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ighly accurate absorbing boundary conditions
or wide-angle wave equations
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ABSTRACT

We develop a new class of absorbing boundary condi-
tions �ABCs� to prevent unwanted artifacts and wrap-
arounds associated with aperture truncation in migration/
modeling using high-order, one-way wave equations. The
fundamental approach behind the proposed development is
the efficient discretization of the half-space, beyond the
boundary of interest, using midpoint-integrated imaginary
finite elements, an idea recently utilized in the development
of effective one-way wave equations. The proposed absorb-
ing boundary conditions essentially add absorbing layers at
the aperture truncation points. We derive the absorbing
boundary conditions, analyze their properties, and develop
a stable explicit finite-difference scheme to solve the
downward-continuation problem modified by these bound-
ary conditions. With the help of numerical examples, we
conclude that with as few as three absorbing layers, i.e., two
additional gridpoints, the waves can be absorbed com-
pletely, thus preventing associated artifacts.

INTRODUCTION

The numerical solution of wave propagation for modeling and
igration must be carried out in a truncated domain because of the

imitations of survey aperture and computation costs. Once the do-
ain is truncated, the absorbing boundary conditions �ABCs�

hould be used at the artificial boundaries to prevent wraparounds
n modeling and unwanted artifacts in migration. ABCs for full
ave equations have been under investigation since the 1970s, and
any successful methods have been developed in this context.
ost of the existing ABCs can be classified into two categories:

ifferential equation based and material based �Shlager and
chneider, 1995�. Differential-equation-based methods are formu-
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S85
ated by factoring the governing equation at the boundary and al-
owing only outgoing waves, a familiar method used in deriving
ne-way wave equations �OWWEs� for migration. Differential-
quation-based ABCs can be further classified into local and non-
ocal ABCs. Nonlocal ABCs are based on Green’s function of the
alf-space �exact impedance� and are highly accurate but tend to be
ery expensive and unsuitable for large-scale problems. On the
ther hand, local ABCs approximate the impedance but are compu-
ationally efficient. Local ABCs were pioneered by Lindman
1975� and Engquist and Majda �1977, 1979�, who proposed a se-
ies of highly accurate ABCs that have been implemented only re-
ently �see Givoli �2004� for survey�. Examples of other early
orks on local ABCs are Clayton and Engquist �1977�, Raynolds

1978�, and Keys �1985�.
In contrast with the differential-equation-based ABCs, material-

ased ABCs are modeled by surrounding the computational do-
ain with a lossy material to dampen the outgoing waves and re-

uce the artificial reflection from the boundaries. The most robust
pplication of this approach is the method of perfectly matched
ayers �PML�, introduced by Berenger �1994� and later interpreted
nd enhanced by several other researchers �e.g., Chew et al. �1997�
nd Sacks et al. �1995��. Despite the conceptual difference between
he material-based and local ABCs, Asvadurov et al. �2003� show a

athematical link between the two, which is further simplified by
uddati and Lim �2004�, who illustrate the superior performance
f local ABCs over the conventional PML method.

The ABCs may be used with slight modification for reverse-time
igration, as it is performed using the adjoint of the full wave

quation. However, wave equation-based migration is mostly per-
ormed using OWWEs �Berkhout 1985; Claerbout, 1985; Gardner,
985; Stolt and Benson, 1986�. Hence, ABCs developed for the
ull wave equation cannot be used for such migration. This is be-
ause the ABC formulation must be consistent with, and devised
ased on, the interior formulation. Traditionally, the domain is pad-
ed with zeros to prevent reflections in OWWE migration. How-
ver, this method only delays the reflections. Moreover, it increases

ed June 2, 2005; published online May 24, 2006.
7. E-mail: hheidari@atlantia.com.
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omputing costs because of the increased domain size. Therefore,
ccurate ABCs developed specifically for OWWEs are desirable
or accurate one-way modeling and migration.

A relatively small number of ABCs have been developed for
WWEs, based on both material and differential equation-based

pproaches. Clayton and Engquist �1980� introduced three local
BCs of varying accuracy �15° and 45° wave equations�, extended
y Zhou and McMechan �2000� to 3D migration. These methods
re limited in that their accuracy cannot be increased readily and
hey are not applicable to high-order OWWEs. In fact, Howell and
refethen �1988� show that any boundary condition of the Clayton-
ngquist type of order higher than one is ill posed for migration
quations of an order higher than three. In addition to these local
BCs, there have been some developments related to nonlocal
BCs �e.g., Papadakis, 1994; Thomson and Mayfield, 1994; Levy,
997; Yevick and Thomson, 1999; Brooke and Thomson, 2000�.
imilar to their counterparts for full wave equations, these methods

end to be very expensive because of their global nature. PML-
ased methods have also been developed for OWWEs but are lim-
ted to frequency-domain computations �Collino, 1997; Yevick and
homson, 2000; Levy, 2001�.
In this paper, we derive systematically a series of arbitrarily ac-

urate local ABCs applicable to high-order OWWEs in the time-
omain as well as in the frequency domain. We develop ABCs
hat can be used in conjunction with a variety of wide-angle wave
quations, based on the ideas of arbitrarily wide-angle wave equa-
ions �AWWEs� �Guddati, 2006�. A stable explicit finite-difference
cheme is devised for the time-domain implementation of down-
ard continuation as modified by these ABCs. The effectiveness of

he proposed ABCs is illustrated using various modeling and mi-
ration problems. We also note that the frequency-domain versions
f the proposed ABCs provide a more efficient alternative to PML-
ased techniques.

First, we define the framework of the OWWEs for which the
BCs are devised. We then outline the basic concepts of the pro-
osed ABCs, precisely derive the ABCs for modeling and migra-
ion, and perform a theoretical accuracy analysis through reflection
oefficients. In the subsequent section, we develop a stable explicit
nite-difference scheme for the time-domain implementation of

he ABCs. Finally, we illustrate the performance of the ABCs by
pplying them to wide-angle wave propagation and AWWE migra-
ion �Guddati and Heidari, 2005�.

