical well logs.

The objectivity of such methods, and the simplicity to implement

automatic procedures make them attractive. However, since these

studies have been confined so far to particular areas or lithologies,

with simple linear or multilinear regressions applied in most cases,

the scope of their application is rather limited.
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Table 1. List of geophysical well logs combined with thermal conductivity measurements.

Standard log name Description Symbol Logger’s unit SI unit

Sonic Compressional wave slowness �t μs ft−1 m s−1 (�t−1)

Density Gamma ray scattering ρ g cm−3 kg m−3

(→ bulk density)

Neutron porosity Neutrons scattering/absorption φN per cent per cent

(→ porosity)

Resistivity Electrical resistivity R � m � m

Gamma ray Natural radioactivity γ API Bq (≡ s−1)

In order to extend applicability of the latter techniques, we have

developed a neural network analysis on Ocean Drilling Program

(ODP) data. This unique data set corresponds to ∼1700 boreholes,

in a number of which downhole logging and surface measurements

on cores (including thermal conductivity) have been performed.1

In the next section, we describe the reference sets of thermal con-

ductivities associated to well logs values, built up from ODP data.

An efficient regression method is then needed to explore the rela-

tionships between the input space (well logs) and the output space

(thermal conductivity). Neural networks, which are used in a wide

range of geophysical applications (e.g. seismic inversion, lithol-

ogy recognition; see reviews in Sandham & Leggett 2003; Van der

Baan & Jutten 2000), comprise such a class of robust non-linear

approximation methods. Based on these techniques, recent works

of permeability prediction from geophysical well logs (Huang et al.
1996; Ligtenberg & Wansink 2001) led promising results for similar

problems such as thermal conductivity estimation. We introduce in

the third section a tool for function approximation based on neural

networks. We present in the fourth section an application for thermal

conductivity estimation using five well logs as input variables. The

predictions performances are quantified, and compared to existing

methods such as MLR and mixing laws.

2 R E F E R E N C E D A T A S E T S

2.1 Data processing

In a large number of ODP wells, thermal conductivity (λ) is mea-

sured using a needle-probe apparatus (Von Herzen & Maxwell 1959)

on cores brought to the surface. Some details on the methodology

can be found in Pribnow et al. (2000a). After despiking the well logs

by applying a median filter, we have combined thermal conductivity

measurements on sediment cores with the corresponding values of

five geophysical well logs (Table 1), in boreholes where they were

available at the same depth (see example in Fig. 1). The logs listed in

Table 1 are routinely measured along academic and industrial wells,

and are sensitive to mineral composition, porosity and the nature

of the saturating fluid, which are the main factors controlling ther-

mal conductivity (Blackwell & Steele 1989; Brigaud et al. 1990;

Vacquier 1984). Therefore, correlations have been found with all

or part of these well logs in a number of previous studies (Anand

et al. 1973; Evans 1977; Goss et al. 1975; Molnar & Hodge 1982;

Popov et al. 2003; Vacquier et al. 1988). In some ideal cases, ther-

mal conductivity can be related to part of these properties based on

a theoretical basis: for example in perfect metals, it depends only on

electrical conductivity (Wiedemann-Franz law); in crystalline rocks,

a relation with acoustic velocity and bulk density has been derived

from the phonon conduction theory (Williams & Anderson 1990).

1 Data are available in the Proceedings of the ODP, Initial Reports.
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Figure 1. Example of thermal conductivity measurements (circles) associ-

ated with values of two well logs at corresponding depths (sonic: crosses;

density: triangles). Well logs are also shown (sonic: solid line; density: dashed

line). The same procedure is applied to the other well logs (see text). Data

are taken from a section of ODP site 1109D.

In sediments, we assume that there must exist a relationship between

these measured physical properties and thermal conductivity, even

if the complex underlying physics has not been described so far.

