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Automatic inversion of magnetic anomalies from two height levels
using finite-difference similarity transforms
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ABSTRACT

We solve the inverse magnetic problem for the depth and
shape of simple sources in the presence of aregional field and tru-
ly random noise. We do not use noise-generating derivatives nor
are we forced to solve complex systems of equations. Our inverse
operator applies a new geometric type of field transform, the fi-
nite-difference similarity transform (FDST), that is based on a
postulated degree of homogeneity in the potential field. Magnetic
data from two height levels are required for the calculation of the
FDSTs. The FDSTs are generated for an assumed central point of
similarity (CPS) and a trial value (index) for the coefficient of
similarity, and they are sensitive to the distance between the
source and the CPS and to the agreement between the index and
the degree of homogeneity in the data. When the CPS converges
to a singular point in the potential field, say, the center or the top

edge of the source, and when the trial index converges on the de-
gree of homogeneity present in the data, the FDST drops in am-
plitude and its plot approaches a straight line, thereby signaling
an interpretation for the source position and type. All inverse op-
erations are fully automated and applicable to the interpretation
of large data sets. The necessary data for the second level can be
obtained by actual measurement or, alternatively, by deriving
them from the data at the first level by an upward, analytical con-
tinuation. Upward continuation suppresses high-wavenumber
random noise and thus contributes to a stable inversion. Model
tests show that a suitable height for the second level is less than
the expected depth of the source below the first level, while a suit-
able window length is about twice that depth. Examples show
that the proposed inversion is effective on both model and field
data. Note that this approach can be extended to the inversion of
any component or derivative of the 2D or 3D magnetic or gravity
fields from simple sources.

INTRODUCTION

Modern magnetic and gravity data acquisition produces large data
sets that require efficient, automatic inversion methods. This auto-
mation is achieved through procedures that use minimum additional
information, simplified interpretation models with one or two singu-
lar points, and unified algorithms for inversion of different model
types. In this respect, a useful common property of potential fields
from simple sources is their homogeneity, which serves as a theoreti-
cal basis for many known automatic or semiautomatic inversion
techniques that follow the principal articles of Thompson (1982) and
Reid etal. (1990). The method proposed here is also based on the ho-
mogeneity property of magnetic anomalies.

The homogeneity of a function is expressed in two forms. First, it
is expressed through the principal definition of a homogeneous func-
tion by the equation (Courant and John, 1965)

flvy, vy, oty L) =0 (v, L Y L ), (1)

where v = (v, vy, ..., v, ..., v;) is the set of variables with respect
to which the function f shows the homogeneity, 7 is a coefficient, and
n is the degree of homogeneity. Differentiate equation 1 with respect
to t and set 7 equal to unity to obtain Euler’s partial differential equa-
tion for homogeneous functions,
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If a function satisfies Euler’s equation 2, it also satisfies equation 1,
and vice versa (Courant and John, 1965).

The property of homogeneity finds applications in the inverse
magnetic and gravity problems in two principal approaches, corre-
sponding respectively to equations 1 and 2. The first, more popular
of the two is the approach based on Euler’s differential equation 2.
Thompson (1982) proposed an automated method to estimate the
source’s depth, type, and constant background as a 2D linear inverse
problem for magnetic models with one singular point. The source
type is determined by the degree of homogeneity n, which taken with
anegative sign gives the structural index N = —n. This method was
extended for 3D problems by Reid et al. (1990) and described as Eu-
ler deconvolution. In the traditional implementation of Euler decon-
volution, the structural index takes on a series of prescribed values.
The estimated depth is the solution to an overdetermined system of
linear equations 2 that displays minimal dispersion. Methods for ob-
taining a solution without prescribing a structural index have also
been proposed (Slack etal., 1967; Stavrev, 1997; Hsu, 2002; Keating
and Pilkington, 2004; Gerovska et al., 2005). The instability of the
solutions for the depth and structural index remains a major problem
of Euler deconvolution (Reid, 1995; Ravat, 1996). This is an ill-
posed problem (Barbosa et al., 1999) like most of the inverse poten-
tial-field problems. The main reason for the instability is the high
correlation coefficient between the anomalies AT and their vertical
derivative dAT/dz. This causes coupling effects between N and z, as
unknowns associated with the coefficients AT and JAT/dz, respec-
tively, in the system of Euler’s equations 2. The problem can be
solved by employing additional information and using regulariza-
tion operators (Tikhonov and Arsenin, 1977) or applying other strat-
egies based on clustering of large sets of unstable solutions (Gerovs-
ka and Aradzo-Bravo, 2003; Mikhailov et al., 2003; Keating and
Pilkington, 2004).

The second, less popular approach is based on the direct applica-
tion of equation 1, and we may mention it for the solutions obtained
by wavelet transforms (Moreau et al., 1997) and by similarity trans-
forms (Stavrev, 1997). The use of homogeneity expressed by equa-
tion 1 does not involve differential equations in the inverse proce-
dures. The inversion technique proposed here also uses equation 1.
The method is based on a comparison between the similarly trans-
formed field and the original field given on at least two levels of mea-
sured or upward continued field. The numerical result from their
subtraction is the finite-difference similarity transform (FDST). The
horizontal location, depth, and type of the source are estimated with-
out using derivatives and systems of equations. The method has in-
herent possibilities for the elimination of constant or linear back-
ground and the suppression of random noise. An implementation of
this method in a fully automatic way is described later. Several syn-
thetic examples and two field applications illustrate the principal
concept and efficiency of the proposed automatic inverse
procedures.

THEORETICAL CONSIDERATIONS
Homogeneity of simple interpretation models

For the elementary interpretation models with one singular point
M (x0,y0,20), equations 1 and 2 take on their simplest form. A suitable
example to illustrate this form is the 2D model of a thin magnetic
dike with its top at a point M (x,,z,) and infinite depth extent. The an-
alytical expression of the total magnetic anomaly (TMA) AT caused
by such a source (e.g., Telford et al., 1990) is

s(xg—x) + l(zg— 2)

AT = 2JW 3
(xo — %)% + (z9 — 2)?