THEORY

We start from a general form of high-order, upward-propagating
WWEs:

C1
�2u

�z�t
+ C2

�2u

�t2 + C3
�2u

�x2 = 0 , �1�

here C1,2,3 are coefficient matrices, t is time, and

u = �u u1
¯ un−1�T. �2�

ere, u is the field variable, u1 to un−1 are the auxiliary variables,
nd T denotes transpose. Equation 1 is defined over �−� � x

�� � �0 � z � �� � �0 � t � ��. Examples of OWWEs
hat fit into equation 1 are �a� the 15° wave equation, which is ob-
ained by setting n = 1, C = 1, C = −1/c, and C = c/2; �b� the
1 2 3
igh-order paraxial �one-way� wave equation, introduced by Bam-
erger et al. �1988�; and �c� the AWWE, developed by Guddati
2006�. The AWWE formulation follows the form of equation 1,
ith the coefficient matrices presented in Appendix A. The high-
rder paraxial wave equation of Bamberger et al. �1988�, on the
ther hand, is originally presented in a different form; but as shown
n Appendix B, it can be modified to fit into equation 1.

For the solution of equation 1 to be computationally feasible, the
omain is truncated in the x-direction to a finite domain, 0 � x

xmax, referred to as the interior. The rest of the domain is called
he exterior, which consists of two half-spaces, x � 0 and x

xmax. Once truncated, appropriate boundary conditions must be
sed at the truncation boundaries, namely, at x = 0 �left boundary�
nd x = xmax �right boundary�. For the solution in the truncated do-
ain to be accurate, these boundary conditions must absorb any in-

ident energy and prevent spurious reflections; hence, they are la-
eled ABC. Our goal is to derive a highly accurate version of these
BCs for high-order OWWEs, as defined in equation 1.

ormulation of the proposed ABC

Ideally, an ABC should exactly represent the effect of the half-
pace it is replacing. In the context of acoustic media, the ABC can
e viewed as the representation of half-space impedance. The ef-
ective approximation of half-space impedance, explored in the
erivation of AWWEs by Guddati, �2006�, involves efficient finite-
lement discretization of the half-space. We closely follow these
deas in developing our proposed ABCs. The steps involved in this
rocedure are summarized below and are elaborated upon later in
his section.

First, the half-space �exterior� is discretized using an infinite
umber of finite elements; this introduces error in the impedance.
t turns out that this impedance error can be completely eliminated
f the midpoint integration is utilized for the numerical integration
f finite-element matrices �see Guddati �2006� for the proof�. Mid-
oint integration, explained in Appendix C �see equation C-7�, en-
ures that the discretized half-space is equivalent to the original
ne, which enables the use of arbitrary lengths for the elements
ithout concern over the accuracy of the discretization. Since an

nfinite number of elements cannot be used for computation, the
iscretized half-space is truncated, thus limiting the number of fi-
ite elements, and the Dirichlet boundary condition is applied on
he truncation boundary. Owing to the midpoint integration, no re-
ections appear from any of the nodes between the boundary point
nd the truncation point. However, the truncation point itself gen-
rates reflections, introducing errors in the impedance. The error
ttributable to the reflections can be reduced significantly if the el-
ment lengths are chosen as complex or imaginary numbers. Gud-
ati �2006� shows that, with such a choice, the half-space becomes
he perfect propagator and thus a perfect absorber for wave modes
ith wavenumbers k = 2i/Lq, where Lq is the length of the qth ele-
ents in the half-space. In addition to being a perfect absorber for

hese specific wave modes, the half-space �exterior� becomes an
ffective absorber for other waves as well. Summarizing, the exte-
ior �half-space� is efficiently discretized using a limited number of
nite elements, with the key being the use of midpoint integration
long with imaginary element lengths.

The interior, in contrast to the exterior, is typically discretized
sing the finite-difference method. However, finite-difference dis-
retization is equivalent to finite-element discretization if nodal-
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oint integration is used �see equations 14 and 15�. Thus, since
oth the interior and the exterior fit into the framework of finite el-
ments, we may now start with the finite-element discretization of
quation 1 over the entire domain in the x-direction, i.e., −� � x

�. Since the discretization at this stage is only in the x-direction,
t is more convenient to work with the Fourier-transformed version
f equation 1:

��kzC1 − �2C2�û + C3
�2û

�x2 = 0 , �3�

here û = û��, kz, x� is the Fourier transform of u, � is the wave
requency, and kz is the vertical wavenumber �that is, the wave-
umber along the preferred direction�. Note that the sign conven-
ion for the Fourier transform is chosen such that the following du-
lities apply: �/�t ↔ −i� and �/�z ↔ ikz. The first step of the
nite-element discretization is to obtain the variational form of
quation 3 by multiplying the equation by an arbitrary function
the virtual field variable �û� and integrating the resulting expres-
ion over the entire domain, i.e., −� � x � + �. This results in

�
−�

+�

�ûT���kzC1 − �2C2�û + C3
�2û

�x2	dx = 0 for all �û .

�4�

erforming integration by parts on the second term of equation 4
esults in

�
−�

+� ��ûT��kzC1 − �2C2�û −
��ûT

�x
C3

�û

�x
	dx = 0.