As discussed by Griffiths et al. (1992), two kinds of problems are

encountered in the matching of discrete samples with corresponding

wireline logs:

(i) Discrepancy of measurements scales. Thermal conductivity

measurements on samples with a needle cover intervals of a few

millimetres, while well logs average properties on a larger scale, of

the order of the metre. As an attempt to homogenize the different

scales, we have applied 10 m running mean filters to well logs and

thermal conductivity, and built up a second data set combining av-

eraged data instead of local values. This approach is justified by the

fact that we are not interested in small-scale variations of thermal

conductivity, but rather in its global trend along a borehole.

(ii) Depth shifts. Due to cable stretch, depth shifts can arise

during downhole logging and may reach several metres. In all the

sites, inter-logs shifts were interactively corrected by loggers with

reference to a curve chosen on the basis of constant, low cable

tension and high cable speed. This choice ensures confidence in
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Figure 2. Scheme of the thermal conductivity measurement with a needle-

probe. The principal directions are vertical and horizontal—respectively

along and across the core axis. The grey disk indicates the plane from which

the needle scans the thermal conductivity.

logs depth reference. Hence we assumed that log depth and core

depth were close or similar, which is verified in most of the sites

where they have been compared (e.g. in Leg 175, Wefer et al. 1998).

The question of core measurements uncertainty, with respect to in
situ vertical thermal conductivity, must also be raised. First, thermal

conductivity of rocks depends on temperature, which is obviously

different in situ than on the shipboard. The ODP wells we use do not

penetrate more than 1200 m below sea floor (mbsf), and thus cover a

typical temperature range of 0–50◦C. Experimental results suggest

that, in such a range, dry and water-saturated rocks present nearly

linear variations not greater than 15 per cent (Clauser & Huenges

1995; Pribnow et al. 1996, 2000b). Hence the conductivity measured

at room temperature (20◦C) does not deviate of more than δT = 5–10

per cent from the in situ conditions.

Another issue concerns the anisotropy of lithified sediments,

which is due to the preferential orientation of flat mineral grains
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Figure 3. Location of the ODP sites where thermal conductivity measurements λ and well logs could be combined. Number of data {λ, well logs} per well

in parentheses.

(e.g. Davis & Seeman 1994). As layering is often horizontal, the

principal directions of the anisotropy are generally the vertical axis

and the horizontal plane, with associated values of thermal conduc-

tivity λ⊥ and λ‖. We are interested in vertical heat flow, so the value

we need is λ⊥. The measurements are made across the (vertical)

cores axis (Fig. 2) and, according to Grubbe et al. (1983), yield a

value for a plane perpendicular to the needle:

λ = √
λ‖ · λ⊥, (1)

Davis & Seeman (1994) and Pribnow et al. (2000b) have found that,

in the depth range of the ODP sites, the coefficient of anisotropy (de-

fined as the relative difference between λ⊥ and λ‖) has a mean value

around 20 per cent. According to eq. (1), this yields a relative differ-

ence δ⊥ between λ and λ⊥ slightly greater than 10 per cent. Finally,

there is the error δmeas on measurements themselves, which should

be less than 5 per cent (Von Herzen & Maxwell 1959). Hence the

uncertainty δ tot due to the combined effect of temperature depen-

dence, anisotropy and measurement error should not be greater than

δtot =
√

δ2
T + δ2

⊥ + δ2
meas ∼ 15 per cent.

2.2 Data sets description

We have been able to assemble thermal conductivity measurements

with well logs in more than 80 ODP boreholes. As shown in Fig. 3,

they cover a wide range of marine tectonic settings: passive mar-

gins (e.g. Iberia, Ghana, Ivory Coast, Namibia, South Africa, New-

Jersey, Great Bahama Bank, South Australia, Tasmania, Antarctic

margins); active margins (Cascadia, Peru, Chile, Nankai subduction

margins); ridge flanks (Juan de Fuca, Reykjanes ridges);

abyssal plains (Atlantic, Pacific, Indian oceans); oceanic plateaus

(Caribbean-Colombian, Kerguelen, Marion, Ontong Java plateaus)

