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Abstract Ages of giant gold systems (>500 t gold) cluster
within well-defined periods of lithospheric growth at
continental margins, and it is the orogen-scale processes
during these mainly Late Archaean, Palaeoproterozoic and
Phanerozoic times that ultimately determine gold endow-
ment of a province in an orogen. A critical factor for giant
orogenic gold provinces appears to be thickness of the
subcontinental lithospheric mantle (SCLM) beneath a
province at the time of gold mineralisation, as giant gold
deposits are much more likely to develop in orogens with
subducted oceanic or thin continental lithosphere. A proxy
for the latter is a short pre-mineralisation crustal history
such that thick SCLM was not developed before gold de-
position. In constrast, orogens with protracted pre-miner-
alisation crustal histories are more likely to be characterised
by a thick SCLM that is difficult to delaminate, and hence,
such provinces will normally be poorly endowed. The na-
ture of the lithosphere also influences the intrinsic gold

concentrations of potential source rocks, with back-arc
basalts, transitional basalts and basanites enriched in gold
relative to other rock sequences. Thus, segments of orogens
with thin lithosphere may enjoy the conjunction of giant-
scale fluid flux through gold-enriched sequences. Although
the nature of the lithosphere plays the crucial role in
dictating which orogenic gold provinces will contain one or
more giant deposits, the precise siting of those giants de-
pends on the critical conjunction of a number of province-
scale factors. Such features control plumbing systems, traps
and seals in tectonically and lithospherically suitable ter-
ranes within orogens.
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Introduction

Many orogens throughout the geological record contain
gold provinces, but only a small percentage of these prov-
inces contain one or more giant deposits (i.e. ≥500 t Au), or
even several world-class gold deposits (≥100 t Au). The
specific causes for the spatial and temporal imbalance in
crustal gold endowment have puzzled explorers and re-
search geologists for decades. In attempting to resolve this
paradox, emphasis has commonly been placed on deposit-
to camp-scale investigations (e.g. Robert and Brown 1986;
Caddey et al. 1991; Phillips et al. 1996; Rowins et al. 1997;
Wilde et al. 2001; Allibone et al. 2002; Distler et al. 2004;
Weinberg et al. 2004). Studies at these scales have been
successful in outlining the principal features and genetic
characteristics of the orogenic style of gold mineralisation.
However, given that many small and giant orogenic gold
deposits share multiple deposit-scale geological and geo-
chemical commonalities (e.g. Hodgson 1993; Clark 1996;
Cooke and Pongatz 2002; Leahy et al. 2003), the recog-
nition of parameters that are critical to the formation of
giant gold systems is likely to require a broader scale ap-
proach. Here, such a broader scale view is taken by con-
sidering the theoretical first-order requirements for the
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formation of a province that contains at least one giant
deposit rather than those factors that control the formation
of a giant gold deposit itself.

It is postulated that the overall endowment of a given
gold province, as well as the formation of giant gold de-
posits within it, is controlled, at a fundamental level, by
factors that operate at the orogen to lithosphere scale. The
proxies or signals of these fundamental requirements are
then sought from data available in the geological record.
The potential key elements required in the formation of
these systems are derived from assessment of broad-scale
features that are common to the majority of gold provinces
that host giant ore systems. An improved understanding of
the critical parameters that define giant ore systems, in turn,
aids in the formulation of exploration models aimed at
discriminating between more and less gold-favourable
orogens, and parts of orogens, hence executing a reliable,
scientifically based, global targeting strategy.

Characteristics of giant orogenic gold systems

Orogenic gold deposits (Groves et al. 1998) are considered
in this study because these represent an economically im-
portant class of mineral deposit type that, for centuries, has
provided a significant source of global gold production. It
has long been recognised that orogenic gold deposits of all
ages and across all continents are characterised by several
unifying geological, structural, geochemical and isotopic
characteristics (e.g. Goldfarb et al. 2001 and references
therein). Given the evidence for a modified form of plate
tectonics in the Archaean and Palaeoproterozoic times
(Groves et al. 2005 provide a summary of evidence and
references), these similarities lend strong support to the
notion that, throughout space and time, orogenic gold
deposit formation can be considered more or less a logical
consequence of the processes involved in accretionary to
collisional tectonics along active continental margins. In
most orogens where there is evidence for subduction/ac-
cretion and addition of new crust, gold metallogeny closely
followed the peak of regional metamorphism of the im-
mediate host rocks (e.g. Stüwe 1998) although there are
some important exceptions (e.g. Mesozoic gold in the
Precambrian North China Craton; Goldfarb et al. 2001;
Zhou et al. 2002). Despite this, there are significant varia-
tions across orogens and gold provinces of all ages in terms
of their overall endowment in orogenic gold and the dis-
tribution and number of giant deposits within them (Fig. 1).
Worldwide, there are currently 23 recognised giant oro-
genic gold deposits and districts that are hosted in 16 gold
provinces of predominantly Late Archaean, Palaeoprote-
rozoic and Late Neoproterozoic–Phanerozoic ages (Fig. 1).