A3)

where (z — z) is the depth to the dike top M when the z-axis is posi-
tive vertically downward; w<<(z, — z) is the thin dike width; [
= cos O sin [y — sin O cos I, cos(D, — Dy); s = sin @ sin I, — cos
Ocos I cos(D, — Dy); 0 = a — ¢is the difference between the dip
angle « of the dike and the dip angle ¢ of the vector J of the effective
magnetization; D, is the geographic azimuth of the 2D magnetic
profile; and /, and D, are the inclination and declination of the geo-
magnetic field, respectively. The well-known result for the homoge-
neity of expression 3isn = —1, which gives N = 1 (e.g., Thompson,
1982). The same result can be obtained by using equation 1 if the dis-
tance or all coordinates are multiplied by the coefficient #:

s(txy — 1x) + Uizg — 12)
(txy — 1) + (12 — 12)*

= ' AT(x,2,x0,20) - (4)

AT(tx,1z,tx0,120) = 2Jw

Clearly, equation 4 shows the transformed field AT(zx,z, £x,120)
is defined at points with coordinates (#x,7z) and has as its equivalent
source a dike with a top at a point with coordinates (#xo,7z,). The
quantities J,w, @, a, ¢,D,,1,, and D, remain unchanged. This analy-
sis of equation 4 shows that equation 1 for potential fields may have a
completely determined physical sense. The geometric and physical
interpretation of equation 1 for potential fields is the theoretical basis
of some inversion techniques described below.

An expression that follows directly from equation 1 is (Courant
and John, 1965)

V| V) V;
7
fv) = vif,(—,—, ,4), (5)
Vi v Vi
where an element v; from the set v is chosen as a denominator.
For example, the analytical expression 3 allows the following
representation:

20— 2 3 1 sqg+1

zo—zq2+l

AT = 2Jw(zg - 2)”"
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(6)
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where the chosen denominator (z, — z) appears with an exponent
equal to —1, thus showing a degree of homogeneity n = —1, accord-
ing to equation 5. The dimensionless argument in the right side of
equation 6 is the ratio ¢ = (xo — x)/(zp — z). As ¢ has a constant val-
ue for different observation levels z = z,, i.e., if ¢ = (xo — x;)/(z0o
— z;) = const, it defines a straight line x; = xo — ¢(zo — z;) through
the dike top M (xy,z0) with an angular coefficient g. The product (z,
— z;)"AT(q) remains a constant along this line. If at least two such
lines can be drawn, then their intersection indicates the top M (x,z,)
of the dike. The other types of singular points also allow such local-
ization.

The above-mentioned property has found applications in the
methods based on wavelet transforms (Moreau et al., 1997). Analyti-
cal continuations of the anomalous field to a series of heights z;
above the observation level may be calculated for the purpose. In
terms of the wavelet method, the height of the analytical continua-
tion is the dilation parameter in the dilation operator of the continu-
ous wavelet transform. The latter is a convolution of the dilation op-
erator and the potential field, according to Poison’s integral. In a 2D
case, the dilation operator in the integral expression has the form
(1/m[1/(z' = 2)][1/(g> + 1)], where (x’,z’) are coordinates of
points at the original field observation level, (x,z) are the coordinates
of the points where the wavelet transform is calculated, (z' — z) = a
is the dilation parameter, and ¢ = (x’ — x)/(z’ — z) is a dimension-
less quantity that determines the analyzing wavelet o = (1/)
[1/(¢? + 1)]. This structure of the dilation operator shows a treat-
ment of Poison’s semigroup kernel as a homogeneous function, rep-
resented in form 5.

We should note that expression 6 of the AT anomaly for a dike has
a similar structure. Therefore, the approach using equation 5, defini-
tion 1, in the wavelet inverse method has the property of homogene-
ity as its natural basis. This approach was extended for the case of
anomalous fields with two or more singular points (Martelet et al.,
2001; Sailhac and Gibert, 2003). An alternative technique was pro-
posed by Vallée et al. (2004) using wavelet transforms of up to the
second order.

The problem with multipolar models is the deviation of the lines
of maxima of wavelet transforms from the strongly straight lines
near the singular points. This problem has been studied analytically
and numerically by Dimitrov and Stavrev (1968), although not in
terms of wavelet transforms at that time, but in terms of deviations,
or systematic errors, from the straight lines depending on the level of
the analytical continuation and the ratio ¢. Optimal continuation lev-
els and ratios have been found for the magnetic models of a thin and a
thick dike and for the gravity and magnetic models of a thin 2D hori-
zontal plate of finite width.

Similarity transforms

The similarity transform used in the affine geometry (e.g., Gellert
etal., 1979) can be applied to magnetic fields described as space phe-
nomena. This transform is a geometric transform with respect to a
CPS chosen at a point C(a,b,c) in a Cartesian coordinate system.
For a given coefficient of similarity > 0 and a parameter u, the simi-
larity transform AT” of a TMA AT has the expression

AT (x",y",2") = 1"AT(x,y,2), (7)

where
X'=a+tlx-a), y=b+tly-b), z =c+1tz-c).
(8)

Figure 1 illustrates a simple example for a similarity transform
(ST) of a TMA AT caused by a 2D line of dipoles. The observation
points P(x,0) are located along the horizontal x-axis of a Cartesian
coordinate system with the z-axis positive downward. The CPS co-
incides with the coordinate system origin, i.e., a = 0 and ¢ = 0. In
this case, the similar images P*(x",z") of the points P(x,0) are dis-
tributed along the same x-axis because, according to equation 8, x”
=tx,7" = 1z = 0. The three curves AT (Figure la) correspond to
three different values of the parameter u for the same coefficient ¢
= 1.5. The calculated STs, AT, can be physically interpreted as
anomalies of the geometric similarity transformed source B” of the
original source B (Figure 1b), with a ratio between their magnetic
moments per unit length p" and ., respectively, depending on the
parameter u in equation 7. This physical interpretation follows the
homogeneity of equation 1 and the analysis of equation 4.