and extensional basins (East Pacific backarc basins; Tyrrhenian,

Alboran seas). According to lithostratigraphic descriptions, the main

types of sedimentary rocks (sand, silt, clay, carbonates, siliceous

rocks, coals. . .) are represented, with the major exception of evap-

orites.
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Figure 4. (a–e) Cross-plots of thermal conductivity measurements against corresponding logs values from the raw data set (dark grey dots); populations

distributions of well logs are superimposed (thick histograms); (f) population distribution of thermal conductivity from the raw data set (thick histogram) and

the averaged data set (light grey histogram). Remark: some data lie outside the graphs.

The data sets contain around 4000 sextuplets (λ, �t, ρ, φN , R,

γ ). Fig. 4 shows the distribution of each variable. They reflect ODP

cores conditions, that is, water-saturated sediments from shallow

depths (< 1200 mbsf), with low compressional wave speed (�t =
120–220 μs ft−1, that is, �t−1 = 1400–2500 m s−1), low density

(ρ = 1200–2200 kg m−3), medium to high porosity (φ N = 35–85

per cent), low electrical resistivity (R < 2 � m), low thermal con-

ductivity (λ = 0.6–2 W m−1 K−1). It is interesting to point out that

the raw and the averaged data sets have similar thermal conductivi-

ties distributions (Fig. 4f). Thermal conductivity variations exhibit

some rough correlation with sonic, density, neutron porosity and

resistivity values (Figs 4a–d), which confirms their accuracy as in-

put parameters. Gamma ray does not present a direct relation with

thermal conductivity (Fig. 4e); it is, however, an accurate lithology

indicator, which is itself related to thermal conductivity, so that we

decided that it should be kept as input.

Based on these data sets, we wish to obtain an approximation of

the relation between thermal conductivity and well logs: λ = f (�t,

ρ, φN , R, γ ). The shape of the function f is clearly unknown, and

there is no reason to assume it has a simple linear form. In the

next section we introduce an effective non-linear technique, based

on neural networks, to approximate unknown functions without a

priori knowledge.

3 N E U R A L N E T W O R K S A S F U N C T I O N

A P P R O X I M A T O R S

3.1 Artificial neural networks

Artificial neural networks form a class of non-linear and adaptive

systems originally based on studies of the brain of living species

(McCulloch & Pitts 1943). Their elemental brick is the neuron,

which is mathematically a scalar function taking the following form:

y = ϕ
( ∑

wi · xi + θ
)
, (2)
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Figure 5. Schematic representation of (a) a neuron with a sigmoid activation function and (b) a multilayer perceptron (MLP) (one hidden layer) with the input

and output variables used in this study. MLPs keep their ability for function approximation tasks if the output layer simply performs linear combinations.

where xi are the inputs of the neuron and y its output. wi, θ and ϕ are

the neuron’s internal parameters, respectively called the weights,

the bias and the activation function (see Fig. 5a). ϕ(.) is usually

sigmoidal, the most widely used forms being the so-called logistic

function:

ϕ(x) = 1

1 + e−x
, (3)

or the hyperbolic tangent function:

ϕ(x) = ex − e−x

ex + e−x
. (4)

A neural network is then a given architecture of interconnected

neurons—a connection linking the output of a neuron to an input of

another.

3.2 Multilayer perceptrons

Multilayer perceptrons (MLPs) are special configurations of neu-

ral networks where the neurons are arranged in successive layers

(Fig. 5b). A MLP can then be viewed as a complex mathemati-

cal function made of linear combinations and compositions of the

function ϕ(.), that links a number of input variables to a number

of output variables. Cybenko (1989), Hornik et al. (1989) (among

others) have demonstrated that MLPs are universal approximators,

in the sense that they are able to map any continuous function on a

compact set of Rn with an arbitrary degree of precision. Thus they

are widely used to approximate unknown relationships, through the

presentation of known patterns, when no clear understanding of the

underlying physics is available (for geophysical applications, see

review in Van der Baan & Jutten 2000). The only assumption is that

a physical relation exists between the input space and the expected

output space.