�5�

The domain is now discretized into an infinite number of finite
lements, with the qth element defined as �xq,xq+1�. We number the
lements such that −� � q � 0 corresponds to elements in the left
alf-space, 0 � q � Nx corresponds to the interior elements, and
x � q � + � corresponds to the elements in the right half-

pace. The integral in equation 5 can be divided into integrals over
ach of the finite elements as



q=−�

q=+� ��
xq

xq+1 ��ûT��kzC1 − �2C2�û −
��ûT

�x
C3

�û

�x
	dx�

= 0. �6�

ollowing the Bubnov-Galerkin approach �see, e.g., Becker et al.,
981�, the field variable and the virtual field variable are approxi-
ated in each element as

û�x� 
 N�x�� ûq

ûq+1
	

2n�1

and
�û�x� 
 N�x�� �ûq

�ûq+1
	

2n�1

, �7�

here N�x� is the interpolation �shape� function, defined as

Nq�x� = �� xq+1 − x

Lq
�I � x − xq

Lq
�I	

n�2n
. �8�

ere, I is the identity matrix of size n � n, and Lq = xq+1 − xq is
he length of the qth element. Substituting equation 7 into equation
results in the discrete variational form



q=−�

q=+�

�ÛqŜqÛq = 0, �9�

here Ûq and �Ûq are vectors of nodal values defined as

Ûq = � ûq

ûq+1
	

2n�1

and �Ûq = � �ûq

�ûq+1
	

2n�1

. �10�

he term Ŝq��� Ŝq
11 Ŝq

12

Ŝq
21 Ŝq

22�� is the stiffness of the qth element and is de-

ned as

Ŝq = ��
xq

xq+1

Nq
T��kzC1 − �2C2�Nqdx�

− ��
xq

xq+1 �Nq
T

�x
C3

�Nq

�x
dx� . �11�

We now continue with equation 9, which can be rearranged and
ritten as

�
]

�ûq−1

�ûq

�ûq+1

]

��
� � 0 0 0

� Ŝq−2
22 + Ŝq−1

11 Ŝq−1
12 0 0

0 Ŝq−1
21 Ŝq−1

22 + Ŝq
11 Ŝq

12 0

0 0 Ŝq
21 Ŝq

22 + Ŝq+1
11

�

0 0 0 � �

�
� �

]

ûq−1

ûq

ûq+1

]

� = 0 . �12�

ince equation 12 should hold true for any virtual field variable
ector, it is equivalent to the linear system of equations given by
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 �
� � 0 0 0

� Ŝq−2
22 + Ŝq−1

11 Ŝq−1
12 0 0

0 Ŝq−1
21 Ŝq−1

22 + Ŝq
11 Ŝq

12 0

0 0 Ŝq
21 Ŝq

22 + Ŝq+1
11

�

0 0 0 � �

��
]

ûq−1

ûq

ûq+1

]

�
= 0 . �13�

efore moving on to the derivation of the boundary condition, note
hat the finite-element discretization of the interior is equivalent to
he finite-difference discretization that is commonplace in the geo-
hysics community. As mentioned before, the stiffness matrix for
he interior elements is evaluated using nodal-point integration, re-
ulting in

Ŝq =
�x

2
��kzC1 − �2C2� � �+ 1 0

0 + 1
	

−
1

�x
C3 � �+ 1 − 1

− 1 + 1
	, 0 � q � Nx, �14�

here �x is the grid length in the x-direction. Note that nodal-point
ntegration is necessary to obtain an uncoupled system of equations
hat enables explicit computation. See Appendix C for the details
f derivation and the definition of the � operator.

Examining the qth equation in the system of equations 13, we
ave

Ŝq−1
21 ûq−1 + �Ŝq−1

22 + Ŝq
11�ûq + Ŝq

12ûq+1 = 0. �15�

ubstituting equation 14 into equation 15 leads to

��kzC1 − �2C2�ûq + C3
ûq−1 − 2ûq + ûq+1

�x2 = 0, �16�

hich is the central difference approximation of equation 3.
We now develop the ABCs for the left boundary. �Note that the

ight boundary can be derived in a similar way.� To write the
oundary condition at the left, the equation corresponding to the
oints x−� to x0 is written as

�
� � 0 0

� Ŝ−3
22 + Ŝ−2

11 Ŝ−2
12 0

0 Ŝ−2
21 Ŝ−2

22 + Ŝ−1
11 Ŝ−1

12

0 0 Ŝ−1
21 Ŝ−1

22 + Ŝ0
11
�� ]

û−2

û−1

û0

�
= �

]

0

0

− Ŝ0
12û1

� . �17�

n equation 17, the right-hand side contains the contribution from
he interior �−Ŝ12û �. As mentioned earlier in this section, in con-
0 i
rast to the interior, the midpoint integration is used to calculate the
tiffness matrix for the exterior elements �see Appendix C for de-
ails�, resulting in

Ŝq =
Lq

e

4
��kzC1 − �2C2� � �+ 1 + 1

+ 1 + 1
	

−
1

Lq
e C3 � �+ 1 − 1

− 1 + 1
	, q � 0 or q � Nx,

�18�

here Lq
e is the length of each exterior element.

At this stage, equations 17 and 18 constitute the exact boundary
ondition, as the discretization error is eliminated using midpoint
ntegration. However, in practice, one cannot solve equation 17 be-
ause it contains an infinite number of unknowns. Hence, the num-
er of elements in the exterior is limited to m, with the Dirichlet
oundary condition applied at the leftmost point, x−m, i.e., û−m = 0.
quation 17 then transforms into

�
Ŝ−m

22 + Ŝ−�m−1�
11 Ŝ−�m−1�

12

Ŝ−�m−1�
21 Ŝ−�m−1�

22 + Ŝ−�m−2�
11

�

� � Ŝ−1
12

Ŝ−1
21 Ŝ−1

22 + Ŝ0
11
�

� �
û−�m−1�

û−�m−2�

]

û0

� = �
0

0

]

− Ŝ0
12û1

� . �19�

The Dirichlet boundary condition at the truncation point results
n reflections. As discussed earlier, this reflection can be reduced
y using imaginary element lengths. By using an imaginary ele-
ent length of Lq = 2i/kq

x �Guddati, 2006�, the qth element be-
omes a perfect absorber for wavefields with the horizontal wave-
umber kq

x. However, since our goal is time-domain analysis, it is
ore convenient to deal with phase velocities than wavenumbers

s the parameters of the ABC. Hence, we use the relationship be-
ween the wavenumber and the horizontal phase velocity, i.e., kq

x

�/cq
x, to obtain

Lq =
2icq

x

�
. �20�

ubstituting equation 20 into equation 18 results in the stiffness
atrix of the absorbing elements:

Ŝq =
icq

x

2�
��kzC1 − �2C2� � �+ 1 + 1

+ 1 + 1
	

−
�

2icq
x C3 � �+ 1 − 1

− 1 + 1
	, q � 0 or q � Nx.