For a simple magnetic model with one singular point M (x,,z,), the
homogeneity property of the TMA is expressed by

AT(.X*;Z*,X:;,Z:;) = tnAT()C,Z,Xo,Zo), (9)

where n is the degree of homogeneity and 7 is a coefficient; all (*) co-
ordinates are determined according to equations 8. Equation 9 ex-
presses a full geometric similarity transform of observation points
and sources. The physical parameter p of the source B does not ap-
pear as a variable in expression 9. This means that it preserves its val-
ue and direction as a magnetic parameter of the geometrically trans-
formed source B, i.e., p” = p. The latter equality allows definition 7
for a parameter u = n to be interpreted in the same way. Here, we
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Figure 1. (a) Two-dimensional STs of a TMA AT caused by a line of
dipoles or an equivalent horizontal cylinder; u is the parameter of
STs at a coefficient of similarity = 1.5; (b) vertical cross section of
the 2D original source B at point M and its similar image B" at point
M. The CPS is chosen at the origin of the coordinate system; P" is
the similar image of one original observation point P;x and u” are
the physical parameters magnetic moment per unit length for the
original and similarly transformed dipole line, respectively.
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treat the parameter « as an unknown quantity that differs from the de-
gree of homogeneity n by 6 = u — n. Then, according to equations
7-9,ina 2D case we have

AT (X2 x0,20) = 1°PAT(x2 %0, 2¢). (10)

Hence, the difference § affects the amplitude of ST, AT", with the
multiplier #°. This effect is equivalent to a change of the physical pa-
rameter p” with respect to the original parameter p, so that

p =1tp=1~""p. (11)

Thus, the choice of the parameter u controls the transfer of physical
parameters from B to the similar virtual source B". The physical pa-
rameter p for the model of a line of dipoles is the magnetic moment
per unit length: For the dike model, p is the product of the magnetiza-
tion and the width of the thin dike; for the contact model, p is the
magnetization vector. In the rest of this article, instead of the homo-
geneity degree n, we will use the more popular structural index N
= —n (Thompson, 1982). This index is N = 2 for the model of a line
of dipoles (and the equivalent cylinder), N = 1 for the model of a
semiinfinite sheet (and the equivalent thin dike, sill, and small step),
and N = 0 for the contact model, e.g., (Reid et al., 1990).

Finite-difference similarity transforms

The FDST is defined as the difference D between the similarity
transform AT"(P*) from equation 7 and the original field AT(P"),
measured or analytically continued, at the same points P*(x",z"):

D(x",2") = AT"(x",2",xp,29) — AT(x", 2", x0,20).  (12)

In light of the physical meaning of the STs, the difference D(P") can
be considered as a difference between the anomalous fields of two
sources. These are the similar virtual source B* with a physical pa-
rameter p* = *Vp (see equation 11 for n = —N), and the original
source B with the physical parameter p. Another equivalent interpre-
tation of the FDST as a sum of two fields is possible if we refer the
minus sign in equation 12 to the physical parameter of the original
source. Figure 2 illustrates the constituent elements of the FDST for
the model of a thin dike with infinite depth extent. The model anoma-
ly AT is calculated at points P(x,z) at a level z = const (Figure 2b).
The CPS at point C(a,c) is chosen near the original source B, whose
top is at point M(xy,zo) (Figure 2b). The similarly transformed
anomaly AT" (Figure 2a) is calculated atalevel z* = const with a co-
efficient 7 = (¢ = z")/(c = z). Its source is the similar body B” of the
dike with a top at the point M*(x;,z5), given by equations 8. The pa-
rameter u = —1 corresponds to the structural index N = 1 of the dike
model. The minimum and the maximum of the curve D so obtained

(Figure 2a) reflect the positions of the sources,

a) ¢) original and virtual, respectively.
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' B hJ f& I* '3 Jr=J cal arguments, this decreases the difference D be-
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Figure 2. (a) Two-dimensional TMAs AT(x,z) atalevel zand AT(x,z") atahigherlevel z*
caused by a thin dike with infinite depth extent; AT"(x",z") is the similarity transform of
AT(x,z) to the level z*; D is the resultant curve of the FDST between AT (x",z") and
AT(x",7"). The parameter u = —1 corresponds to the structural index N = 1 of the dike
model, and 7 = 1.6667 corresponds to ¢ = 0.75. (b) Vertical cross section of the 2D thin
dike B with top at point M and the similar dike B* with top at point M~. The chosen CPS at
point C(a,c) with ¢ >z generates similar images of observation points P at points P* at
level z; J and J* are the magnetization vectors of the original B and similar B" dikes, re-
spectively. (c) The TMAs AT(x,z) and AT(x,z"), given in (a), and the similar transform
AT (x",7") = AT(x",7") that yields an FDST curve D(x",z") = 0 because of the special
position of the CPS shown in (d). (d) Vertical cross section of the original model source B
and its similar image B* = B at M" = M when CPS coincides with the top point M of the

original source.

CPS C(a,c) coincides with the point M(x,zo),
then according to equation 13, R = 0. In this case,
the two sources coincide geometrically. If the pa-
rameter u is selected so as to make their physical
parameters p* = p, then the difference of their
anomalous fields is D = 0. This dependence of
the FDST amplitudes on the CPS position is illus-
trated in Figures 2 and 3a for the model of a dike
with infinite depth extent and in Figure 3b for the
model of a horizontal cylinder (line of dipoles).
Figure 2b and d shows the dike source geometry
and its similar images at two different CPS posi-
tions, while Figure 2a and c represents the FDST
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response for u = —1, i.e., for N = 1, which is the
correct value for the structural index of the dike
model. Figure 3a shows the monotonic changes
of FDST amplitudes when the CPS approaches
the dike top along a vertical line passing through
it. Figure 3b illustrates the monotonic change in
the FDST amplitudes for the line-of-dipoles mod-
el when the CPS approaches the source point M,
following the horizontal line through this point.