Given a set of known inputs/outputs patterns

{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, we have to optimize the

models parameters, that is, to seek for the weights and biases of the

MLP’s neurons which minimize the error, generally defined with

the �2-norm:

Err =
∑

i

‖Xi − fMLP(Yi )‖2 , (5)

where f MLP(.) stands for the output of the MLP. This stage is called

the learning (or training) of the MLP. A widely used optimizing

scheme is the first order gradient descent method with a momentum

term (Qian 1999; Rumelhart et al. 1986), in which the parameters

are iteratively updated from a random initial state according to:

�wn = −α · ∇ Err + β · �wn−1, (6)

where w is the weights and biases vector, �w the change of w be-

tween two iterations, n the iteration number, ∇ Err the error gradient

with respect to w, α the learning rate and β the momentum factor.

This algorithm keeps the computational simplicity of a first order

method, while increasing the convergence speed and avoiding local

minima thanks to the momentum term. ∇ Err can be estimated with

the so-called back-propagation algorithm, which takes advantage of

the layered structure of the MLP to back-propagate the errors from

the last layer to the first one (Rumelhart et al. 1986).

The set of known inputs/outputs patterns is usually divided in

three subsets to train the MLP, stop the training and quantify the

predictions performances:

(i) The training set is used to train the MLP, that is to update

the weights and biases according to eq. (6).

(ii) The validation set is not explicitly presented during the

training stage, but the MLP’s error (eq. 5) on this set is calculated at

the same time and the training is stopped when it reaches a minimum.

This cross-validation method prevents the network from ‘memoriz-

ing’ the training set and provides the best generalization.

(iii) The testing set is completely ignored during the training

phase. It is used to quantify the MLP’s predictions performances

once the weights and biases are frozen.

4 A P P L I C A T I O N T O T H E R M A L

C O N D U C T I V I T Y P R E D I C T I O N

4.1 Predictions from the initial set of well logs

We have used a commercial software (NeuroSolutions®) to build up

MLPs with five input variables (�t, ρ, φN , R, γ ) and one output

variable (λ)—known inputs/output patterns alternatively belonging

to the raw or to the averaged data set (see Section 2)—in order

to obtain an approximation of the relationship λ = f (�t , ρ, φ N ,

R, γ ) (Fig. 5b). The variables have been linearly scaled to the in-

terval [−1, 1]. The hidden layer(s) use(s) the hyperbolic tangent as

activation function, while the output layer simply performs a linear

combination. As pointed out by Van der Baan & Jutten (2000), there

is no rule in the present state of knowledge to predict the optimal

network’s architecture. After some trials, we have found that the

optimal MLP configuration was (1) one hidden layer of 10 neurons
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Figure 6. Cross-plots of predicted conductivity against observed conductivity. Predictions from MLPs (a–b) and MLRs (c–d). Observed conductivity and

predictions inputs (i.e. well logs) belong to the testing sets. Results from MLP/MLR performed on the raw (a–c) and the averaged (b–d) data set. The solid

lines are the RMA lines (equations and slopes on the left top corners). The dashed lines indicate relative differences of ±20 per cent.

for the raw data set and (2) one hidden layer of 20 neurons for the

averaged data set.

