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4Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA
5Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
6Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA

Accepted 2006 January 17. Received 2005 December 13; in original form 2005 May 4

S U M M A R Y
This paper focuses on the role of sensitivity analysis in studies of water transport in the
environmental and geophysical sciences. Sensitivity analysis is useful in model development
to determine how changes in parameter input will affect a model’s response. It is also used
in data assimilation to incorporate observations into a model. The adjoint method allows an
efficient calculation of a model’s sensitivity when the number of parameters exceeds the number
of observations. In this paper we present studies demonstrating the use of the adjoint method
for modelling water transport in both the Earth’s crust and mantle.
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1 I N T RO D U C T I O N

It is generally not possible to obtain an exactly true answer when

calculating a numerical solution of a physical system model because

there are always several sources of uncertainty. All physical input

parameters are associated with some degree of error, and it is impos-

sible to include all the parameters that actually influence the system

in the model. Mathematical simplifications generate additional un-

certainties in a model. A major limit on controlling the uncertainty

of a model is the ability to isolate the system from its surroundings

(Ronen 1988a). Sensitivity analysis looks at how uncertainties in its

input parameters propagate through a model. As geophysical mod-

els become more complicated it becomes vital that efficient methods

be developed for understanding the sensitivity of these models to

hundreds or even thousands of model parameters (Cohen 2005).

This paper will focus on physical systems described by sets of

partial differential equations. We are interested in how the solu-

tions of these differential equations vary in response to parameter

variation. The sensitivity coefficient is defined as the change in an

output variable, ψi (p), of the system in response to a change in an

independent parameter, pj (Ronen 1988a; Cacuci 2003):

Si j = �ψi

�p j
, (1)

where Sij is the sensitivity coefficient matrix. Examples of pa-

rameters include material properties, initial conditions, boundary

conditions, values on interfaces, interface location and numeri-

cal discretization factors. Examples of common output variables

are velocities and temperatures. A sensitivity coefficient is basi-

cally a derivative, that is, the rate of change of some cost function

with respect to another variable, mathematically, a Fréchet or even

a Gâteau derivative; see, for example, (Tarantola 1987; Marchuk

1995; Cacuci 2003). The differentiation method involves solving

the forward differential sensitivity equation for the sensitivity coef-

ficients (Tomović 1963; Cacuci 1988; Cacuci & Hall 1984).

Often a cost function is chosen to give a representative idea of

the state of the system so that changes in it measure the cost paid

by the system for a change in a given parameter. The cost function

is also sometimes referred to as the response or measure and is de-

fined by some function of which the parameters are the independent

variables. The cost function depends on the dependent variables of

a model, which are related to the independent parameters. It is given

by J (ψ(p)), where ψ(p) is a dependent variable, the results of the

model. Cost functions can be peak or average values over time in-

tervals, or they can be a value at a fixed point in space or over an

interval within a domain or along a boundary; they can be virtually

any statement that involves a dependent variable. Some possible

cost functions are travel times, pressures, concentrations or fluxes.

In this case ψ(p) usually represents the solution to a set of differen-

tial equations. The derivative of J can be separated into two parts: a

derivative of the cost function with respect to the model dependent

variables and then a derivative of model dependent variables with
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respect to model independent variables:

Si j = ∂J
∂p j

= ∂J
∂ψi

∂ψi

∂p j
. (2)

The first part of eq. (2) depends on the sensitivity cost function

chosen, which can be almost anything, but which is usually easy to

deal with. The second part is just the derivative of the model (usually

existing as a computer code) with respect to its parameters; this part

is much more difficult to compute but is always the same for any

cost function.

Often we want to find relative importance of a single parameter

over a given time interval, [0, τ ]. This is known as the relative

sensitivity. A cost function is defined as:

J (x, p) =
∫ τ

0

f (t ; x, p) dt. (3)

In this case the Gâteaux differential is defined as:

δJ
(
x0, p0; δx, δp

) =
∫ τ

0

∂ f

∂x
|x0,p0 · δx dt

+
∫ τ

0

∂ f

∂p
|x0,p0 · δp dt, (4)

where δx and δp are perturbations around x and p. The integrand is

the tangent linear model (TLM) (Kalnay 2003). To find the relative

sensitivity of a given parameter, pj, we define the perturbation as:

δp = (0, . . . , δp j , . . . , 0). (5)

We then use the Gâteaux differential with respect to this perturba-

tion, δJ j , to compute the relative sensitivity (Zou et al. 1993):

s j = δJ j

J
δp

p0
j

. (6)

The magnitude of sj can then be used as a guide to the importance

of a given parameter.