Effect of finite source size

In real inverse problems, the sources have fi-
nite dimensions that are reflected in the FDST
curves. When the depth extent of a dike or a con-
tact is large but finite, the FDST values do not be-
come zero but do present a straight-line profile
over the source when the CPS coincides with the
shallow singular point of the source field. Figure
4 shows this effect on the FDST for the model of a
thin dike with large depth extent. The same effect
of linearization of the FDST generated from the
CPS coinciding with the upper edge point of a
contact model is shown in Figure 5. As can be
seen from Figures 4d and 5d, the equivalent
source of the FDST is the part of the similar
source body B” that does not coincide with the
original body B. For the common part of the two
bodies B and B", the effective magnetization is
J.=J + (=J) = 0. Where B" does not coincide
withB,J, = J* — 0 = J7, thus creating an anoma-
lous effect. This part of B* is below the lower
source point M, so it has a significant depth and
its equivalent field is weak and smooth, approxi-
mating a straight line along the observation pro-
file (Figures 4c and 5c¢).

Effect of a linear background

The similarity transform of a linear function
D=+ Bx+ yzis @ =P, which is a linear
function of (x,z") following equations 8. If the
magnetic profile F = AT + & contains a linear
background @, then at CPS, coinciding with the
characteristic point of the source, the FDST of AT
vanishes. Thus, the result for the FDST of data F
contains only the linear effect because of the
background . Figure 6 shows the calculated
FDST curves for the model of a thin dike in the
presence of a linear background.

Suppression of high-wavenumber noise

The FDST may be generated as the difference
between the similarity transform of the data and
the upward continuation of the same data. Up-
ward continuation applies a low-pass filter to both
the signal and the noise. The similarity transform
7 does not, so some portion of the high-spatial-
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Figure 3. FDST curves D within one window for the model of (a) a dike with infinite
depth extent (see Figure 2) for different CPS C(a = 5 km, ¢ =[0.2;0.6;1;1.4;1.8] km)
along a vertical line through the characteristic point of the source with coordinates (x,
=5 km, zo = 1 km). The 41-point window, point spacing dx = 0.1 km, is centered over
the dike characteristic point; (b) a horizontal cylinder (see Figure 1) with a characteristic

point at (x, =5 km,z, = 2 km) for different CPS C(a = [4.2;4.6;5;5.4;5.8] km, ¢
= 2 km) along a horizontal line through the characteristic point of the source. The 81-
point window with dx = 0.1 km is centered over the respective CPS.
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Figure 4. (a) Two-dimensional TMAs AT(x,z) atalevel zand AT(x,z") atahigherlevel z*
caused by a thin dike with finite depth extent; AT*(x",z") is the similarity transform of
AT(x,z) to the level z°; D is the resultant curve of the FDST between AT"(x",z") and
AT(x",z"). The parameter u = —1 corresponds to the structural index N = 1 of the dike
model, 7 = 1.4286. (b) Vertical cross section of the 2D thin dike B with top at point M, and
lower edge at point M,. The CPS at point C generates the similarimage B” of the dike with
top at point M and lower edge at point M5, and similar images of observation points P at
points P* atlevel z*; J and J* are the magnetization vectors of the original B and similar B*
dikes, respectively. (¢) The TMAs AT(x,z) and AT(x",z") given in (a), and the similar
transform AT"(x",z") from CPS coinciding with the upper edge point M, of the dike. The
FDST curve D(x",z") is nearly a straight line and approximates the anomaly caused by the
deeper dike with top at point M, shown in (d). (d) Vertical cross section of the model
source B and its similar image B* = B when CPS coincides with the top point M, of the
original source. The residual dike between edge points M, and M5 is the equivalent
source of the FDST.
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frequency noise remains in the difference. It may be reduced if an in-
termediate upward (h;<<h) continuation is used as input to the simi-
larity transform.

FDST dependence on the choice of parameter u

The coincidence of a CPS with the characteristic source point is a
necessary but insufficient condition for the FDST to approach a
straight line. The other necessary condition is the equality of the
physical parameters of the original body and the respective similar
body. It depends on whether the choice of the parameter u of the ST
(equation 7) is in agreement with the structural index N of the source.
The FDST response to an incorrectly assigned N is illustrated in Fig-
ure 7 for a dike model with large depth extent. These synthetic tests
show that the FDST cannot be reduced to a linear function for a
wrong structural index.

From the analytical considerations and model examples above,
we can conclude that the FDST is also sensitive to the position of its

Stavrevetal.

CPS relative to the source position. The coincidence of a CPS with
the characteristic point of a point source is indicated by the FDST ap-
proaching zero or a straight line only when the chosen parameter u
corresponds to the source type. Therefore, we propose an inversion
technique whose main procedure is the search for a CPS position and
for a parameter u = —N that produce an FDST profile that is nearly a
straight line.

METHOD

The setting for the implementation of the proposed inversion in
the 2D case is shown in Figure 8. The TMA AT(x,z) is given at a lev-
el z, and its analytical continuation AT(x,z") is calculated at the level
7" =z — h, where h is the continuation height. The similarity trans-
forms AT"(x",z") within the frame of a given window W™ are generat-
ed from CPS C(a,c), distributed along the vertical line through the
window’s midpoint. The CPS is like a set of probe points, imitating a
vertical magnetic sounding in a search in depth for a straight-line
FDST. The ST AT" at the regular grid point P is equal to the interpo-
lated AT value at the intermediate point P(x,z) multiplied by #, ac-
cording to equation 7. In this case, the coefficient of similarity is

s

cpP c—-7
t - — — s

a C —

) 400 )400 Q c z

i) i ATE) - \AQT*(GZ;;)) (14)

z Zz w0 T~ where CP* and CP are the distances between the

é § 100 - CPS C and the points P* and P, respectively. The

; ; N g parameter u is prescribed a value between 0 and

8 El ' N —2 (not necessarily an integer), corresponding to

%0 %0 -100 N .

g _ _ g N R a structural index between O and 2. Thus, the
—200 Mee” A/Y’(z*) —200 \\LZATI’(Z*) FDST curve is calculated at all regular points P*
~300, v - > 5 -300, oS - " 5 of the window W, according to equation 12. Each