Each data set has been randomized and divided into a training set

(70 per cent of the whole set), a validation set (15 per cent) and a

testing set (15 per cent). This is a fair compromise for preserving

enough information to train the MLP (around 3000 elements left)

while reaching statistical significance for the MLP’s cross-validation

and testing tasks (several hundred elements in each subset). We have

trained the MLPs following the procedure described in the previ-

ous section. This phase is completed after about 40 000 iterations

for the MLP trained with the raw data set, and, due to its higher

complexity, after about 250 000 iterations for the MLP trained with

the averaged data set. This is a time-consuming stage (up to ∼30 hr

on a Pentium® 4 machine); however, once the parameters are op-

timized, it is computationally inexpensive to use a MLP, that is to

generate outputs given new inputs. For comparison, we have also per-

formed classical multilinear regressions (MLRs) on the training data

sets:

λ = fMLR (well logs)

= c0 + c1 · �t + c2 · ρ + c3 · φN + c4 · R + c5 · γ, (7)

using the least-square criterion to adjust the coefficients ci (mini-

mization of |λobserved − f MLR(well logs)|2). Although the validation

sets are not explicitly presented to the MLPs during the training

phase, the error made on these sets is at a minimum (see previ-

ous section). It is more objective to use the completely independent

testing sets to quantify the predictions performances of the MLPs.

Fig. 6 shows cross-plots of predictions:

λpredicted =
{

fMLP (well logs) (MLP′s predictions)

fMLR (well logs) (MLR′s predictions)

well logs ∈ testing sets

, (8)

against the corresponding measurements λobserved(∈ testing sets),

with their reduced major axis (RMA) fits. Distributions of the rela-

tive differences between λpredicted and λobserved are presented in Fig. 7.

Some statistics (slope of the RMA line, correlation coefficient, mean

absolute relative difference) are summarized in Table 2 (top).

These results lead us to conclude that:

(i) The MLPs fit much better the thermal conductivity than the

MLRs. The low RMA slopes of the MLRs—which are a measure

of the fundamental goodness of the fits—indicate that they fail to

predict extreme values, a weakness appearing even on the averaged

data set. Furthermore they suffer from relative differences δ more

scattered than the MLPs (Fig. 7), especially on the averaged data

set. This fact is reflected by their higher |δ| and smaller correlation

coefficients r. This emphasizes that, although a linear approximation

method might be sufficient on a lithologically and/or geographically

particular context (Evans 1977; Goss et al. 1975; Molnar & Hodge

1982; Vacquier et al. 1988), a robust non-linear technique such as

the MLP is needed to provide a universal estimator.

(ii) Because data averaging smoothes the small-scale variations

that the well logs are unable to resolve, the MLP trained with

the averaged data set has an error distribution significantly nar-

rower than the MLP trained with the raw data set: its correlation
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Figure 7. Distribution of the relative differences between observed conduc-

tivity and predicted conductivity from MLPs (solid histograms) and MLRs

(hatched histograms). Observed conductivity and inputs (i.e. well logs) are

taken from the testing sets. Results from MLP/MLR performed on the raw

(a) and the averaged (b) data set.

coefficient r = 0.77 is fairly good and its mean error |δ| = 12

per cent is reduced to the uncertainty on thermal conductivity data

(see Section 2). Interestingly, its RMA line is closer to the λpredicted =
λobserved line (Figs 6a–b). Given that conductivity distribution is very

similar for the raw and the averaged data set (Fig. 4f), this effect is

not a statistical consequence of data smoothing, as the narrower

error distribution: it truly indicates that the fit is globally more ac-

curate. Qualitatively, this shows that, by homogenizing well logs and

core measurements scales, the input space (well logs) and the out-

put space (thermal conductivity) have developed a stronger physical

link.

Assuming that the errors distribution takes a Gaussian form with a

zero mean, approximately 68 per cent of all the errors should fall

within one standard deviation σ of the mean, that is, between −σ

and +σ . From this definition of σ , Fig. 7b shows that σ ≈ 15 per

cent for the MLP trained with the averaged data set. We conclude

Table 2. Comparison of λpredicted and λobserved (testing sets). θ is an indicator

of the fundamental goodness of the fit, r measures the scatter around the

regression line and |δ| is a general error indicator.