The dominantly structurally controlled deposits are
hosted by a variety of mafic igneous (particularly Archaean
giants), felsic igneous and coarse- to fine-grained marine
metasedimentary rocks and iron formations (particularly
Palaeoproterozoic and Phanerozoic giants) that are in-
variably associated with convergent plate margins and occur
within close proximity of major translithospheric structures

that typically are compressional to transpressional–trans-
tensional shear zones (Hodgson 1989). The large-scale
conduits, which originally may have been terrane sutures,
are characterised by high degrees of non-linearity, with
large ore systems preferentially developed in second- and
third-order structures within damage zones of misalign-
ment and relay zones (e.g. Cox 1999; Cox et al. 2001), as
indicated by fractal studies (Weinberg et al. 2004). Over-
printing hydrothermal assemblages in most giant deposits
indicate that multiple events, some improving rheology or
reactivity and some depositing gold, were common along
these flow paths over typical time frames of a few tens of
millions of years or less (Groves et al. 2003). Gold grades
are highly variable among giant deposits, ranging from
1.1 g/t for the Las Cristinas resource to 21.3 g/t in parts of
the Campbell-Red Lake deposit, and have historically
changed, even for a given giant, because of varying world
economics and improvements in mining technologies.
Large felsic intrusions that were more or less synchronous
with mineralisation generally occur at, or within a few
kilometres of, the deposits, providing evidence for abnor-
mal thermal gradients in the crust; however, there are
notable exceptions both spatially (e.g. Golden Mile; Phillips
et al. 1996) and temporally (e.g. Bendigo; Bierlein
et al. 2001a). In almost all examples where the deposits
are geochronologically well constrained, peak P–T condi-
tions during metamorphism of the immediate country rocks
reached lower greenschist to lower amphibolite conditions
within a few million to tens of million years before ore
formation. However, Muruntau, currently the largest known
orogenic gold deposit, as well as several other deposits
with >100 t of contained gold in the Tien Shan orogenic
belt, may post-date peak metamorphism of the immediate
host rocks by as much as 150 m.y. (e.g. Kempe et al. 2001;
Wilde et al. 2001) if geochronological data are shown to be
robust. Linglong, in very high-grade metamorphic rocks of
the North China Craton, provides a unique example where
a giant deposit post-dates metamorphism of the host terrane
by two billion years (Zhou et al. 2002).

The importance of orogen- to lithosphere-scale
processes

It is evident from the syntheses of Goldfarb et al. (2001)
and Groves et al. (2003) that giant orogenic gold deposits,
despite some broad unifying characteristics, are of several
age groups and, in detail, have different types of host
structures and host rocks, and depths of formation. They
thus mimic the deposit-scale variations shown by giants of
other deposit styles (e.g. Cooke and Pongatz 2002). In view
of these deposit-scale variations, terrane- to lithosphere-
scale processes are implicated as being far more critical in
determining in which orogen global giants are likely to be
located and where they will be absent. Accepting the exis-
tence of some form of Archaean plate tectonics, virtually
all giant orogenic gold deposits are situated in orogens built
by the accretion and underplating of one or more al-
lochthonous terranes and their associated oceanic crust to
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Fig. 1 Map showing distribution of Archaean, Proterozoic,
Palaeozoic, Mesozoic and Cenozoic terranes; also shown are the
locations of the 23 recognised giant orogenic gold deposits/districts
[all production + resource figures from Geological Survey of

Canada world gold data bank and Goldfarb et al. (2001)]. Giant
deposits are listed in age group categories and then in decreasing
order of gold endowment (t=tonnes Au)
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pre-existing continental margins. In fact, age data confirm
that the giant deposits formed essentially during periods in
Earth history when mantle plume activity and/or plate
movements produced major lithospheric growth at active
continental margins (Condie 2000). Taking into account
the deterioration of resolution and preservation with in-
creasing ages, available geochronological data (summa-
rised in Goldfarb et al. 2001) constrain the formation of
giant orogenic gold systems to age clusters of such crustal
and lithospheric growth (Poudjon Djomani et al. 2001) in
the Late Archaean (from 2.7 to 2.55 Ga), Palaeoproterozoic
(2.1–1.8 Ga), Late Neoproterozoic (700–600 Ma), Late
Palaeozoic (455–340 Ma) and Mesozoic–Cenozoic (285–
70 Ma) as shown in Fig. 2. It is improbable that orogens
formed at other times will contain giant deposits because
they were not times of major crustal growth.