" Distance x (km) " Distance x (km) FDST curve D(x%,z"), generated from a given

b) d) CPS C(a,c), is characterized by its proximity to a

RO 0.5 L 15 2 R straight line within the frame of the window W".
M 1#; M This property is estimated by the modulus of the
1 // residual standard deviation RSD* of D(x",z"
o) / = about 1ts linear regression, 1.€.,
E E bout its li gression, i.e., by
/
w2 VA =
= 1’ M * = 12
§3 02 B g . ZI(D(xi,)_rO_rxxi,)z
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7 m-—2
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Figure 5. (a) 2D TMAs AT(x,z) ata level z and AT(x,z") at a higher level z* caused by a
contact with finite depth extent; AT*(x",z") is the similarity transform of AT(x,z) to the
level z°; D(x",z") is the resultant curve of FDST between AT (x",z") and AT(x",z"). The
parameter u = 0 corresponds to structural index N = 0 of contact model, t = 1.3846. (b)
Vertical cross-section of the 2D thick contact B with upper edge at point M, and lower
edge at point M,. The CPS at point C generates the similar image B of the contact with

where m is the number of points within the win-
dow, W', x! = (x; — x]) is the relative abscissa of
points P* with respect to the abscissa x. of the
midpoint of the window W*, and r,, and r, are the
regression coefficients

upper edge at point M7 and lower edge at point M5, and similar images of observation

points P at points P* at level z*; J and J* are the magnetization vectors of the original B
and similar B* contacts, respectively. (c) The TMAs AT(x,z) and AT(x",z") given in (a),

>, D(x)

rp=—"—"",
and the similar transform AT"(x",z") from CPS coinciding with the upper edge point M, 0 m
of the contact. The FDST curve D(x",z") is nearly a straight line and approximates the m
anomaly caused by the deeper contact with upper edge point M, shown in (d). (d) Vertical E . D(x! — ro)x]
cross-section of the original model source B and its similar image B* = B when CPS coin- Fo=—= . (16)

cides with the upper edge point, M, of the original source. The residual dike between

edge points M, and M5 is the equivalent source of the FDST.

X m "
Ei:l i
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Here, we use a RSD” normalized with the coefficient ¢, and relative
to the RSD of the original data, dimensionless estimator of linearity
|RSD’
IRSD|
-1

O(a,c,u) = (17)

where |RSD] is calculated according to equation 15 for the anomaly
AT(x,z). The relative standard deviation increases Q for the nonin-
formative, near-straight-line parts of the magnetic profile within the
frame of the window W. The denominator (z — 1) increases Q for the
CPS deeper than the characteristic point of the source, where the co-
efficient of similarity ¢ obtains comparatively low values close to
unity (see equation 14) and (¢ — 1) tends to zero. Around and at the
singular point, where |[RSD*|=<|RSD|(z — 1), the estimator Q ob-
tains values less than 1 (see Figures 10~15).

The automated inversion uses sliding overlapping windows along
the data profile. The CPS C(a,c) along the vertical lines related to
each window W create a grid of Q(a,c,u) values in depth. The con-
tours of a plotted grid Q(a,c) for a constant parameter u give visual
information about the depth of the source. The grids Q(a,c,u) are
processed automatically to determine the causative source coordi-
nates and shape. The coordinates (a,,,c,,) and the parameter u,, that
minimize Q,, of the estimator of linearity Q determine the position,
Xo = a,, and zy = ¢,,, of the characteristic point M(x,,z,) and the
shape of source through N = —u,,. For an ideal-model anomaly of a
point source, we have RSDy;, = 0 and Q,, = 0 (see equations 15 and
17). In the presence of random noise, the RSDy,;, approximates the
noise standard deviation, as in this case the useful signal in the trans-
form D is a linear function. Deviations of the data from the ideal in-
terpretation model also cause deviations of Q,, from the ideal zero
value.

An effective implementation of the described method requires the
selection of optimal parameters. As for any inversion technique, reli-
able results can be expected if the regular data grid has a spacing in
the x-direction less than approximately one-third of the depth to the
source and a size at least two to three times the source depth. The hor-
izontal spacing of the assigned CPS grid follows
the data spacing, while the vertical spacing a)

the data spacing is equal to /,/3, then the minimum required number
of points within the window is seven.

The height of the second data level is also a parameter related
mainly to the depth of the source. The synthetic tests show (Figure 9)
that the continuation height should be less than or equal to the ex-
pected source depth because for a height greater than the source
depth, the minima of Q for different parameter values u merge. The
well-known amplification of the interference between close anoma-
lies with the upward analytical continuation dictates the use of low
second data levels. But a height too low reduces the advantage of us-
ing analytical continuations. An acceptable height lies around the
half-depth of the source.

The presence of random noise in the data also hinders the shape
inversion. An effective suppression of the high wavenumber noise
can be achieved by using intermediate levels of analytical continua-

80

-60%

5 10 15 20
Distance x (window points)

Figure 6. FDST curves D within one window for a dike model with
large depth extent with coordinates of the top (x, =4 km, z,
= 0.5 km) (see Figure 4) with an added linear background @ = 20
+ 5x for different CPS C(a,c) = [(3.6,0.5),(4,0.5),(4,0.9),(4.4,
0.5),(4,0.1)] km. The 21-point window, point spacing dx = 0.1 km,
is centered over the respective CPS.

should be less than this spacing for a more de-
tailed depth determination. The vertical size of 50
the CPS grid has to be sufficiently large so that it

can include the characteristic source points. The 0
choice of u corresponds to a choice of the struc-
tural index N. It can be taken as an integer (0, -1,
and —2) or as a series of real numbers between 0
and —2 in the 2D inversions.