Knowledge of sensitivities can be a valuable adjunct to models

per se. Sensitivities can be and should be used in experimental and

observational program design to determine where to monitor output

and how much data to collect. In process design, sensitivities are

used to locate critical points. For inverse problems, sensitivities are

part of any algorithm to find initial conditions, boundary conditions,

and/or material properties that best match a given set of observations.

Sensitivities are also needed to determine a model’s predictability,

by identifying areas in space and/or time where rapid growths in

error may occur. The state of the art in sensitivity analysis can be

found in (Cacuci et al. 2005; Cacuci 2003).

The calculation of model sensitivities is important to many sci-

entific and engineering fields, such as in atmospheric models (Hall

& Cacuci 1983; Zhu & Navon 1998; Li & Navon 1998) and in

models for prediction of water flow and floods in systems involving

rivers, canals and estuaries (Sanders & Katopodes 1999; Sanders &

Katapodes 2000; Bélanger et al. 2002; Bélanger & Vincent 2004). It

has been crucial to nuclear engineering since its inception (Wigner

1945; Stacey 1974; Greenspan 1975; Cacuci 1990; Cacuci et al.
2005). Sensitivity analysis is used in oil reservoir engineering for

economic analysis and determining well placement (Wu et al. 2003;

Li et al. 2003). It is important in process control both in chem-

ical engineering (Whitecombe et al. 2003) and other industries

(Homescu & Navon 2003; Gunzburger 2003). An accurate knowl-

edge of the sensitivity of nuclide migration time is essential in mod-

els of nuclear waste disposal sites (Lee et al. 1994). Sensitivities are

needed for porous flow and hydrology models used in water resource

control (Christiaens & Feyen 2002; Kunstmann et al. 2002; Stauffer

et al. 2002; Francos et al. 2003). Sensitivities are also important in

assimilating data into and solving inverse problems in atmospheric

transport and ocean circulation (Bennett 1992; Kalnay et al. 2000;

Yang & Hamrick 2002; Le Dimet et al. 2002; Bennett 2002; Kalnay

2003; Erofeeva et al. 2003), weather forecasting (Cacuci et al. 2005),

atmospheric chemistry (Daescu et al. 2000; Vautard et al. 2003;

Hess & Vukicević 2003), porous media characterization (Hughson

& Jim Yeh 2000; Jim Yeh et al. 2002; Altmann-Dieses et al. 2002;

Delay & Porel 2003), astrophysics (Reynolds et al. 1999), mantle

convection (Bunge et al. 2003; Ismail-Zadeh et al. 2004), chemical

transport in biosystems (Kaminski et al. 2003), and medicine (Li

& Xing 2000). Efficient sensitivity analysis is essential for global

climate modelling due to the unusually large number of significant

parameters (Cacuci & Hall 1984; Cacuci et al. 2005).

In this paper we will focus on differential sensitivity analysis

(DSA) and the use of the adjoint method to determine sensitivities

in environmental and geophysical flow calculations. First, we review

various ways to compute sensitivities.

2 C A L C U L AT I N G S E N S I T I V I T I E S

The simplest procedure used to determine the sensitivity of a model

is the ‘brute force’ method. This involves varying a selected input

parameter, recomputing the model, and comparing how the output

changes. This method requires the model to be completely recom-

puted to test the sensitivity to each individual parameter over a de-

fined range. The total number of computer runs will be equal to the

number of parameters, plus one. It is only practical to use this method

on a very limited number of parameters over a very specific range

of values if rerunning the model requires considerable computation

time. Although this method gives useful results about a specific pa-

rameter of interest, it is generally not feasible for large systems with

distributed parameters. A major limitation of the method is that the

parameters to be studied must be identified a priori. This means that

important sensitivities that were not expected may be missed.