The importance of asthenospheric thermal input that can
trigger and, more importantly, sustain crustal devolatilisa-
tion and melting has been recognised previously as a major
driving force for the initiation of giant orogenic gold sys-
tems (e.g. Hodgson 1993; Kerrich et al. 2000; Bierlein
et al. 2001b, 2004; Goldfarb et al. 2001). This is because
the fundamental driver for large orogenic gold systems is a
focused, high fluid flux that requires an effective thermal
engine. Evidence in support of an association between ore
formation and simultaneous mantle processes comes from
the common presence of mafic to ultramafic intrusions,
including sodic lamprophyre dykes that most likely signal
asthenospheric input (Rock 1991), along first-order litho-
spheric, near-vertical fault zones in, or adjacent to, almost
all of the giant gold deposits (Fyfe and Kerrich 1984; Rock
et al. 1990; Groves et al. 1998; Bierlein et al. 2001c;

Goldfarb et al. 2001). Thus, it appears that the occurrence,
extent and timing of lithospheric instability play a vital role
in the formation of giant orogenic gold deposits.

High heat flux from the mantle, and consequent high
fluid flux in the crust, can be linked to lithospheric insta-
bilities that result from: (1) crustal overthickening due to
underplating of slices of oceanic terranes to the accretion-
ary wedge during seaward growth of the margin (Kerrich
and Wyman 1990; Foster and Gray 2000), (2) mantle plumes
impacting on subduction, bringing hot asthenosphere
into contact with shallow crustal rocks (Condie 2004),
or (3) erosion or delamination of subducted oceanic lith-
osphere to enlarge the overlyingmantle wedge (Collins 1994;
Kerrich et al. 2000; Wortel and Spakman 2000). These
scenarios are shown on a schematic composite diagram in
Fig. 3, which also indicates provinces where such processes
operated. Therefore, and in addition to the broader age and
lithospheric constraints outlined above, the specific crustal
history of, and impact of mantle heat on, terranes within the
host orogen is implicated as being critical in defining
whether giant gold deposits are likely to be present.

Tectonic and lithospheric constraints on terranes
hosting giant orogenic gold systems

It is suggested in this study that the thickness of SCLM at
the time of gold mineralisation controls the potential for
giant gold deposits. This is because orogenic gold deposits
generally form late in the history of an orogen (e.g.
Goldfarb et al. 2001) but before the SCLM beneath it has
been emplaced and stabilised. The formation of thick
SCLM will shield continental crust from asthenospheric
heat input and thereby will hinder subsequent tectonother-
mal events, including large-scale fluid release required to
form giant orogenic gold deposits. In contrast, if the SCLM
is not yet stabilised or the earlier SCLM is partly delam-
inated, asthenospheric heat input will be greater: for exam-
ple, the thinner the lithosphere in oceanic back-arc or
strongly rifted continental margin settings, the greater the
potential for high heat flux from asthenospheric upwelling.
Therefore, trace element systematics, Sm–Nd and Lu–Hf
isotopic fingerprinting of volcano-intrusive successions,
sensitive high resolution ion microprobe U–Pb dating of
zircons and the recognition of inherited zircon populations
within these rocks should all provide important clues as to
the tectonic evolution and anatomy of any terrane within an
orogen. In other words, if these data show gold formation to
pre-date establishment of a stable SCLM (as is commonly
determined from xenolith work; e.g. Griffin et al. 2003),
then the environment would be favourably endowed and
possibly be an important region to explore within for a giant
orogenic gold deposit. In agreement with this, examination
of available time constraints on orogenic gold deposits and
their host terranes (e.g. Goldfarb et al. 2001) suggests that
orogens comprising relatively immature terranes of all ages
that are characterised by primitive, oceanic-character crust
are generally well endowed and tend to contain giant gold
deposits, whereas those with a significant pre-history or

Fig. 2 a Temporal distribution of orogenic gold deposits in relation
to b, which shows the temporal evolution of continental crust
growth (modified from Condie 2000). The giant Witwatersrand
deposit is not shown as the authors consider it a palaeoplacer
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pericratonic association may contain gold ores but not
giants. The endowment of gold provinces within Archaean
orogens is used below to test these critical relationships
between pre-gold crustal history, SCLM thickness and as-
thenospheric upwelling.

Archaean examples

Virtually all Archaean greenstone belts that host giant gold
deposits have linear geometries and are characterised by
petrogenetic associations that are typical of fore-arc to
back-arc environments. Each of these belts developed on,
or near the edges of, pre-existing basement (as indicated by,
for example, inherited zircons, xenocrysts and Sm–Nd
signatures linked to sub-arc mantle melting) at ca. 2.7 Ga or
showed evidence for intra-continental rifting during or just
before gold ore formation that occurred in many orogens at
ca. 2.65 Ga. As this timing of orogenic gold mineralisation
was broadly synchronous worldwide and linked to the
greatest period of crustal growth during Earth history (e.g.
Groves et al. 2005), it is possible to compare crustal pre-
histories in orogens before this event. Figure 4 shows the
interpreted length of crustal pre-history, overall gold en-
dowment and the presence or absence of giant gold depos-
its in each orogen. It is evident that there is a broad inverse
relationship between the duration of pre-2.65 Ga crustal
history and whether a giant gold deposit occurs.