The window length w is a parameter whose -100
choice depends on the source depth /4, and the
number of profile data points. The tests carried
out for the dependence of w on the depth for dif-

FDST D (nT)

-150

a=4,¢=0.5)

(@=4,c=09)

0 \\9_6*&\\?;2
-50 (@a=44,c=05)

FDST D (nT)
n
<

(a=4,c=01

ferent parameter values u for the model of a thin 5
dike are represented in Table 1. For the true value
of (—u) = 1, the minima Q,, obtain their lowest
values, while for the other two values of u they are
two orders higher. The ratio between Q,, for dif-
ferent parameters u shows the highest value for
o = 2h,. For this relative window length, the con-
fidence in the determined source type is higher. If

Distance x (window points)

10 15 20 5 10 15 20
Distance x (window points)

Figure 7. FDST curves D for a dike model with large depth extent (see Figure 4) with
coordinates of the top (xo =4 km, z, = 0.5 km) assuming wrong structural indices
(@) N=2(u=-2) and (b) N=0(u=0) for different CPS C(a,c)=[(3.6,0.5),
(4,0.5),(4,0.9),(4.4,0.5),(4,0.1)] km. The 21-point window, point spacing dx =
0.1 km, is centered above the respective CPS.
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tion. Results from model tests for different signal-to-noise ratio
equal to o,/0,, where o, and o, are the standard deviations of the
data and the pseudorandom Gaussian noise, respectively, are pre-

sented in Table 2. For the true value of the parameter # = — 1, the im-
W*
----- {-- R R
\\\P*\\\ *=z-h /// X
N \ ; //
..... 1-- \\R‘* . ;- I -
x
\\ \\ // W
N ,
\\\\\\ /
\\\ //
CXz=c
z

Figure 8. Similarity transformation of the data within the window W
at level z to the analytical continuation level at z* = z — h within the
window W from a probe point C atadepth z = c.

Table 1. Minima Q,, of the linearity estimator Q for differ-
ent relative window lengths w, and parameter values (—u)
= N(structural index) for the model of a thin dike (N=1)
at a depth h.

0,(N=2)
0,(N=1)

0,(N=0)

0N=0) 5 N =T)

o  0,N=1) 0,(N=2)

0.5h,  0.003 0.050 16.667 0.062 20.667
1h; 0.003 0.070 23.333 0.086 28.667
2h, 0.003 0.075 25.000 0.139 46.333
4h, 0.005 0.111 22.200 0.142 28.400
6h; 0.008 0.147 18.375 0.152 19.000

0.18 1 T T T T T 4

006} N N 1
0,04 N Tl

0.021 ~ o

0 . h T T T T n
02505075 1 12515175 2

Wh,

Figure 9. Q,, versus the ratio h/h, (height of the analytical continua-
tion/depth of the source) for the model of a thin dike (see Figure 11)
for structural indices N = 0,1,2. Window length w = 17 points.

provement of the inversion results with the increase of the intermedi-
ate heights is a well-outlined tendency even for the very low value of
SNR 10 (zero mean and o, = 0.73 nT, 3% of the anomaly ampli-
tude, Gaussian noise). Absolutely confident results for the structural
index are obtained for signal-to-noise ratios as low as 30 (o,
= 0.24 nT, 1% of the anomaly amplitude) for the intermediate con-
tinuation level z; = 3 km. The accuracy of the estimations for the
horizontal and the vertical coordinates of the singular point is almost
the same.

The inverse operator is sensitive to the magnetic profile curvature.
Therefore, for a local magnetic anomaly, the resultant contour map
of the linearity estimator Q may contain several local minima. One
of them is the global minimum, corresponding to the source position.
The others are artificial peripheral minima that are identified and
evaluated by their comparative value and position during automatic
processing. The elimination of such minima is based on an indepen-
dent indicator of the source horizontal location, the magnitude mag-
netic anomaly MMA T,(T, = (H,. + Z,)"?, where H, and Z, are the
horizontal and vertical magnetic field components, calculated from
TMA data), whose maximum for 2D sources is exactly centered
above the source for any magnetization vector direction (Stavrev
and Gerovska, 2000). Thus, the QO minima that coincide at or are a
small distance from the 7, maxima are accepted, and the distant ones
are discarded. The structural index that produces a global minimum
with a minimum value of Q is the correct one for the respective local
anomaly.

Even though the Q map proposed here is a suitable image of the
inverse result, in practice many local anomalies appear within one
profile when automatic inversion is to be done over long profiles. To
extend the problem beyond an isolated anomaly, we deal with itin a
fully automatic way.

We calculate the transform 7', over the whole profile and find all its
maxima. We analytically continue the magnetic anomaly to the cho-
sen height over the whole profile. We calculate the function Q for a
series of structural index values N. Then, for each Qy matrix corre-
sponding to a structural index N, we find all local minima using the
following procedure. First, we slide a quadratic window W,
X W, (W, is an odd number; in all synthetic and field examples we
use W, = 5) along all probe points of Qy in x- and z-directions. We
find the minimum of Qy within the window; if the minimum is in the
window center, we choose this center as a candidate for a local mini-
mum. Second, we group the points which are candidates for local
minima with index Hamming distances less than or equal to (W,
— 1)/2; from the minima in each group, we choose the one with a
minimal Qy value. Third, we check for local minima with the same
horizontal coordinate a but different vertical coordinates ¢. From
each group, we choose the minimum with the smallest Qy. Then we
narrow the candidates for source locations from all local minima of
Qy for each N. We accept those that are less than a distance L, from a
maximum of 7, and we reject the remaining ones. We repeat the pro-
cedure for all N values.

Once the a-, c-coordinates and Qy of all candidate sources for all
N values are obtained, we choose the ones with the correct N. We
group all minima for all structural index values according to the hor-
izontal distance from the 7, maxima (found with the same procedure
as the minima of Q). Those within a horizontal distance L,, L,
= (W, — 1)/2 form a group. From the group members, we choose
the point with the minimum Q value. The structural index N corre-
sponding to this point defines the shape of the source. The coordi-
nates of the point define the source position.
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Thus, we estimate the location and shape of the 2D sources with-
out visual inspection of maps. We only choose a small number of pa-
rameters before running the fully automated procedure.