�21�
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ubstituting equations 14 and 21 into equation 19 results in the fi-
al form of the absorbing boundary condition:

��ikzC1 − i�C2� � �2 + i�C3 � �1�Û

+ �x���kzC1 − �2C2� � �3�Û

−
2

�x
�C3 � �3��Û − Û�� = 0, �22�

here

�1 = �
1

cm
x +

1

cm−1
x

− 1

cm−1
x

− 1

cm−1
x

1

cm−1
x +

1

cm−2
x

− 1

cm−2
x

− 1

cm−2
x � �

�

1

c2
x +

1

c1
x

− 1

c1
x

− 1

c1
x

1

c1
x

�
m�m

,

�23�

�2 = �
cm

x + cm−1
x cm−1

x

cm−1
x cm−1

x + cm−2
x cm−2

x

cm−2
x

� �

� c2
x + c1

x c1
x

c1
x c1

x
�

m�m

,

�24�

�3 = �
0 ¯ 0

] � ]

0 0

0 ¯ 0 1
� , �25�

Û = �
û−m

û−m+1

]

û0

�, and Û� = �
0

0

]

û1

� . �26�

ote that in equations 23 and 24 the phase velocity parameters are
ndexed with positive numbers for simplicity. Transforming equa-
ion 22 back into the time domain yields

�C1 � �2�
�U

�z
+ �C2 � �2 − C3 � �1�

�U

�t
+ �x�C1 � �3�
�2U

�z�t
+ �x�C2 � �3�

�2U

�t2

−
2

�x
�C3 � �3��U − U�� = 0. �27�

quation 27 is the equation for an m-layer ABC with a parameter
et of �c1

x,c2
x, . . . ,cm

x �. This equation is readily extendible to straight
oundaries in 3D domains by applying the above concepts to the
oordinate perpendicular to the boundary. The terms related to the
orizontal coordinate along the boundary are treated similarly to
he interior. On the other hand, the treatment of the corners, where
he ABC should absorb in both horizontal directions, needs careful
ttention and is beyond the scope of this paper. The ideas related to
orner ABCs for full wave equations �Guddati and Lim, 2006�
ould be utilized for this purpose.

xtension to the migration problem

In the derivation of equation 27, we assume that the governing
quation 3 is solved in positive time, i.e., as a forward problem.
owever, for the migration problem, the governing equation is the

djoint and is solved in reverse time. Therefore, for the boundary
ondition to have the same absorbing effect as in the forward prob-
em, the wave frequency � in equation 20 should be replaced by
�, which is equivalent to negating Lq

e. Consequently, based on
quation 18, the contribution from the absorbing elements, i.e., the
rst two terms of equation 27, will change sign. Thus, equation 27
an be written in a more general form that will hold true for both
orward and reverse �migration� problems:

���C1 � �2�
�U

�z
+ �C2 � �2 − C3 � �1�

�U

�t
	

+ �x�C1 � �3�
�2U

�z�t
+ �x�C2 � �3�

�2U

�t2

−
2

�x
�C3 � �3��U − U�� = 0, �28�

here

� = �+ 1, forward problem

− 1, inverse problem �migration� .
� �29�

ccuracy of a high-order ABC

The accuracy of an ABC is measured in terms of reflection coef-
cients. The reflection coefficient R of an ABC is defined as the ra-

io of the amplitude of the reflected wave to that of the original
ave impinging on the boundary. Given an incident monochro-
atic wavefield uinc moving toward the left boundary,

uinc = eikzz−i�te−ikxx, �30�

he total wavefield after reflecting from the boundary can be writ-
en as
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u = eikzz−i�t�e−ikxx + Reikxx� . �31�

he boundary condition for the governing equation 1 on the left
x = 0� can be written formally as

� �u

�x
�

x=0
+ �Bu�x=0 = 0, �32�

here B denotes a differential �or algebraic, if in the Fourier do-
ain� operator. Substituting the total wavefield from equation 31

nto equation 32 and rearranging yields

R =
ikx − B
ikx + B

. �33�

At this point, the estimation of the reflection coefficient for the
roposed ABC is reduced to finding the operator B. The high-order
WWE �equation 1� approaches the exact OWWE as the number
f auxiliary variables increases. Hence, to study the behavior of the
eflection coefficient, it is appropriate to have the interior governed
y the exact OWWE. Such an equation can be constructed from
quation 3 by setting C3 = 1 and ��kzC1 − �2C2� = kx

2. Substitut-
ng these values into the general expression for the ABC in equa-
ion 22, we have

� ikx
2

�
�2 + i��1	Û + �x�kx

2�3�Û −
2

�x
�3�Û − Û�� = 0.

�34�

ssuming that the discretization of the interior is very fine, we take
he limit of equation 34 as �x → 0. Noting that ��Û� − Û�/�x�

��Û/�x�, equation 34 translates into

�3
�Û

�x
=

1

2
� ikx

2

�
�2 + i��1	Û . �35�

ecalling the forms of �1 and �2, it is apparent that the matrix on
he right-hand side of equation 35 is tridiagonal. Also, noting the
orm of �3 in equation 25, equation 35 can be written as

�
0

0

]

0

�u0

�x

� = �
am+1 + am bm

bm am + am−1 bm−1

bm−1 � �

� a2 + a1 b1

b1 a1

�
� �

u−m

u−m+1

]

u−1

u0

� , �36�

here u is the value of u at the boundary,
0
aj =
1

2
� ikx

2cj
x

�
+

i�

cj
x 	 , �37�

nd

bj =
1

2
� ikx

2cj
x

�
−

i�

cj
x 	 . �38�

rom equation 36, we can immediately conclude that all absorbing
odes �u−m,u−m+1, . . . ,u−1� can be eliminated to arrive at the fol-
owing expression in terms of the boundary point:

�u0

�x
= Bmu0, �39�

here Bm is a continued fraction expansion, defined by

Bm = am −
bm

2

am + Bm−1
. �40�

ow we can return to equation 33 and write

Rm =
ikx + Bm

ikx − Bm
. �41�

ubstituting equation 40 into equation 41, noting that am
2 − bm

2 =
kx

2, results in the following recursive equation:

Rm = �am − ikx

am + ikx
�� ikx − Bm−1

ikx + Bm−1
� = �am − ikx

am + ikx
�Rm−1

�42�

r

Rm = �
j=1

m �aj − ikx

aj + ikx
� . �43�

ubstituting the expression for aj in equation 37 into equation 43
nd rearranging will result in the final form of the reflection coef-
cient for the m-layer ABC:

Rm = �
j=1

m � cj
x − cx

cj
x + cx

�2

. �44�

We can obtain a more intuitive representation by noting that cx

an be written as c/sin 	, where 	 is the angle of propagation with
espect to the vertical axis �which is equal to 90° minus the angle
f incidence on the lateral boundary� and c is the phase velocity.
imilarly, we can write the phase velocity parameters as cj

x

c/sin 	 j, where 	 j can be viewed as the parameters of the ABC.
he reflection coefficient in equation 44 can then be rewritten as

Rm = �
j=1

m � sin 	 j − sin 	

sin 	 j + sin 	
�2

. �45�
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Equation 45 can be used to intuitively design effective param-
ters of the proposed ABC. We can see from equation 45 that each

j indicates a particular value of 	 for which the reflection coeffi-
ient becomes zero, i.e., the boundary condition becomes exact.
ence, the distribution of the reflection coefficient along the range

0, 90°� can be adjusted by choosing the proper parameter set. This
roperty is illustrated in Figure 1, where the reflection coefficient
s shown for three different cases. By changing the parameter set in
he second-order ABC from �90°, 90°� to �10°, 60°�, the reflection
oefficient becomes much smaller for lower incident angles. Note
hat 10° and 60° are not products of an optimization procedure but
re chosen arbitrarily to scatter the zero points of the reflection co-
fficient along the �0, 90°� range. By increasing the number of lay-
rs to three with reference angles 	 j = �5°, 20°, 60°�, we achieved
erfect absorption for propagation angles greater than 5°, clearly
llustrating the flexibility and high accuracy of the proposed ABCs.

emarks on frequency-domain implementation

The proposed ABCs can be readily extended to the frequency
omain, which provides an efficient alternative to existing PML-
ased methods �see, e.g., Collino, 1997; Yevick and Thomson,
000; Levy, 2001�. The main difference between PML-based
ethods and the frequency-domain version of the proposed ABC is

wofold: �1� We use purely imaginary lengths rather than the com-
lex lengths used in the PML method, thus increasing the absorp-
ion of propagating waves �Asvadurov et al., 2003� and �2� in con-
rast to the approximate nature of PML discretization, we eliminate
he discretization error through midpoint integration, thus enabling
he use of arbitrarily large element lengths. Based on these desir-
ble properties, we are able to achieve accurate absorption with
ust two additional gridpoints.

emarks on evanescent modes

The proposed ABCs can be adjusted to absorb evanescent wave
odes. Approximate OWWEs generate evanescent modes, which

re not present in exact OWWEs �Bamberger et al., 1988�. We can
asily verify that for evanescent waves, cx � c, which is equiva-
ent to sin 	 
 1 �complex 	 j�. The proposed ABCs can be de-
igned to absorb evanescent modes by choosing one or more of the
hase velocity parameters to be less than c, i.e., by choosing one or
ore 	 j to be complex numbers.

umerical implementation

We discretize the differential equation 28 in z and t in a manner
onsistent with the discretization performed for the AWWE in the
nterior �see Guddati and Heidari, 2005�. Consider a grid in the
-t plane in which zj = j�z and tk = k�t. The notation U j

k denotes
he value of the U vector at time tk and depth zj. We assume the sur-
ace to be located at z = 0, and z increases with depth, i.e., the
-axis points downward. We also assume that the disturbance is
raveling toward the surface, i.e., upward. For the discretization in
he z-direction, the Crank-Nicholson method is used. Hence, the
quation is written for the midpoint of the layer, i.e., zj+1/2 = � j
1/2��z, using the following approximations:
U j+ 1
2

=
1

2
�U j+1 + U j� and � �U

�z
�

j+ 1
2

=
U j+1 − U j

�z
.

�46�

uch discretization of equation 28 results in

�� 1

�z
�C1 � �2��U j+1 − U j� + �C2 � �2

− C3 � �1�
�U j+ 1

2

�t
	 +

�x

�z
�C1 � �3�

�
�

�t
�U j+1 − U j� + �x�C2 � �3�

�2U j+ 1
2

�t2

−
2

�x
�C3 � �3��U j+ 1

2
− U

j+ 1
2

� � = 0. �47�

The next step is to discretize equation 47 in time. Again, to be
onsistent with the solution of the interior, the last three terms, i.e.,
he contributions of the interior, are discretized using the central-
ifference method. For the discretization in time, we propose a
pecial averaging scheme that links the field variable in the exterior
t any time instance to the average of the field variable in the inte-
ior for adjacent time steps, i.e.,

igure 1. The reflection coefficient for the three different cases of
he proposed ABC. The horizontal axis is the wave propagation
ngle, measured from the vertical axis i.e., waves traveling parallel
o the boundary will have an angle of 	 = 0º. The dashed-dotted
ine represents the two-layer ABC with both phase velocity param-
ters set equal to the interior wave speed c �equivalent to 	1,2

90º�. By adjusting these two parameters to 	1 = 10º and 	2

60º, the reflection coefficient becomes smaller for a wider range
f incident angles �dashed line�. The third-order ABC with a
arameter set of 	 j = �5°, 20°, 60°�, which corresponds to phase
elocity parameters of cj

x = �11.5c, 2.92c, 1.15c�, shows a nearly
erfect reflection coefficient for any propagation angle greater than
° �solid line�.
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Uk = 1
2 �Uk+1 + Uk−1� �48�

s substituted in the first bracket of equation 47. This special finite-
ifference scheme is proposed to achieve stability in the numerical
mplementation of the ABC. The stability of the resulting scheme
s verified through extensive computer-assisted stability analysis.
he analytical proof of the stability is beyond the scope of this
aper.