The best endowed Archaean orogen is the southern
Abitibi belt of the Superior Province, Canada (e.g.
Wyman 2003), with a recorded production of 11,819 t of
gold from, inter alia, two giant deposits (McIntyre–
Hollinger, Kirkland Lake) and six world-class deposits.
Gold mineralisation is developed in greenstone belts that
comprise oceanic crust formed within about 50 m.y. of
initiation of pre-ore volcanism and is characterised by very
few, if any, xenocrysts and by primitive ɛNd values. The
well-endowed Eastern Goldfields Province of the Yilgarn
Craton, Western Australia (e.g. Barley and Groves 1990;
Champion and Sheraton 1997) has produced ≥5,132 t of

gold (Fig. 4). The giant Golden Mile deposit at Kalgoorlie
and numerous world-class deposits all lie in one specific
province of the Yilgarn Craton where the dominant green-
stone component formed less than 70 to 50 m.y. before gold
deposition, and where there is little evidence for >2.9 Ga
continental basement. This can be compared to the rela-
tively poor gold endowment and lack of a giant gold deposit
in the flanking orogens (e.g. Southern Cross; Fig. 4) where
Late Archaean gold deposits are sited in both ca. 3.0–2.9 Ga
and 2.7 Ga greenstone belts. Similar to the Abitibi belt and
the Eastern Goldfields Province, the spatially restricted
gold-mineralised orogen of the Dharwar Craton, with a
gold endowment of approximately 2,332 t and a giant gold
deposit at Kolar, had a short pre-history before gold
mineralisation, although this occurred at ca. 2.55 Ga
(Chadwick et al. 2000) rather than at ca. 2.65 Ga as in the
other cases. The well-endowed (995 t) Rio das Velhas
greenstone belt in Brazil, containing the giant Morro Velho
deposit, had a similarly short crustal history before gold
mineralisation at ca. 2.67 Ga (Lobato et al. 2001). The
Sukumaland greenstone belt of Tanzania, with an endow-
ment of 776 t and two giant deposits (Geita and
Bulyanhulu) despite its immature exploration history, ap-
pears to essentially mirror the other well-endowed prov-
inces in terms of its crustal evolution, although there are
limited robust geochronological data (Borg and Krogh 1999;
Chamberlain et al. 2004; Manya 2004).

The Midlands greenstone belt of the Zimbabwe craton,
with gold formed at ca. 2.66 Ga (Darbyshire et al. 1996) in
greenstones with a pre-crustal history of at least 3.2 Ga
(Fig. 4), importantly contains no giants despite its signif-
icant endowment of 684 t of gold. The even far less well-
endowed greenstone belts in the northern Pilbara Craton
(93 t Au; Zegers et al. 2002) in Western Australia and the
Karelian Craton in Finland (37 t Au; Eilu et al. 2003) both
lack evidence for the addition of substantial oceanic litho-
sphere via rifting, and instead develop on predominantly
continental-character lithosphere that formed at least 200–
400 m.y. before emplacement of orogenic gold mineralisa-
tion (Goldfarb et al. 2001). Similarly, major magmatism

Fig. 3 Possible causes for lithospheric instabilities required to trigger the sudden onset and extensive occurrence of crustal melting,
hydrothermal circulation and giant gold deposit formation [modified and integrated from figures in Goldfarb et al. (2001)]
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and greenstone-forming events in the Barberton Province
of South Africa (373 t Au) took place at ca. 3.23 Ga, thus
predating ∼3.08 Ga shear zone-hosted gold mineralisation
by at least 150 m.y. (de Ronde et al. 1991). This was,
importantly, also not a time of major crustal growth nor of
related orogenic gold events globally (Condie 2000;
Fig. 2b). The distinct, non-linear shape of most >3.2 Ga-
old cratons, together with the abundance of equidimen-
sional granitoids within these cratons, strongly suggests
that the formation of juvenile crust in the Early Archaean
was dominated by plume tectonics (Griffin et al. 2003).
Deformation of these terranes would have been dominated
by non-directional, radial maximum stress and fractures
rather than by the development of deep-seated, linear shear
zones. In such a scenario, few parts of the sequences would
be aligned broadly perpendicular to the maximum principal
stress, the preferred geometry for selective failure of more
competent and reactive Late Archaean rock sequences
(Ridley 1993). For example, the Early Archaean Pilbara
Craton (e.g. Van Kranendonk and Hickman 2000; Van
Kranendonk et al. 2002) generally lacks major, through-
going shear zones, and rare gold deposits are hosted be-
tween batholiths mainly in shear zones where the maximum
principal stress direction is locally at a high angle to the
rock sequence (e.g. Zegers et al. 2002). As a consequence,
the Pilbara Craton has a low gold endowment (Fig. 4)
despite its excellent exposure. Furthermore, during the
global ca. 2.7 Ga event, all these poorly endowed Archaean
gold provinces would have been shielded from extensive
tectonomagmatic events because cratonisation would al-
ready have occurred; in other words, thick SCLM keels
would have already been in place at the base of most blocks
of Middle Archaean crust.