SYNTHETIC MODELS

Figures 10-12 show results from the FDST technique for the three
main models of point sources in two dimensions: a thick contact, a
dike, and a horizontal cylinder. To illustrate the new method in this
article, we draw isovalue maps of Q for each N, presented in a verti-
cal cross section. All the local minima found with the automatic pro-
cedure described above are drawn with circles. The circles of the dis-
carded minima are marked with crosses. Thus, the circles without
crosses are the chosen minima. We should note the presence of some
artifact minima from flaws in the contouring algorithm in the isoval-
ue Q maps not chosen as minima by the automatic procedure. Such
examples show that relying on visual inspection does not always
produce reliable results. It backs up the necessity of the automatic
procedure (described in the Method section) for determining the
minima of Q.

The minimum value Q,, of the estimator Q (equation 17) for the
three models coincides with the characteristic source point M when
the parameter —u = N corresponds to the source shape. If a wrong
value is prescribed for N, then Q,, increases (Figure 11). Q,, is esti-
mated precisely in a detailed grid of CPS or by a polynomial approx-
imation using the Q field around the minimal value point. The pro-
posed inversion method works well in the case of neighboring anom-
alies of two sources with reverse and normal magnetization (see
Figure 13).

FIELD EXAMPLES

The new technique was applied to magnetic data from the shelf
zone of the Black Sea of southeast Bulgaria, where more than 10 di-
rectional anomalies striking west-northwest—east-southeast are ob-
served (Stavrev and Gerovska, 2000). A profile across one of the
strongest anomalies just to the east of the town of Nessebar is shown

)
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Figure 10. (a) TMA AT(-) and the MMA transform 7,(—-) of a
thick contact (xo = 30 km, zo = 1 km, I, = 60°, J = 0.5 A/m, D,
= 0). (b) Contour map of the estimator of linearity Q for the true N
= 0. Estimated source coordinates (30 km, 1 km),Q,, = 0.002. Win-
dow length @ = 7 points, profile spacing dx = 0.3 km. The circles
show all the minima candidates. The crosses mark the rejected can-
didates. Thus, the circle without a cross is the chosen minimum.

Table 2. Results from the FDST inversion, (E,,,:(ram,E,,,: (rcm)é,,,:agm, of the magnetic data with added noise for the model of a
thin dike (top at point M(50 km,8 km) and infinite depth extent, see Figure 11) with and without continuing the data to inter-
mediate levels z;, km. The second continuation level is at z* = 4 km. The window length w = 17 points, the profile spacing dx =

1 km. a,,,c,,, and Q,,, are the mean values of the estimations for the horizontal position, the depth, and the estimator of linearity;
0,0, , and 0y, are the standard deviations of the respective estimations for 200 simulations per case of added pseudorandom
Gaussian noise. The estimations were made for signal-to-noise ratios o,/o, = 40,30,20,10 (o, = 0.18,0.24,0.36,0.73 nT); o, and
o, are the standard deviations of the magnetic data and the noise, respectively.

SNR N Z]=O lelkm

Z]=2km 21=3km

(49.420.8,7.60.5) 0.12+0.02

(50.0£0.2,8.0+0.2) 0.07+0.02

40 (49.2+0.5,11.1+0.4) 0.12+0.02  (49.5+0.5,11.5+0.5) 0.09+0.02
(48.8+1.2,4.0+0.3) 0.14x0.04  (49.9+0.7,4.1+0.3) 0.13+0.03
(49.1+0.7,7.2+0.4) 0.14£0.04  (50.0+0.1,7.920.2) 0.08+0.02

30 (49.0+0.6,11.0+0.3) 0.14+0.02  (49.4+0.5,11.4=0.5) 0.11+0.02
(48.5+1.1,3.9+0.4) 0.15£0.04  (49.8+0.9,4.1+0.6) 0.13+0.03
(48.6+0.9,7.1+0.6) 0.17£0.04  (49.7+0.6,7.8+0.6) 0.11+0.03

20 (48.6+0.8,10.8+0.6) 0.19£0.04  (49.4%0.5,11.5+0.5) 0.12+0.03
(48.2+1.1,3.620.6) 0.18+0.04  (49.7+1.1,4.120.6) 0.13+0.03
(48.4%1.6,63+1.1) 0.25£0.06  (49.0+1.1,7.2%+0.7) 0.16+0.05

10 (49.0£2.4,9.5+1.6) 0.30+0.08  (48.9+0.9,11.1+0.8) 0.18+0.06

(47.8+1.4,3.5+0.6) 0.23+0.07

(48.9+1.5,3.6+0.6) 0.16+0.05

(50.0£0.0,8.0+0.1) 0.05+0.02
(49.5+0.5,11.8+0.4) 0.10+0.02
(50.2+0.4,4.2+0.4) 0.13+0.02

(50.0£0.2,7.9+£0.4) 0.07+0.02
(49.5+0.5,11.7+0.4) 0.10+0.02
(50.3+0.4,4.3+0.5) 0.13+0.02

(49.9+0.4,7.9+0.4) 0.09+0.03
(49.5+0.5,11.70.5) 0.11=0.03
(50.20.7,4.1£0.6) 0.13+0.03

(49.5+0.9,7.6+0.7) 0.14+0.04
(49.3+0.8,11.6+0.8) 0.16+0.06
(49.6+1.3,3.8+0.8) 0.15+0.05

(50.0£0.0,8.0+0.0) 0.04+0.02
(49.4+0.5,12.0+0.2) 0.12+0.02
(50.3+£0.5,4.3+£0.5) 0.15+0.02

(50.0+0.1,8.0+0.0) 0.06+0.02
(49.4+0.5,12.0=0.3) 0.12£0.02
(50.3+0.5,4.2+0.5) 0.14=0.02

(49.9+0.3,7.9+0.3) 0.08+0.03
(49.5+0.5,11.90.5) 0.11=0.03
(50.3+0.6,4.1£0.7) 0.14+0.03

(49.7+0.7,7.8+0.7) 0.13+0.04
(49.4+0.6,11.8+0.7) 0.15+0.05
(50.1£1.0,3.9+0.8) 0.14x0.04
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in Figure 14a. The Q plot forms a minimal value Q,, = 0.21 at a
depth of 0.8 km for the parameter u = —1, i.e., for the structural in-
dex N = 1 (Figure 14b). Foru = -2 (N = 2), Figure 14c, the Q map
produces a higher value for the minimum Q,, = 0.30 at a depth of
1.4 km. This means that the source is close to the dike model, but the
comparatively low value of Q,, for N = 2 indicates a source with a
limited depth extent.