θ r |δ|
MLP trained with raw data 38◦ 0.69 18 per cent

MLR on raw data 30◦ 0.57 21 per cent

MLP trained with averaged data 41◦ 0.77 12 per cent

MLR on averaged data 32◦ 0.66 16.5 per cent

MLP trained with ‘cleaned’ avg. data 40◦ 0.82 10.5 per cent

MLR on ‘cleaned’ avg. data 34◦ 0.70 15 per cent

θ : reduced major axis (RMA) slope.

r : correlation coefficient.

δ := λpredicted−λobserved

λobserved
: relative differences (or errors).

|δ| : mean absolute relative difference.

Table 3. Comparison of λpredicted and λobserved (testing sets), with λpredicted

corresponding to the predictions of MLPs trained with averaged data using

only four well logs as inputs (one input removed). See definitions of θ, r, |δ|
in Table 2.

Removed input θ r |δ|
Sonic 42◦ 0.71 13 per cent

Density 41◦ 0.72 13 per cent

Neutron porosity 42◦ 0.66 15 per cent

Resistivity 40◦ 0.74 13.5 per cent

Gamma ray 41◦ 0.71 13.5 per cent

that, with respect to the global trend, the MLP is able to predict

thermal conductivity with an accuracy around ±15 per cent (one

standard deviation). However, as the MLP cannot extrapolate values

outside the domain covered by the set of known patterns (like any

approximation method), this is only valid in the range of well logs

and thermal conductivity of the training set, characterized by low

conductivity, medium to high porosity water-saturated sediments

(see Section 2 and Fig. 4).

4.2 Modifying the training set: consequences on the

predictions

As can be seen in Fig. 4, many thermal conductivity values are

unphysical (e.g. under 0.6 W m−1 K−1, which is the thermal con-

ductivity of pure water). Therefore, we have performed tests using

a ‘cleaned’ data set, built up after removing all values under 0.6 W

m−1 K−1 or clearly far away from the general conductivity trend

of the ODP well to which they belong. This slightly improves the

predictions accuracy of both the MLP and the MLR, while holding

the clear superiority of the former over the latter method (Table 2

[bottom]). Thus previous conclusions remain unchanged.

In order to roughly quantify the sensibility of the MLP with re-

gard to the input variables, we have retrained several times the 20

neurons MLP with the initial (i.e. uncleaned) averaged data set, each

time by removing one of the five inputs and keeping the four others.

It proves to be a robust model, as the predictions made on the test-

ing set, though slightly degraded, remain generally satisfying: the

RMA slope θ does not vary significantly; the correlation coefficient

r and the mean relative absolute difference |δ| are slightly altered

(Table 3). Only the neutron porosity log cannot be removed without

a significant loss in the predictions accuracy. This is not a surprising

result, as porosity is the main factor that controls thermal conduc-

tivity of medium-high porosity sediments (Villinger et al. 1994).
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Some tests, not presented here, suggest that the predictions become

seriously inaccurate with only three input well logs—though we

have not tried all possible combinations.

We also point out that other well logs might be used as input.

For example, the photoelectric absorption factor, which is related

to the mean atomic number, is shown to have a strong relationship

with thermal conductivity in the frame of the phonon conduction

theory (Williams & Anderson 1990). Performances of the MLP

do not, however, significantly improve when adding it as an input,

possibly because of redundancy with density log. Gamma ray spec-

troscopy (a mineralogic indicator), shear wave velocity (an energy

transport property) and spontaneous potential (a lithology indica-

tor) are also obviously closely linked to thermal conductivity. These

logs are unfortunately seldom measured in ODP boreholes, so that

it is impossible to build up a comprehensive data set that includes

them.

5 C O M P A R I S O N W I T H M I X I N G L A W S

P R E D I C T I O N S

In ODP sites 863B (Leg 141) and 1109D (Leg 180), we have com-

pared the predictions of the MLP trained with the initial averaged

data set to the other techniques, based on rock decomposition and

mixing laws (see Introduction).