From the above examples, it becomes apparent that no
giant orogenic gold deposits developed before ca. 2.7 Ga,
although uncertainty obviously exists as to whether a giant

Middle Archaean orogenic lode gold deposit existed in the
source area for the Witwatersrand placers before ca. 3.0 Ga
cratonisation of most of the Kaapvaal block. The formation
of Late Archaean giant gold systems was related to the first
recognised of a series of episodic periods of major crustal
growth with: (1) concurrent occurrence of lithospheric
instabilities and asthenospheric upwelling induced by
anomalous crustal thickening, (2) perturbations to accre-
tion–subduction processes via ridge subduction, slab
break-off or mantle plume interference or (3) catastrophic
mantle plume events.

Palaeoproterozoic examples

The next major crust-forming event occurred in the period
from 2.1 to 1.8 Ga, with a coincident major period of
orogenic gold deposit formation (Fig. 2). Although a plot
equivalent to that for Archaean orogenic gold deposits
(Fig. 4) is difficult to produce due to the somewhat more
variable timing of the orogenic gold systems (when com-
pared to the 2.7 to 2.55 Ga period) and the overall more
limited absolute geochronology, it is evident that the largest
metallogenic provinces with a giant gold deposit all have
short crustal histories before gold mineralisation. For
example, the Birimian greenstone belts of Ghana (2,488 t
Au; Oberthür et al. 1998) have a short total crustal history
between about 2.15 and 2.0 Ga (Leube et al. 1990). Gold
most likely formed late during the Birimian orogen (e.g.
Ashanti: Allibone et al. 2002) at ca. 2.06 Ga (Damang:
Pigois et al. 2003), although robust ages for the deposits are
rare. There is importantly no evidence for Archaean base-
ment (and thus any pre-existing SCLM) and no Archaean
xenocrystic zircons in granitoids in this belt (e.g. Oberthür
et al. 1998). Although there are few precise data on the
timing of gold mineralisation in the Trans-Hudson Orogen

Fig. 4 Diagram illustrating the
relative and absolute timing of
deformation, magmatism and
gold mineralisation in the Abi-
tibi greenstone belt, Canada;
Eastern Goldfields Province,
Western Australia (WA); eastern
Dharwar Craton, India; Rio das
Velhas greenstone belt, Brazil;
Sukumaland greenstone belt,
Tanzania; Midlands greenstone
belt, Zimbabwe; Southern Cross
Province, WA; Barberton Prov-
ince, South Africa; Pilbara
Craton, WA; and Karelian Cra-
ton, Finland/Russia. Giant
deposits listed in Fig. 1, with
endowment given
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in South Dakota, which hosts the giant Homestake deposit
(>1,244 t Au; Caddey et al. 1991), it similarly appears to
have had a short history between 1.89 and 1.73 Ga
(Houston 1992; Morelli et al. 2005). The Guyana Shield
(>622 t), which hosts one giant (Las Christinas) and several
world-class deposits (Sidder and Mendoza 1995), repre-
sents another example where there was a short crustal pre-
mineralisation history, which began <2.1 Ga with orogenic
gold deposition at ca. 2.0 Ga (Norcross et al. 2000). In
contrast, well-documented, Palaeoproterozoic orogenic gold
provinces with no giant deposits, such as Pine Creek and
Tanami in northern Australia and Pilgrims Rest in South
Africa, have widespread Archaean basement (Partington
and Williams 2000) and thus likely had a protective signif-
icant SCLM keel already in place.

Phanerozoic examples

The Phanerozoic record is punctuated by several episodes
of major crustal growth and correlated orogenic gold
deposit formation (Fig. 2). Notable periods of significant
gold ore formation occurred between 450 and 240 Ma, and
between 190 and 55 Ma. As with Precambrian analogues,
the best endowed Phanerozoic provinces with world-class
to giant gold deposits are generally characterised by short
crustal histories before gold mineralisation, Muruntau and
Jiaodong being notable exceptions (see below). For exam-
ple, crustal evolution in the western Lachlan Orogen in
southeastern Australia (>2,504 t Au) commenced at ca.
510 m.y., and thus just 70 m.y. before 440 m.y. orogenic
gold deposition and the formation of the giant Bendigo
deposit (Foster and Gray 2000; Bierlein et al. 2001a).
Similarly, the eastern Ural Mountains (>2,675 t Au), which
are host to the 669 t Berezovkoe and >467 t Kochkar
orogenic gold deposits (Kisters et al. 1999), developed on
an oceanic sequence of lower to Middle Palaeozoic age
(Puchov 1997). Temporally overlapping continental
growth along the southern margin of the Siberian Craton
gave rise to the Baikal fold belt (>3,421 t Au) which,
although poorly documented and lacking robust geochro-
nological and geochemical data, appears to have a short
crustal history (Bulgatov and Gordienko 1999) and is host
to the giant Sukhoi Log deposit (>933 t Au; Distler et
al. 2004). By way of contrast, Palaeozoic accretionary
systems in the Meguma Terrane of northeastern Canada
(Ryan and Smith 1998), the northern Puna Terrane in
Argentina (Bierlein et al. 2005b) or the part of the Lachlan
Orogen in northeastern Tasmania (Bierlein et al. 2005a),
which developed on epicratonic and significantly older,
Middle or Late Proterozoic basement, generally do not
contain giant or even world-class orogenic gold deposits.