As a second field example, we use here an aeromagnetic profile
over a known dike published by Keating and Pilkington (2004). We

have digitized the TMA at a spacing of 10 m (Figure 15a). The ana-
lytical continuation to 50 m above the level of measurements is cal-
culated, and FDST analysis carried out using overlapping 41-point
windows. The results are shown in Figure 15b and in Table 3. The
minimum value of the Q-estimator appears at a depth of 126 m be-
low the level of the magnetic sensor, or 53 m below the ground sur-
face for a structural index. This result indicates a dike as the source of
the interpreted anomaly. The estimated depth is close to the known
depth of about41 m (Keating and Pilkington, 2004).
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Figure 11. (a) TMA AT(-) and the transform MMA T,(—-) for a dike model (x, = 50 km, z, = 8 km, [, = 60°,D, =0, J =1 A/m,D, = 0).
Contour maps of the estimator of linearity Q for (b) N = 1. Estimated source coordinates (50 km, 8 km), Q,, = 0.003. (c) N = 0. Estimated

source coordinates (50 km, 4 km), Q,, = 0.139. (d) N = 2. Estimated source coordinates (49 km, 11 km), Q,, = 0.075. Window length w = 17
points, profile spacing dx = 1 km. The circles show all the minima candidates. The crosses mark the rejected candidates. Thus, the circles with-
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Figure 12. (a) TMA AT(-) and the MMA transform 7,(——) of a hor-
izontal cylinder model (xo = 45 km, z, = 12 km, I, = 60°, J =1

A/m, D, = 0). (b) Contour map of the estimator of linearity Q for
the true N = 2. The estimated source coordinates are (45 km,
12 km), Q,, = 0.007. [For N =1, coordinates (45.5 km,8 km),
Q,, = 0.072; for N = 0, coordinates (46 km, 5 km), Q,, = 0.116.]
Window length w = 49 points, profile spacing dx = 0.5 km. The cir-
cles show all the minima candidates. The crosses mark the rejected
candidates. Thus, the circle without a cross is the chosen minimum.
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Figure 13. (a) TMA AT(-) and the MMA transform T,(——) of two
dikes (]] = Jz =1 A/m, 11 = —600, 12 = 600, Dl = 1800, D2 = O,
D,=0) with coordinates of the tops (46 km,8 km) and
(94 km,7 km). (b) Contour map of the estimator of linearity Q for
the true N = 1. The estimated source coordinates are (46 km,8

km), Q,, = 0.048, and (94 km,7 km), Q,, = 0.014. Window length
w = 49 points, profile spacing dx = 0.5 km. The circles show all the
minima candidates. The crosses mark the rejected candidates. Thus,
the circles without a cross are the chosen minima.
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Figure 14. Field example from the southeast Bulgaria Black Sea
shelf. (a) TMA AT(-) and the MMA transform T,(——). Contour
maps of the estimator of linearity Q for (b) N = 1. Estimated source
coordinates x, = 5.3 km, z, = 0.8 km, Q,, = 0.21. (¢) N = 2. Esti-
mated source coordinates x, = 5.3 km, z, = 1.4 km, Q,, = 0.30. The
circles show all minima candidates. The crosses mark the rejected
candidates. Thus, the circles without a cross are the chosen
minima.

Distance x (km)

Figure 15. Field example after Keating and Pilkington (2004). (a)
TMA AT(-) and the MMA transform 7,(—-). (b) Contour map of
the estimator of linearity Q for N = 1,0,, = 0.069. The estimated
source coordinates are x, = 420 m, zo = 126 m (depthequal to 53 m
from the ground surface) (see also Table 3). The circles show all min-
ima candidates. The crosses mark the rejected candidates. Thus, the
circle without a cross is the chosen minimum.

Table 3. Results from the FDST inversion of the magnetic
data in Figure 15. (x,,z,) are the estimated horizontal and
vertical coordinates of the source; d is the depth from the
ground of the source. Q,, denotes the minimal value of the
linearity estimator Q.

Xo 20 d
N=-u (m) (1’1’1) (Il'l) Qm
0 410 200 127 0.136
1 420 126 53 0.069
2 420 57 -16 0.093
CONCLUSIONS

We have proposed a new automatic technique for inversion of
magnetic data based on the homogeneity property of potential fields.
The principal definition of a homogeneous function is applied in-
stead of Euler’s differential equation. This alternative approach al-
lows the construction of an inverse operator using only the measured
magnetic data and their upward analytical continuation. The latter
contributes to the stability of the solution in the presence of high-
wavenumber noise. This gives an advantage to the proposed method
in comparison with techniques using first- and higher-order deriva-
tives. The inverse operator does not include the solution of a system
of equations like the conventional Euler deconvolution, whose sta-
bility is also a problem because of the high correlation coefficient be-
tween the measured field and its vertical derivative. A detailed analy-
sis shows the utility of the finite-difference similarity transform
based on the principal definition of homogeneity. The inverse results
can be obtained in terms of depth and shape of simple sources in the
presence of constant or linear background and significant random
noise. The inverse procedures allow full automatization. Two main
parameters control the inversion parameter, the height of the analyti-
cal continuation, and the window length. Those can be estimated by
the width of the local anomalies. The density of the probe grid in the
downward hemispace and a tolerance for the estimations of the
source location around the anomaly magnitude maximum are addi-
tional parameters. The fully automated output is given in numerical
form and auxiliary plot.

The proposed method can also be applied for the inversion of
gravity data, as well as gravity and magnetic gradiometric data.
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