5.1 Mixing law methods

Given a mixture of n components with volumetric proportions pi

(
∑

i pi = 1) and individual thermal conductivities λi corresponding

to each component, mixing laws provide a value or bounds for the

effective conductivity λeff of the mixture. Exhaustive reviews can be

found in Brigaud (1989), Hartmann et al. (2005) and Revil (2000).

Here we only introduce the rigorous Hashin-Shtrikman bounds and

the widely used empirical geometric model.

Assuming that the mixture is homogeneous and isotropic, Hashin

& Shtrikman (1962) establish and apply variational theorems to

derive bounds (λH S− , λH S+ ) for λeff:

λH S− = λ1 + 1

A−1
1 − (3λ1)−1

,

λH S+ = λn + 1

A−1
n − (3λn)−1

,

λeff ∈ [λH S− , λH S+ ],

with A1 =
n∑

k=2

pk

(λk − λ1)−1 + (3λ1)−1
,

and An =
n−1∑
k=1

pk

(λk − λn)−1 + (3λn)−1 (9)

where thermal conductivities are supposed to be ordered such that λ1

= Min{λ1, . . . , λn} and λn = Max{λ1, . . . , λn}. As their approach

lies on a solid physical basis, we use [λH S− , λH S+ ] as the predicted

range of mixing law models. We also compute the empirical geo-

metric mean λg (Woodside & Messmer 1961a,b):

λg =
∏

i

λ
pi
i , (10)

which is by far the most widely used model to approximate

λeff (Brigaud et al. 1990; Della Vedova & Von Herzen 1987;

Hartmann et al. 2005; Sass et al. 1971; Sekiguchi 1984; Vacquier

1984; Villinger et al. 1994).

Table 4. Parameters of the mixing laws models: (top) mean mineralogic

composition of the lithologies; (bottom) thermal conductivity of the miner-

als.

Lithology Mineralogic composition

Site 863B
Shale 35 per cent Chlorite, 65 per cent Smectite & Illite

Sand/Silt 40 per cent Quartz, 40 per cent Feldspar,

20 per cent Hornblende

Non-detrital Calcite, Amorphous phase (unknown)a,b

Site 1109D
Shale Illite

Sand/Silt Quartz, Feldspar, Plagioclasea

Carbonates Calcite

Mineral/fluid Thermal conductivity (W.m−1.K−1)c

Chlorite 4.6

Smectite 1.8

Illite 1.8

Quartz 7.9

Feldspar 2.2

Hornblende 2.81

Plagioclase 1.91

Calcite 3.59

Amorphous phaseb 1.36

Water 0.6

aMineralogic proportions are arbitrarily taken as equals.
bVitreous silica value taken for the amorphous phase.
cMinerals values from Horai (1971).

5.2 Site 863B

Site 863B is located at the base of the trench slope of the Chile

Trench at the point where the Chile Ridge is being subducted. It

penetrated 742.9 m of sediments, the dominant lithologies being

sandstone and siltstone (Shipboard Scientific Party 1992). Thermal

conductivity measurements along with a full set of geophysical well

logs are available approximately in the interval 300–720 mbsf. We

have used the well logs described in Section 2 (sonic, density, neutron

porosity, resistivity, gamma ray) as inputs of the 20 neurons MLP,

retrained with the averaged data set without the data belonging to
site 863B.

The lithological variations (shale—silt/sand—non-detrital) are

fairly well described, and X-ray diffraction analysis allows us to de-

fine a mean mineralogic composition for each lithology (Table 4

[top]). Porosity φ is then interpolated from core measurements.

From these information we can estimate the proportions pi of the

rock-forming minerals and pore water, whose thermal conductivi-

ties λi are given in Table 4 (bottom), and we apply the mixing laws

described above.

As shown in Fig. 8, both the mixing laws and the MLP are in

agreement with the experimental data. This establishes once again

the validity of the rock decomposition approach, particularly with

the geometric mean used as mixing law. This also shows that with

a sufficiently large set of examples, neural networks provide an in-

teresting and less time-consuming alternative to the former method.