Breakup of Pangea and terrane accretion in the Mesozoic
gave rise to the development of broad fore-arc regions and
the well-documented destruction along extensive subduc-
tion zones of relatively juvenile crust along the Pacific
margin of North America and eastern Russia to what is now
the South Island of New Zealand (Goldfarb et al. 2001).
Well-endowed orogenic gold provinces that formed in ter-

ranes with relatively short crustal histories during this
ca.285–55 Ma period include the Yana-Kolyma belt
in the Russian Far East (>4,043 t Au; Goryachev and
Edwards 1999), and the Sierra Foothills provinces (>3,110 t
Au; Böhlke and Kistler 1986) and the Juneau gold belt
(>310 t Au; Goldfarb et al. 1997) in the Cordilleran Orogen
of the western United States.

The inverse correlation between crustal longevity or
maturity of a host terrane before a major orogenic gold
event and its overall gold endowment can also be illustrated
at the scale of a Phanerozoic fold belt system. The
Palaeozoic Tasmanides orogenic system in eastern Aus-
tralia, which hosts a wide range of base- and precious-
mineral deposit types, is used as an example (Fig. 5). Many
of the known major mineral deposits display strong spatial
and temporal relationships with distinct metallogenic prov-
inces, and these are interpreted to relate directly to varia-

Fig. 5 Sketch map of eastern Australia showing the principal
components of the Tasmanides orogenic system (Delamerian,
Lachlan, New England, Thomson, Hodgkinson and Broken
River). Also shown are the locations of major orogenic gold
deposits and those mentioned in the text [modified from Bierlein and
Crowe (2000)]
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tions in the tectonic setting and lithosphere-scale processes
(e.g. Walshe et al. 1995; Bierlein et al. 2002).

As indicated above, several goldfields that host major,
world-class and giant orogenic gold deposits (e.g. at
Stawell, Bendigo and Ballarat) in the western portion
(Victoria) of the Lachlan Orogen (2504 t Au) formed above
ca. 510 Ma-old tholeiites and boninites at 440 Ma, closely
post-dating peak metamorphism of the gold host rocks
during the eastward propagation of an accretionary system
that led to the closure of an approximately 2,000 km-wide
oceanic basin via low-angle subduction (Foster and
Gray 2000; Bierlein et al. 2001a). In contrast, contractional
deformation in the eastern segment of the Lachlan Orogen
in New South Wales (622 t Au), the Lachlan Orogen in
northeastern Tasmania (56 t Au; Bierlein et al. 2005a) and
the Hodgkinson–Broken River Province of northeastern
Queensland (48 t Au; Vos et al. 2006) was governed by the
diachronous closure of several epicratonic sub-basins of
rather limited extent, which developed on Neoproterozoic
continental-character crust and/or previously dehydrated,
less juvenile Cambrian oceanic crust (e.g. Aitchison et
al. 1992; Champion and Bultitude 1994; Bruce et al. 2000;
Jenkins et al. 2002; Bierlein et al. 2005a). These relation-
ships are illustrated in Fig. 6. As shown for the Archaean
orogenic gold provinces (Fig. 4), there is a strong broad
relationship between crustal longevity before ca. 440 Ma
and gold endowment of the different Palaeozoic gold
provinces in the Tasmanides orogenic system of eastern
Australia.

A major exception to this inverse correlation between
crustal longevity as a proxy for lithosphere thickness and
orogenic gold endowment is the North China Craton,
where the Cretaceous timing of orogenic gold deposit
formation (Qiu et al. 2002) post-dates the cratonisation of
the host terrane by more than 2 b.y. (Zhou et al. 2002).
However, this craton is a well-defined rare example of a
Precambrian craton that has lost much of its SCLM via
lithospheric erosion in the Jurassic (Griffin et al. 1998)
when, in an extraordinary tectonic scenario, the penecon-
temporaneous subduction of three plates beneath the North
China Craton rapidly destabilised the SCLM (e.g. Menzies
and Xu 1998), producing asthenospheric heating and ther-

mal energy levels approaching those in initially thin litho-
sphere. Thus, the concept of relatively thin lithosphere as a
requirement for high thermal energy and consequent high
fluid flux still holds, but the proxy of crustal longevity falls
down in North China due to its unique tectonic history. The
well-endowed (>6,221 t Au) North China Craton contains
one recognised giant (Linglong), suggesting that the loss of
the SCLM keel in areas of stabilised crust can once again
make such ground fertile for the generation of giant oro-
genic gold deposits.