The goal of interval analysis is to find the variation in a response

if the parameters are allowed to vary around a central value within

certain bounds (Hansen 1969; Deif 1986). This method involves us-

ing interval arithmetic to calculate the bounds of responses that are

returned when the parameters are within a given range. The method

has two main drawbacks, both related to the necessity of using in-

terval arithmetic (Deif 1986). The first is that computer hardware is

not designed to perform interval arithmetic efficiently. The second is

that, because of the subdistributive property of interval arithmetic,

the method tends to give unnecessarily large bounds, resulting in

an exaggerated estimate of a model’s sensitivity. However, improve-

ments have been made to reduce this limitation (Neumaier 1990;

Gravilliers et al. 2004).

Statistical and stochastic techniques have been developed to cal-

culate sensitivity for systems whose parameters are distributed ac-

cording to a probability distribution (Gaussian, Levy and the like).

For laboratory measurements, one usually receives different answers

when repeating the same measurement. This variation is due to

stochastic error and statistical methods are used to gain maximum

information from the results. There is a rich literature on stochastic

processes (McKay 1988), but we are not concerned with stochastic

variables here.

Perturbation analysis is an additional method that is used to cal-

culate sensitivities. The classical perturbation theory (CPT) pro-

vides sensitivity for the linearized analogue of the model under

question (Gandini 1988). The method estimates the change of the
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system’s eigenvalues with respect to a parameter perturbation. The

main drawback to the perturbation method is that it is based on lin-

ear functional analysis (Gandini 1988; Cacuci 1988) so a linearized

form must be used. Since the perturbation theory involves a Taylor

Series expansion, it may be difficult to determine whether the first

term in the series is adequate to completely describe the sensitiv-

ity without knowledge of how the system converges (Cacuci 1988).

This approach can also be time consuming when many perturbations

are to be studied because a calculation must be computed for each

perturbation (Delay & Porel 2003).

The generalized perturbation theory (GPT) is also known as vari-

ational sensitivity analysis (Henryson et al. 1974). This method was

developed in nuclear reactor theory to take into account effects aris-

ing both directly from the perturbation of system parameters and

indirect effects in changes to the state function due to system al-

teration without needing to recalculate the state function (Cacuci

1988). It requires the existence, uniform continuity, and derivability

of derivatives of operators and state functions with respect to system

parameters and space–time variables (Cacuci 1988). The GPT has

many of the same drawbacks as the CPT, including relying on the

linear equations, the necessity of Taylor Series expansion and the

need to solve many additional equations.

Functional analysis is also based on perturbation theory but avoids

solving the perturbation equations. It is used to estimate an upper

bound for the uncertainty by analysing the mathematical properties

of the uncertainty operator (Ronen 1988b). This is done by finding

an upper bound, which is the norm of the uncertainty operator, in a

given space (Ronen 1988b). The main drawback of the method is

that it does not give exact values of the sensitivity coefficients, only

estimates of the uncertainty in a model based on a given perturbation.

Let a system be described by differential equations of the form:

F (ψ̈(p, t), ψ̇(p, t),ψ(p, t)) = 0. (7)

If δpj is a small perturbation of parameter pj, the sensitivity coeffi-

cient for the output variable ψ i is defined as:

lim
δp j →0

(
ψi (t, p j + δp j ) − ψ(t, p j )

δp j

)
= dψi (t, p j )

dp j
= s(t, p j ). (8)

The forward sensitivity equation can then be formulated using the

chain rule:

∂F
∂ψ̈i

s̈ + ∂F
∂ψ̇i

ṡ + ∂F
∂ψi

s = ∂F
∂p j

. (9)

This equation can be solved for the sensitivity coefficient, s. Note

that this gives the sensitivity of a specific output variable, ψ i with

respect to a specific input variable, pj. This can then be used in

eq. (2) to the find the sensitivity of the cost function with respect to

pj. This approach can also be used for non-linear systems (Cacuci

1988, 2003). Its main drawback is that it requires solving the for-

ward sensitivity equation for each parameter in turn for each output

variable.

The Green’s function method for sensitivity analysis involves re-

placing differential equations for the sensitivity with a set of in-

tegrals through definition of a Green’s function. The approach is

useful in applications such as chemical kinetics where a set of stiff

differential equations can be replaced by a set of smooth integrands

(Hwang et al. 1978). One drawback to this approach is that a time

grid must be chosen prior to the calculation. This could lead to

problems if rapid variations in the integrand occur at unexpected

times.