The MLP is able to extrapolate fairly good predictions along a site

totally removed during its training phase and, unlike the mixing laws

techniques, it requires no extra parameter.

5.3 Site 1109D

We have applied a similar approach to derive thermal conductiv-

ity profiles in site 1109D, which is located on the Woodlark Rise

C© 2006 The Authors, GJI, 166, 115–125

Journal compilation C© 2006 RAS



Thermal conductivity prediction 123

700

600

500

400

300

D
e

p
th

 (
m

b
s
f)

175 75

1.5 2.5

20 50

Sonic (μs/ft)

Density (g cm-1‡)

Neutron (%)

1 3

70

Resistivity (ohm.m) 0 100Volumes (%) MLP Mix.-laws

Shale

Sand/Silt

Porosity

Non-detrital

40 Gamma ray (API) 0.5 4Thermal cond. (W [m.K]-1)

Figure 8. Thermal conductivity prediction at ODP site 863B. MLP inputs (first and second panels): geophysical well logs. Lithologic composition (third panel)

used as input for the mixing laws. Thermal conductivity (last panel): measurements (dots), predicted range of the MLP and the mixing laws; MLP range: MLP’s

predicted value ±15 per cent; mixing law models: geometric mean (dashed line) and lower/upper Hashin-Shtrikman bounds (solid lines).

(Western Woodlark Basin, Papua New Guinea). Thermal conductiv-

ity measurements and well logs are available approximately in the

interval 300–700 mbsf, corresponding to lithostratigraphic Units

VI to IX (Shipboard Scientific Party 1999). Unfortunately the sed-

iments description is far from being as precise as in site 863B. We

have grossly estimated the matrix composition from the lithostrati-

graphic logs: 60 per cent shale, 40 per cent sand/silt for Units VI,

VIII and IX; 30 per cent shale, 30 per cent sand/silt, 40 per cent

carbonates for Unit VII. The major minerals of each lithology, deter-

mined from X-ray diffraction and smear-slides analysis (Shipboard

Scientific Party 1999), are listed in Table 4 (top).

Fig. 9 shows that the predictions of the mixing laws, although

globally satisfying, deviate from the experimental trend at the bot-

tom of the borehole. The misfit is certainly due to the imprecision of

our rock description, and does not unvalidate the mixing approach;

nevertheless, the difficulty of obtaining an accurate and objective

rock decomposition is a serious drawback of these methods. On

the other hand, there is a very good agreement between the MLP’s

predictions and the experimental trend.

6 S U M M A R Y A N D C O N C L U S I O N S

We have proposed a new method to relate rocks thermal conductivity

to a set of five geophysical well logs (sonic, density, neutron porosity,

resistivity, gamma ray) using neural networks.

(1) On the ODP data set, neural networks are able to predict ther-

mal conductivity with an accuracy around 15 per cent with respect

to the global trend.

(2) Some flexibility with regard to the choice of input well logs

is allowed. With our data, any suite of four well logs still leads

to reasonable estimates, provided that the neutron porosity log is

included.

(3) This approach is more robust than classical linear models

when dealing with a wide range of lithologic contexts. It is more

straightforward, and, in the case of rocks description derived from

lithostratigraphic logs, more objective than conventional techniques

based on mixing laws.

Neural networks are thus a promising framework for fast and ef-

ficient thermal conductivity predictions in boreholes where no core

material is available. Their main drawback is their inability to ex-

trapolate estimates out of the inputs/output ranges covered by the

training data set. Hence their use, while covering various lithologies

(with the exception of evaporites), is presently confined to water-

saturated sediments with medium to high porosity and low thermal

conductivity. However, it is a simple task to update the data set

and retrain the neural network when new samples are available.

By progressive inclusions, notably of continental and deep marine

samples, we hope to converge gradually to a universally applicable

model. This will allow to provide homogeneous heat flow values

from the numerous well logging data acquired in scientific and in-

dustrial boreholes.
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