An explanation for the anomalous gold endowment of
the Tien Shan in central Asia, which contains the giant
Muruntau deposit (>5,290 t Au; Mao et al. 2004), is less
obvious. Although available data for both geological rela-
tionships and geochronology on the timing of orogenic
gold mineralisation in the Tien Shan (e.g. Kostityn 1996;
Kempe et al. 2001; Wilde et al. 2001; Mao et al. 2004; Wall
et al. 2004) are far from robust, because minerals that ap-
pear at more than one time in the paragenetic sequence
have been dated, Muruntau apparently formed during a
second orogenic event (i.e. Middle–Late Carboniferous
Variscan) after an earlier event (i.e. Early–Middle Ordovi-
cian Caledonian). This implies a hiatus of about 160 m.y., an
anomalously long minimum period of pre-mineralisation
crustal history for giant orogenic gold deposits, as discuss-
ed above. However, the auriferous system at Muruntau
occurs below a Devonian–Carboniferous carbonate-rich
package that, according to Wall et al. (2004), acted as a
permeability seal on these systems. The deposition of these
continental margin platformal sediments before ore forma-
tion at Muruntau indicates that the intervening period
between the Caledonian orogenic event, which led to the
deformation of the initial, Cambrian rift succession (Wilde
et al. 2001; Mao et al. 2004) and shortening during the
Variscan orogeny, involved extension and thinning of the
lithosphere. Invoking intermittent extension of the sedi-
mentary basin and correlated lithospheric thinning could
thus provide an explanation for the thermal regime that led
to the formation of the giant Muruntau deposit and explain
this exception to the general correlation between short
crustal pre-history and gold endowment. The anomalous
continental-margin setting of the mineralised sedimentary

Fig. 6 Diagram illustrating the
relative and absolute timing of
deformation, magmatism and
gold mineralisation in orogenic
gold-hosting regions of the
Phanerozoic Tasmanides oro-
genic system in eastern Austra-
lia (data from Walshe et
al. 1995; Foster and Gray 2000;
Bierlein et al. 2002, 2005a;
Downes et al. 2003). Symbols
as in Fig. 4. Note that Bendigo
is the only giant deposit
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sequences may also have been important in terms of gold
and/or sulphur sources as discussed below.

Tectonic setting and gold-enriched source rocks

As argued above, lithospheric thickness at the time of an
orogenicgoldeventmaybethefirst-ordercontrolonprovince
endowment and the presence, or absence, of giant gold
deposits. However, other factors such as fluid and metal
sourcesmayalsobecritical. Inmostcases, theultimatesource
of the gold remains undetermined and it could be argued that
no specific type of source rock is required as long as the
available gold can be leached and transported effectively to
the site of deposition (e.g. Phillips et al. 1987). However,
available field evidence, isotope patterns and scarce trace-
gold data suggest that primitive oceanic crust is an enriched
potential gold and sulphur source for the generation of
orogenic gold systems (Keays 1987; Cawood and
Fryer 1994; Haeussler et al. 1995; Bierlein et
al. 2001c, 2004; Goldfarb et al. 2001; Moss et al. 2001).
This is because of the generally higher abundance of gold in
pyrite in these oceanic rocks and the relative ease with
which the gold and sulphur can be liberated from chem-
ically reactive sulphide minerals during their prograde me-
tamorphism (Keays 1987). As primitive oceanic crust
normally implies thin lithosphere (Condie 2005), there may
well be a feedback loop between tectonic setting and
lithosphere thickness which controls both high thermal
energy and rock sequences with enhanced gold (and
sulphur) in thin lithosphere. Trace element studies have
long suggested that many of the gold-related elements are
released from underplated hydrated marine metasedimen-
tary rocks during prograde metamorphic events (e.g.
Hutchinson 1993), but the lithospheric-scale relationships
in North China, in particular, suggest an additional source
such as a primitive oceanic subducted slab (e.g. Qiu and
Groves 1999; Wyman et al. 1999). Volatile release from
subducted, refrigerated oceanic slabs (e.g. Lentz 2003),
with fluids either going directly into the overlying crust or
serpentinising mafic and ultramafic rocks that subsequently
are uplifted along major faults, may thus be important for
the formation of giant orogenic gold systems.

Siting of giants within giant-bearing provinces

From the discussion above, it is apparent that tectonic and
lithospheric parameters of orogens, possibly combined with
the gold and sulphur fertility of leachable reservoirs, dictate
whethergiantgolddepositsmayformwithin them.However,
GIS-based studies of gold endowment in some provinces
(e.g.Groves et al. 2000) and studies of the giant gold systems
themselves (e.g. Golden Mile; Phillips et al. 1996) indicate
that the exact location of these giant deposits within well-
endowed provinces will depend onmore local-scale factors.
The localisation of these giant depositswithin the favourable
provinces appears to involve the conjunction of a number of
critical factors, which can be defined in terms of a minerals

system that integrates ore fluid and metal source(s),
pathways and traps (e.g. Wyborn et al. 1994; Hagemann
and Cassidy 2000). These include a switchover from
compressional to transpressional tectonics (e.g. Goldfarb et
al. 1991), a network of long-lived translithospheric oblique-
slip faults (e.g. Hodgson 1989), fault reactivation (Cox et
al. 2001), fault geometry (Robert and Brown 1986), far
field orientation andmisalignment (Ridley 1993), presence of
complex lithostratigraphic sequences with strong rheologi-
cal contrasts promoting strain partitioning as summarised
by Colvine (1989) and Groves et al. (2000), reactive host
rocks (Phillips and Groves 1983) and the nature of
displacement and relay zones between fault segments (e.g.
Groves et al. 1998, 2003; Kerrich et al. 2000; Poulsen et
al. 2000; Goldfarb et al. 2001). The degree of concurrence
of these factors is controlled at the province scale and
ultimately determines the size of individual orogenic gold
deposits, as well as the overall distribution of these deposits
within a given, well-endowed province; that is, many small,
several world-class, and perhaps a giant ore system.