Substituting equation 48 into equation 47, along with temporal
iscretization, results in the following expression:

�� 1

2�z
�C1 � �2��U j+1

k+1 − U j
k+1 + U j+1

k−1 − U j
k−1�

+
1

2�t
�C2 � �2 − C3 � �1��U

j+ 1
2

k+1
− U

j+ 1
2

k−1
�	

+
�x

2�z�t
�C1 � �3��U j+1

k+1 − U j
k+1 − U j+1

k−1 + U j
k−1�

+
�x

�t2 �C2 � �3��U
j+ 1

2

k+1
− 2U

j+ 1
2

k
+ U

j+ 1
2

k−1
�

−
2

�x
�C3 � �3��U

j+ 1
2

k
− U

j+ 1
2

�k
� = 0. �49�

igure 2. Four snapshots of a point source propagated by the 15°
WWE in a homogeneous domain �c = 4000 m/s�: �a� 88 ms, �b�
54 ms, �c� 220 ms, and �d� 264 ms. The right edge of the domain
s modeled as a rigid boundary. A single-layer ABC with cx

1

2800 m/s is used on the left edge, which is expected to absorb
aves traveling perpendicular to the boundary. Panels �c� and �d�

learly show that the absorption agrees with the theory.
For the forward problem, the solution procedure is to march up-
ard in the z-direction to obtain U j from U j+1 and forward in time

increasing k�. This translates into obtaining U j+1/2
k+1 from equation

9 and eventually U j
k+1 from equation 46. For migration, on the

ther hand, this procedure is performed in reverse order on the
ame grid, i.e., we march downward in the z-direction �and obtain

j+1 from U j� and backward in time �decreasing k�. Thus, the un-
nown variable in the migration problem is U j+1/2

k−1 , which from
quation 46 results in U j+1

k−1.
Based on the above procedures and following the details in Ap-

endix D, the general discretized formula that holds true for both
orward and migration problems can be expressed as

U
j+ 1

2

k+�
= B2�− U

j+ 1
2

k−�
+ U j+�

k+1 + U j+�
k−1� + B3U

j+ 1
2

k−�
+ B4�U

j+ 1
2

k−�

+ �U j+�
k+1 − �U j+�

k−1� + B5�− 2U
j+ 1

2

k
+ U

j+ 1
2

k−1
�

+ B6�U
j+ 1

2

k
− U

j+ 1
2

�k
� , �50�

here � and � are problem-dependent flags �� = � = 1 for forward
odeling; � = 0 and � = −1 for migration�. The coefficient matri-

es B1 to B6 are defined in Appendix D. The difference equation 50
s written at the middle of the depth layers � j + 1/2� because the
uxiliary variables are needed, calculated, and stored only at these
ocations. Such a strategy is critical to the efficiency of the time-
omain implementation �see Guddati and Heidari �2005� for de-
ails�.

NUMERICAL EXAMPLES

In this section, we investigate the performance of the proposed
BCs using numeric examples for both forward propagation and
igration problems. To illustrate the accuracy properties derived

arlier in the paper, we first use the proposed ABC in conjunction
ith the 15° equation �the lowest order AWWE�. Figure 2 shows

napshots of a point source propagated using the 15° equation in a
omogeneous medium �c = 4000 m/s�. For the 15° equation, we
ee the phase velocity of horizontally propagating waves ch is c/�2
r about 2800 m/s. The single-layer ABC is utilized on the left
dge of the domain, while a Dirichlet boundary condition is used
n the right edge. The phase velocity parameter of the ABC is set
s c1

x = ch, which should result in perfect absorption of horizontally
ropagating waves. One can clearly see from Figures 2c and 2d
hat the wavefront impinging on the left boundary is absorbed bet-
er around the horizontally propagating region. A slight reflection
an be seen on the bottom left and the top left of the front because
he phase velocities of these regions differ considerably from ch.

To investigate the effect of the reference phase velocity, the
ame problem �the 15° equation with the one-layer ABC� is ana-
yzed with varying reference phase velocities. Figures 3a–3c show
he snapshots at a particular instant �t = 264 ms� from these analy-
es. Figure 3a corresponds to c1

x = 1000 m/s. Since the reference
hase velocity is smaller than ch, we expect the evanescent mode
the bottom wavefront� to be well absorbed, which is clearly seen
n Figure 3a. Naturally, the rest of the wavefront results in some re-
ections. In Figure 3b, the snapshot for c1

x = ch is repeated from
igure 2 for comparison. Figure 3c shows the case when c1

x

6000 m/s, which is larger than c . As expected, most of the top
h
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eft portion of the wavefront is absorbed. Finally, to illustrate the
exibility of the proposed ABC, a three-layer ABC with c1,2,3

x

�1000, 2800, 6000� m/s is utilized. The result is shown in Fig-
re 3d, which effectively absorbs the entire wavefront.

Figure 4 illustrates the effectiveness of the proposed ABC for
he AWWE equations. In this example, we consider a homoge-
eous domain with c = 2800 m/s along with a two-layer AWWE
c1,2 = 4000, 8000 m/s� as the propagator. The forward propaga-
ion of a point source is shown in Figure 4 at four different time
teps. Here, we utilize a three-layer ABC with c1,2,3

x = �1000,
800, 6000� m/s on the left edge. With only three layers, practi-
ally all of the wavefront hitting the left edge is absorbed, includ-
ng the evanescent modes.

