
Q

S

m

t

s

g

u
©

GEOPHYSICS, VOL. 71, NO. 5 �SEPTEMBER-OCTOBER 2006�; P. T147–T150, 4 FIGS.
10.1190/1.2329864

D
ow

nl
oa

de
d 

03
/3

1/
15

 to
 1

34
.7

1.
13

5.
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

uick and accurate Q parameterization in viscoelastic wave modeling
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ABSTRACT

We introduce a procedure for including the attenuation
factor Q in a consistent manner in seismic modeling and
show 3D examples. The Q fitting over a chosen frequency
band involves two algorithms: The first creates starting val-
ues of relaxation times, and the second does nonlinear inver-
sion using the results of the first as initial values. The result-
ing Q function gives a good approximation to a constant Q
over the chosen frequency band. The algorithm is combined
with a finite-difference �F-D� code that includes topographies
in 3D seismic media. The velocity-stress formulation for vis-
coelastic wave modeling is used with an arbitrary number of
relaxation mechanisms to model a desired Q behavior. These
equations are discretized by high-order F-Ds in the interior of
the medium, and we gradually reduce the F-D order to two at
the stress-free surface, where we implement our free-surface
boundary conditions. The seismic F-D algorithm is applied to
a marine seismic experiment, with and without viscoelastici-
ty, to emphasize the importance of including physical attenu-
ation and dispersion in seismic modeling. Their inclusion,
even for marine surveys, is clearly important for lossy ocean
bottoms. Our procedure for more accurate modeling of phys-
ical dispersion and attenuation may increase future motiva-
tion to include viscoelasticity in seismic inversion.

INTRODUCTION

Since publication of Day and Minster’s �1984� Padé approximant
ethod for numerical, full-viscoelastic wave modeling, more accu-
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T147
ate techniques for the displacement-stress formulations have been
eveloped �Carcione et al., 1988a; 1988b; Carcione, 1993�. These
ormulations transform the time convolutions involved in the vis-
oelastic constitutive relationships to first-order partial differential
quations by introducing memory variables. This procedure was ex-
ended to the velocity-stress formulation by Robertsson et al. �1994�.
or this formulation, Blanch et al. �1995� developed a quick and ac-
urate �for low-loss media in particular� procedure for modeling a
onstant Q behavior �Q is the attenuation factor�. Hestholm �1999�

sed the Blanch et al. �1995� procedure together with velocity-stress
urved-grid equations to model variable free-surface topography.
fforts have been made in the area of estimating the necessary time-

elaxation variables for given Q functions �Asvadurov et al., 2004;
arcione et al., 2002�, and Moczo and Kristek �2005� gave an over-
iew and relationship between rheologic models and recent proce-
ures to model viscoelasticity.

We present an improved Q-parameterization scheme for vis-
oelastic modeling by combining two previously known methods.
he method of Blanch et al. �1995� is used to produce input values to

he nonlinear optimization Nelder-Mead algorithm for improved pa-
ameter estimation. The governing viscoelastic wave equations in
his work are the velocity-stress formulation with an arbitrary num-
er of relaxation mechanisms. These equations are the Cartesian
quations in a curved grid transformed to a computational, rectangu-
ar grid �Hestholm, 2002, equations 1–18�. Boundary conditions
Hestholm and Ruud, 2002� in the velocity-stress formulation are
mplemented at the top of the numerical grid, and absorbing bound-
ries �Cerjan et al., 1985� from the remaining boundaries. Numerical
imulation of a marine seismic experiment is then presented to illus-
rate how important the inclusion of viscoelasticity may be, even in a

arine environment.
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VISCOELASTIC Q PARAMETERIZATION

The viscoelastic velocity-stress wave equations used in this work
re given in equations 1–18 of Hestholm �2002�, using L arbitrary re-
axation mechanisms in the medium. They are the momentum con-
ervation equations, Hooke’s law, and the memory-variable equa-
ions for a medium bounded above by a topography function and are
ot given here because of space considerations. Our boundary con-
itions for free-surface topography �Hestholm and Ruud, 2002;
estholm, 2003� are implemented at the top of the grid. For numeri-

al discretization of the interior wave equations, staggered eighth-
rder finite differences �F-Ds� �Kindelan et al., 1990� are gradually
educed to staggered sixth-, fourth-, and second-order F-Ds �Forn-

igure 1. Modeled �a� QP and �b� QS versus frequency in three layers
f a geologic model using only the Blanch et al. �1995� � method.
he symbols are the relaxation frequencies for which the 1/Q values
re fitted: Stars �heavy curve� signify the lower half-space, circles
dash-dotted curve� the intermediate layer, and triangles �dashed
urve� the upper layer.