Summary and conclusions

The formation and distribution of provinces that host giant
orogenic gold deposits are defined, in both space and time,
by first-order controls that operate at the lithosphere scale.
At the highest scale, where a given province may or may
not host a giant gold deposit, the timing of gold formation
can be linked to the occurrence of major lithospheric in-
stabilities that provided the thermal engine for the gold-
forming event during peak periods of continental growth.
During each of these periods, and after the onset of, albeit
modified, plate tectonic processes in the Late Archaean,
widespread catastrophic mantle plume events, crustal
thickening, accretion–subduction, slab rollback and de-
lamination of subducted oceanic lithosphere and the
subduction of spreading ridges resulted in extensive asthe-
nospheric upwelling. This, in turn, triggered and sustained
pervasive crustal melting, volcano-intrusive activity and
the formation of juvenile crust. The latter appears to be a
crucial ingredient in the generation of giant orogenic gold
systems as hydrated, mafic (fore-arc to back-arc) crust is far
more likely to provide the fluids and metals required to
form a giant gold system than pericratonic and felsic ig-
neous rocks. The longevity of crust in the host orogen can
be used, in most cases, as an approximate proxy for syn-
gold lithosphere thickness, with crustal longevity normally
inversely proportional to gold endowment and the presence
of giant orogenic gold deposits. Along the edges of older
cratons, or in extensional basins within them adjacent to
convergent margins, linear orogens that contain primitive
crust and record asthenospheric upwelling and thinning of
the lithosphere at or just before gold mineralisation are the
most likely to contain well-endowed gold provinces and
giant gold deposits. Thermal regimes to drive giant hydro-
thermal systems are fundamental to such scenarios and
intrinsically gold-enriched juvenile oceanic rocks may be a
consequence of them.
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In rare cases, such as the North China Craton, widespread
orogenic gold mineralisation may significantly post-date
original tectonism in the hosting sequences, locally ne-
gating the inverse relationship between crustal longevity
and provincial gold endowment. In the case of the North
China Craton, the signal for thin lithosphere at the time of
gold mineralisation (as determined by detailed geochronol-
ogy, seismic tomography and SCLM mapping) was rapid
delamination of SCLM as a result of an anomalous Jurassic
plate configuration involving three penecontemporaneous
directions of subduction underneath the craton. Thus, lith-
ospheric thinning was still the controlling process. In other
cases such as in the Tien Shan, the site of the giant
Muruntau deposit, the major phase of orogenic gold min-
eralisation appears to have been during a Variscan orogenic
event after Caledonian orogeny such that again, the crustal
longevity proxy does not function well. It is noticeable that
this is a rare case of the involvement of post-Caledonian and
pre-Variscan back-arc to continental margin sedimentary
sequences in an orogen, implying potential extension and
lithospheric thinning before the second, Variscan orogeny,
and also providing anomalously gold- and sulphur-enriched
local sources in the continental margin sequences.

The actual position of giant gold deposits within a well-
endowed province then requires the conjunction of several
critical factors that operate at the province scale. These
include factors that relate to (1) superior plumbing systems,
such as oblique-slip transcontinental fault and shear zones,
jogs in these shear zones and traverse faults that splay off or
segment these shear zones; (2) ore traps such as reactive
host rocks and rheological contrasts between them and
(3) seals such as metasedimentary rock sequences or thrust
sheets of relatively impermeable rocks overlying structur-
ally permeable and reactive host rocks.

In summary, in the order of descending scale, giant
orogenic gold deposits are related to the conjunction of:
(1) periods of rapid growth of continental crust and asso-
ciated lithospheric and resultant asthenospheric instability;
(2) intrinsically thin or thinned, preferably primitive, lith-
osphere just before gold deposit formation to further en-
hance orogen-scale thermal energy and potentially provide
Au-rich source rocks—for most provinces, crustal longev-
ity is a good proxy for lithospheric thickness; (3) suitable,
essentially linear geometries with spaced misalignments
along crustal-scale structures within permissive, largely
low-strain provinces to maximise focused fluid flow and (4)
suitably reactive lithostratigraphies with strong rheological
contrasts to provide efficient traps and seals for highly
focused fluid flux enhanced by the previous factors. The
concepts presented in this paper are fundamental to im-
proved conceptual gold exploration, although further re-
search is required to verify the potential interconnectivity of
first- and second-order critical factors, and anomalous
examples require further critical, integrated research and
robust geochronology.
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