To study the performance of the proposed ABC in migration, we
a� used a domain with a simple reflector, �b� generated the surface
race using the exploding reflector model �Loewenthal et al. 1976�,
c� truncated the domain and, consequently, the surface trace, and
d� performed migration in the truncated domain with and without

igure 3. Snapshots of a point source propagated by the 15°
WWE in a homogeneous domain �c = 4000 m/s� at a particular

ime �t = 264 ms�. The proposed ABC is implemented on the left
dge with different orders and parameters in different panels. The
ight edge of the domain is modeled as a rigid boundary for all pan-
ls. �a� Single-layer ABC with cx

1 = 1000 m/s. With the phase ve-
ocity smaller than ch, the absorption is good for the evanescent
odes �the lower part of the propagation front�. �b� Single-layer
BC with cx

1 = 2800 m/s �same as Figure 2; horizontally propa-
ating waves are absorbed�. �c� Single-layer ABC with cx

1

6000 m/s. The phase velocity is larger than that of horizontally
ropagating waves; hence, the top-left region of the wavefront
s absorbed better. �d� Three-layer ABC with c1, 2, 3

x = 1000,
800, 6000 m/s. By combining the effect of panels �a�, �b�, and
c�, the boundary condition absorbs nearly all of the incident wave-
ront.
 b
he absorbing boundary condition. We considered a homogeneous
omain with a single dipping reflector �Figure 5� with a back-
round velocity of c = 4000 m/s. After obtaining the surface trace
sing the exploding reflector model, we truncated the domain
own to x � �600,1600�. The performance of the ABC can be as-
essed by imaging this model in the truncated domain. Since a por-
ion of the truncated surface trace is associated with the portion of

igure 4. Four snapshots of a point-source disturbance propagating
hrough a homogeneous domain �c = 4000 m/s� with the AWWE
ide-angle wave equation: �a� 40 ms, �b� 154 ms, �c� 220 ms,

nd �d� 264 ms. The performance of the proposed ABC is illus-
rated for the AWWE propagator. A three-layer ABC with c1, 2, 3

x

1000, 2800, 6000 m/s is used as the boundary condition for the
eft edge. The boundary condition absorbs all of the incident waves
anging from evanescent modes to the upper part of the wavefront.

igure 5. Synthetic model used for evaluating the proposed ABC in
igration. The domain is assumed to be homogeneous with the
ackground velocity of c = 4000 m/s.
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he reflector that is outside of the truncated domain, it should have
ome artifacts in the image if the left edge of the domain is mod-
led as a rigid boundary. Such artifacts come from the migration of
he surface trace toward the outside of the truncated domain, which
onsequently hits the left boundary in the migration process and
enerates reflections that then appear as artifacts. Figure 6 shows
he migration in the truncated domain. As expected, when no ABC
s used on the left boundary, an artifact appears on the top of the
mage of the original reflector, as shown in Figure 6a. However,
his artifact is completely eliminated in Figure 6b where a three-
ayer ABC is used with c1, 2, 3

x = 1000, 2800, 6000 m/s, which
hows the effectiveness of the proposed ABC in migration prob-
ems.

CONCLUSIONS

We have developed a highly accurate series of ABCs for model-
ng and migration with high-order OWWEs. These ABCs apply to
ny OWWE that fits into the framework of equation 1, such as the
5° wave equation, the high-order paraxial wave equation, or the
calar AWWE equations. The accuracy of the proposed boundary
ondition can be controlled by the number of absorbing elements
nd their phase velocity parameters. By distributing the parameters
ver the proper range of phase velocities, effective absorption of
he entire wavefront can be achieved with very few layers. We
ave designed a special finite-difference scheme for time-domain

igure 6. Migration in the truncated domain x = �600,1600� using
a� a rigid boundary on the left edge and �b� a three-layer ABC on
he left edge. The rigid boundary results in artifacts, which are
learly eliminated when the three-layer ABC is used.
xplicit implementation of downward continuation with ABCs.
umerical examples clearly illustrate that reflection/artifact-free

esults can be obtained for both forward and migration problems
ith just three absorbing elements.
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APPENDIX A

AWWE FORMULATION

The general framework of the AWWE equations is introduced in
uddati �2006�, and the acoustic version is implemented in the

ontext of migration in Guddati and Heidari �2005�. The upward-
ropagating AWWE is formulated as the following system of equa-
ions:

d
�2u

�z�t
−

1

c
��1 + �2�

�2u

�t2 + c�2
�2u

�x2 = 0 , �A-1�

here

�1 =
c

2�
1

c1

− 1

c1

− 1

c1

1

c1
+

1

c2

− 1

c2

− 1

c2
� �

�

1

cn−2
+

1

cn−1

− 1

cn−1

− 1

cn−1

1

cn−1
+

1

cn

�
n�n

,

�A-2�

�2 =
1

2c�
c1 c1

c1 c1 + c2 c2

c2 � �

� cn−2 + cn−1 cn−1

cn−1 cn−1 + cn

�
n�n

,

�A-3�

nd

d = �1 0 ¯ 0�n�1
T . �A-4�

here, n is the order of the AWWE and the parameters c1,. . .,n are
he phase velocities that can be used to control the accuracy of the
WWE. For details on the effects of n and ci on AWWE accuracy,

ee Guddati and Heidari �2005�.



e
f

f
�

a
l

a

B
p

T
t
s

c
w

a

F
t
b

O
g

w

Absorbing boundary conditions S95

D
ow

nl
oa

de
d 

03
/0

2/
16

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

APPENDIX B

COEFFICIENT MATRICES FOR BAMBERGER
ET AL.’S HIGH-ORDER PARAXIAL EQUATION

The original form of the high-order, one-way �paraxial� wave
quation, introduced by Bamberger et al. �1988�, when modified
or upward propagation is given by

� �2u

�t�z
−

1

c

�2u

�t2 + �c
�2u

�x2 +
1

c


k=1

n−1

�k
�2
k

�t2 = 0,

−
1

c

�2
k

�t2 + c�k
2�2
k

�x2 + c
�2u

�x2 = 0 � �B-1�

or the �n − 1�th order of approximation �see Bamberger et al.
1988� for the definition of parameters�. Defining u as

u = �u 
1 
2 ¯ 
n−1�T �B-2�

nd writing equation B-1 in the form of equation 1 yields the fol-
owing coefficient matrices:

C1 = �
1 0 ¯ 0

0 0 ]