igure 2. Modeled �a� QP and �b� QS versus frequency in the three
ayers of the model of Figure 1 using relaxation times from the
lanch et al. �1995� � method input to the nonlinear Matlab inver-

ion routine fminsearch. The symbols are the relaxation frequencies
or which the 1/Q values are fitted: Stars �heavy curve� signify the
ower half-space, circles �dash-dotted curve� the intermediate layer,
nd triangles �dashed curve� the upper layer.
erg, 1988� when approaching the free surface. Along all remaining
oundaries, the method of Cerjan et al. �1985� is employed for expo-
ential wavefield damping.

To make modeling of Q sufficiently accurate, we use L = 4 relax-
tion mechanisms. The constant Q values are assumed different in
ach domain of a geologic medium. The � method of Blanch et al.
1995� uses a least-squares procedure to estimate stress- and strain-
elaxation times for viscoelastic wave modeling, given a desired
onstant Q as a function of frequency. The method is known to give
ood results, except for geologic media that have low Q values; in
uch media the estimated relaxation times commonly exhibit a
onotonically decreasing Q with frequency. We found that using the
lanch et al. �1995� � method by itself gave slightly less than satis-

actory results for the approximation of a constant Q for chosen re-
axation frequencies of 5, 20, 80, and 320 Hz �Figure 1�. However,
he � method provided excellent starting values of stress- and strain-
elaxation times for input to the nonlinear optimization Matlab rou-
ine fminsearch. This routine is an implementation of a direct-search
implex Nelder-Mead algorithm �Nelder and Mead, 1965; Lagarias
t al., 1998�; see Appendix A. This procedure gave values of stress-
nd strain-relaxation times that fitted constant Q values for P- and S-
aves �QP and QS� very well over the range covered by the chosen

elaxation frequencies �Figure 2�. Figures 1 and 2 illustrate the re-
ulting fit for the Q function to a desired constant Q value in each of
hree layers in a geologic medium, where the fit is exact for the se-
ected relaxation frequencies. The square of the difference between
he desired constant Q value in each layer and our fitted Q function
as used as the cost function in the optimization function call. This

ost function can be written as

����,��� = �
�s

�Qconst − Q��s,��,����2, �1�

here �s represents the selected frequencies for exact fitting of the Q
unction, Qconst is the constant desired Q value, and Q��s,��,��� is
ur Q function evaluated at each of the preselected frequencies �one
or each of the chosen relaxation mechanisms�. The variables �� and
� are L-dimensional vectors of the relaxation times, with respect to
hich the optimization is done. This cost function is different for

ach wave mode. The Q function assumes no dependence of QS on
he P relaxation and, for both P- and S-waves �Blanch et al., 1995�,
as the form

Q��,��,��� =

1 − L + �
�=1

L
1 + �2� ��� ��

1 + �2� ��
2

�
�=1

L
��� �� − � ���

1 + �2� ��
2

�2�

here � is the circular frequency, ��� is the �th strain-relaxation
ime, and ��� is the �th stress-relaxation time. Only a few iterations
f the Nelder-Mead algorithm are needed for convergence; other
onlinear optimization algorithms may work just as well.

A comparison between corresponding elastic and viscoelastic re-
ults is performed to emphasize the importance of viscoelastic mod-
ling, even in marine experiments. Figures 3 and 4 show the bathy-
etric relief and streamer seismograms from a simulation of a ma-

ine seismic survey. The water depth varies from about 100 to
00 m. There is a plane interface at 1200 m depth �depths are
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elative to the sea surface�. Another plane interface is at 1500 m
epth. Parameters of each layer from top �sea� to bottom are the fol-
owing �the Q values are used only in the viscoelastic simulation�:

P1
= 1480 m/s, vS1

= 0, QP1
= QS1

= 40,000; vP2
= 2000 m/s, vS2

1154 m/s, QP2
= 15, QS2

= 10, vP3
= 2500 m/s, vS3

= 1443 m/s,

P3
= 70, QS3

= 50, vP4
= 3000 m/s, vS4

= 1732 m/s, QP4
= 140

nd QS4
= 100. The density everywhere is 1800 kg/m3. A Ricker

ressure-point source of central frequency 15 Hz is located in the
iddle of the x and y dimensions of the model at 10 m depth. The
odel setup yields an unconventional marine geometry for marine