] �

0 ¯ 0
� , �B-3�

C2 = −
1

c�
1 − �1 − �2 ¯ − �n−1

1

1

�

1
� , �B-4�

nd

C3 = c�
�

1 �1
2

] �2
2

1 �

1 �n−1
2
� . �B-5�

APPENDIX C

CALCULATION OF THE STIFFNESS MATRICES
FOR THE INTERIOR AND THE EXTERIOR

We start with equation 11

Ŝq = ��xq+1

NT��kC1 − �2C2�Nqdx�

xq

q

− ��
xq

xq+1 �Nq
T

�x
C3

�Nq

�x
dx� . �C-1�

ecause the coefficient matrices C1,2,3 are independent of x, ex-
ression C-1 reduces to

Ŝq = ��kC1 − �2C2� � ��
xq

xq+1

Nq
TNqdx�

− C3 � ��
xq

xq+1 �Nq
T

�x

�Nq

�x
dx� . �C-2�

he � operator is defined as follows: An�n � Bm�m results in a ma-
rix Cmn�mn which is obtained by replacing each element of B by a
ubmatrix bijA. Assuming that B is a 2 � 2 matrix, we can write

An�n � B2�2 = �b11A b12A

b21A b22A
	

2n�2n
. �C-3�

For the interior elements, the integrals in equation C-2 should be
alculated using nodal-point integration �the trapezoidal rule�,
hich results in

�
xq

xq+1

Nq
TNqdx =

Lq

2 ��Nq
TNq�xq+1

+ �Nq
TNq�xq�

=
Lq

2
�+ 1 0

0 + 1
	 �C-4�

nd, similarly,

�
xq

xq+1 �Nq
T

�x

�Nq

�x
dx =

1

Lq
�+ 1 − 1

− 1 + 1
	 . �C-5�

or simplicity, assume a uniform grid in the x-direction for the in-
erior, i.e., Lq = �x. Hence, the stiffness for the interior elements
ecomes

Ŝq =
�x

2
��kC1 − �2C2� � �+ 1 0

0 + 1
	

−
1

�x
C3 � �+ 1 − 1

− 1 + 1
	, 0 � q � Nx. �C-6�

n the other hand, for the exterior elements, we use midpoint inte-
ration, i.e.,

�
a

b

f�x�dx = �b − a�f�b + a

2
� , �C-7�

hich results in
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�
xq

xq+1

Nq
TNqdx =

Lq
e

4
�+ 1 + 1

+ 1 + 1
	 �C-8�

nd

�
xq

xq+1 �Nq
T

�x

�Nq

�x
dx =

1

Lq
e�+ 1 − 1

− 1 + 1
	 , �C-9�

here Lq
e is the length of the exterior element q. Substituting equa-

ions C-8 and C-9 into equation C-2 results in the following stiff-
ess matrix for the exterior elements:

Ŝq =
Lq

e

4
��kC1 − �2C2� � �+ 1 + 1

+ 1 + 1
	

−
1

Lq
e C3 � �+ 1 − 1

− 1 + 1
	, q � 0 or q � Nx.

�C-10�

APPENDIX D

THE FINITE-DIFFERENCE SCHEME

In the case of the forward problem, U j+1/2
k+1 should be obtained

rom the rest of the points in the stencil. Eliminating U j in equation
9, based on equation 46, and rearranging for U j+1/2

k+1 results in

U
j+ 1

2

k+1
= B2�U j+1

k+1 + U j+1
k−1 − U

j+ 1
2

k−1
� + B3U

j+ 1
2

k−1

+ B4�U j+1
k+1 − U j+1

k−1 + U
j+ 1

2

k−1
� + B5�− 2U

j+ 1
2

k
+ U

j+ 1
2

k−1
�

+ B6�U
j+ 1

2

k
− U

j+ 1
2

�k
� , �D-1�

here

B1 = �−
1

�z
�C1 � �2� +

1

2�t
�C2 � �2 − C3 � �1�

−
�x

�z�t
�C1 � �3� +

�x

�t2 �C2 � �3�	−1

,

B2 = −
1

�z
B1�C1 � �2� ,

B3 =
1

2�t
B1�C2 � �2 − C3 � �1� ,

B4 = −
�x

�z�t
B1�C1 � �3�, B5 = −

�x

�t2B1�C2 � �3� ,
B6 =
2

�x
B1�C3 � �3� . �D-2�

ote that � is set to 1. For the migration problem �� = −1�, the ex-
ression should be solved for U

j+
1
2

k−1
. Here, U j+1 is eliminated and

quation 49 is rearranged to yield

U
j+ 1

2

k−1
= B2�− U

j+ 1
2

k+1
+ U j

k+1 + U j
k−1� + B3U

j+ 1
2

k+1

+ B4�U
j+ 1

2

k+1
− U j

k+1 + U j
k−1� + B5�U

j+ 1
2

k+1
− 2U

j+ 1
2

k �

+ B6�U
j+ 1

2

k
− U

j+ 1
2

�k
� , �D-3�

here the coefficient matrices remain unchanged from equation
-2. It is possible to write a single expression for both the forward

quation D-1 and migration equation D-3 solutions using a param-
ter �, defined as

� = 1
2 �1 + �� . �D-4�

he general expression, by combining equations D-1 and D-3, can
e written as

U
j+ 1

2

k+�
= B2�− U

j+ 1
2

k−�
+ U j+�

k+1 + U j+�
k−1� + B3U

j+ 1
2

k−�
+ B4�U

j+ 1
2

k−�

+ �U j+�
k+1 − �U j+�

k−1� + B5�− 2U
j+ 1

2

k
+ U

j+ 1
2

k−1
�

+ B6�U
j+ 1

2

k
− U

j+ 1
2

�k
� . �D-5�

ote that the interior points are completely uncoupled and solved
xplicitly, while the boundary points are coupled with their associ-
ted auxiliary variables. This can be seen by observing that B1 is an
nverse of a nondiagonal matrix �see equation D-2�. However,
ince there are only a few auxiliary variables used at each bound-
ry point, the size of B1 is small �usually less than five�. Hence, the
dded computational effort is negligible.
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