eismic surveys in which the air-gun source is towed near the center
f the recording cable. The model is uniformly discretized �dx
dy = dz = 10 m� and consists of 200 grid points in each dimen-

ion; thus, it is a cube of 2000 m on all sides. The free surface is the
lanar sea surface; the bathymetry is modeled by stair steps, and all
emaining interfaces are planar. Absorbing boundaries �represented
y 20 grid points� using both low Q and the exponential damping of
erjan et al. �1985� are employed along all grid boundaries except on

op at the sea surface. The receivers of the west-east profile �Figure
� are at the middle of the south-north dimension and extend from
00 to 1500 m. An elastic simulation is done �by using the vis-
oelastic code with very high Q values�, and then the seismogram for
he corresponding viscoelastic medium in Figure 3 is given as a com-
arison.All model parameters except Q are kept constant.

Adifference can be observed in the seismograms even after waves
ave propagated through the larger depth extent of the acoustic sea at

igure 3. �a� Bathymetry in meters and �b� its absolute gradients for a
arine seismic experiment. Axes are in multiples of 20 m to cover

he xy-section of 2000 � 2000 m2 of the model used in the simula-
ions.
he top of the model.Apart from the direct arrivals, much detail of the
wo sea-bottom reflections �as well as diffractions from the stair-step
iscretization of the see bottom� and, to a larger extent, the reflec-
ions from deeper layers and sea-bottom mode conversions are dis-
ersed and attenuated in the viscoelastic simulation. Deeper-layer
eflections should occur at about 1.3 s in the seismograms �all times
re two-way traveltimes�; all arrivals later than this time are indistin-
uishable in the viscoelastic example because of physical attenua-
ion. This occurs even for marine experiments with receivers close to
he sea surface, when such a highly attenuative sea bottom is mod-
led.

igure 4. �a� Elastic and �b� viscoelastic pressure seismograms for a
rofile of 101 receivers at 20 m depth and spaced at 10 m, along the
iddle of the model �y = 1000 m� described in Figure 3. The profile

xtends from x = 500 to x = 1500 m. Horizontal axes are receiver
umbers.
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CONCLUSIONS

For accurate viscoelastic Q parameterization, we have employed
new procedure in which we combine two previously known meth-
ds for improved results. The Blanch et al. �1995� � method was
sed to produce starting values for stress- and strain-relaxation times
hat were input into the nonlinear optimization Nelder-Mead algo-
ithm. The latter was used to minimize the square of the difference
etween the Q expression for our formulation and our desired con-
tant Q to produce well-fitted Q curves with frequency and viable
iscoelastic effects. The procedure leads to improved results com-
ared to using either method separately. As such it should lead to an
mproved state of the art for fitting of any Q function over any chosen
requency band. Boundary conditions for free surfaces are combined
ith the velocity-stress formulation of the viscoelastic wave equa-

ions to model a marine seismic survey with a steep and strongly
arying bathymetry, with and without viscoelasticity included. The
eed to include physical attenuation and dispersion is clearly illus-
rated even in this marine experiment, when a lossy sea bottom is
resent. The goal of this work is to improve the accuracy of vis-
oelastic wave modeling, with consequent increased future motiva-
ion to include viscoelasticity in velocity model building, for exam-
le.
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APPENDIX A

ELDER-MEAD ALGORITHM AND DESCRIPTION
OF ITS MATLAB IMPLEMENTATION

The Nelder-Mead algorithm �Nelder and Mead, 1965� is a direct-
earch unconstrained optimization method. Direct search means
hat the method is independent of any gradient information and
ence can be slower than some methods that use such information. In
he applied case, however, convergence is very fast. Because of its
irect-search type, the method is particularly useful for discontinu-
us functions. It is based on evaluating a function at the vertices of a
implex, then iteratively shrinking the simplex as better points are
ound until some desired bound is obtained.Asimplex is the general-
zation of a tetrahedral region of space to n dimensions. The simplex
s so named because it represents the simplest possible polytope in
ny given space.

The Nelder-Mead algorithm �Nelder and Mead, 1965� is imple-
ented in Matlab through the function fminsearch. If n is the dimen-

ion of a vector x, a simplex in n-dimensional space is characterized
y the n + 1 distinct vectors that are its vertices. In 2D space, a sim-
lex is a triangle; in 3D space, it is a pyramid. At each step of the
earch, a new point in or near the current simplex is generated. The
unction value at the new point is compared with the function values
t the vertices of the simplex, and, usually, one of the vertices is re-
laced by the new point to give a new simplex. This step is repeated
ntil the diameter of the simplex is less than the specified tolerance.
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