Statistical methods are often combined with ‘response surface

methods’ to glean as much information as possible from recompu-

tations done for sensitivity analysis (Cacuci 1988). The modeller

selects a small number of important parameters and design points

in the parameter space where the model will be recalculated. These

recalculated results are used to construct ‘response surfaces’ that

approximate the behaviour of the response measure as a function

of the chosen parameters. These response surfaces are then used in

statistical studies to estimate sensitivities and uncertainty distribu-

tions. This method, however, has several drawbacks (Cacuci 1988).

Only a small subset of parameters can be tested due to the cost of

recalculation. Therefore, assumptions must be made about param-

eter sensitivity and importance prior to conducting the sensitivity

analysis. This makes it relatively easy to miss important behaviours.

Another statistical technique is the Fourier amplitude sensitivity test

(FAST) (Cacuci 1988) that calculates statistical mean values and

standard deviations for model responses. Each parameter is varied

as a periodic function of a search variable. The system solutions

are then periodic, and the sine coefficients of the resulting Fourier

series are approximately related to the sensitivity coefficients av-

eraged over the uncertainties of all the parameters in the system

(Hwang et al. 1978). FAST is perhaps a misnomer, however, as this

method requires a substantial number of recalculations. A method

for calculating operator responses with the adjoint method has been

developed that avoids the need for large numbers of recalculations

(Zou et al. 1993).

The adjoint method, which will be discussed in more detail in

Section 2.1, avoids the need to solve the sensitivity equations indi-

vidually for each parameter (Cacuci 1981a,b, 2003). It involves the

use of a functional derivative to derive an auxiliary set of equations,

the adjoint equations that can be solved for the adjoint variables

(Bunge et al. 2003; Cacuci 2003). The sensitivity coefficients then

are determined from a defined convolution of forward and adjoint

variables. The adjoint approach is very efficient, especially if the

number of parameters involved becomes large. When the adjoint

equations are manipulated appropriately, the adjoint of a model can

be computed by using the original model coding, with minor mod-

ifications, even when the model is non-linear. The modifications

result in a new source term for the adjoint equations. Many adjoint

methods use only the first derivative and therefore have some of

the same drawbacks as CPT and GPT, but second order adjoint

methods have been developed (Ngodock 1996; Le Dimet et al.
1997).

Another use of sensitivity coefficients is in variational data as-

similation, which involves incorporating observational data into nu-

merical simulations. The word variational is used to imply that the

method can incorporate data of ‘varying’ trustworthiness (Le Dimet

& Navon 1988). Sensitivity studies are essential to this process to ad-

just the simulation to best match the given observations. Variational

data assimilation has been extensively researched in the meteorol-

ogy and oceanography community in order to understand how to

best introduce large quantities of data with widely varying qualities

and spatial resolutions into numerical models attempting to forecast

the complicated coupled behaviour of the ocean and atmosphere

(Bennett 1992, 2002). One common and powerful algorithm is

known as 4-D variational assimilation (4D-VAR). A forward fore-

cast model, such as a weather prediction based on noisy initial data,

is compared with observable data throughout the runtime. Measure-

ments of the error between the predicted and observed values are

then taken, and the adjoint sensitivity coefficients are used to adjust

the initial data and obtain an improved forecast. This involves find-

ing the initial conditions that minimize the error and is therefore,

actually an optimal control problem (Gunzburger 2003). Minimizing

the error involves the need to know not only the sensitivity coeffi-

cients but also their concavity. This has lead to the development of
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second-order adjoint sensitivity analysis (Ngodock 1996; Le Dimet

et al. 1997).

Advances in algorithmic differentiation (AD) have greatly en-

hanced the ability to calculate sensitivity coefficients (Griewank

2000). Traditionally, derivatives have been calculated using the dif-

ference quotient. This method, however, is severely hampered by

truncation errors and loss of significant digits. AD, however, al-

lows derivatives to be calculated with no truncation error and with-

out resorting to symbolic differentiation. It works by systematically

applying the chain rule to the actual numerical values throughout

the evaluation trace of the function, where the evaluation trace is

a record of floating point values and the operations that computed

them (Griewank 2000). Basically, the sensitivity of the cost function

is calculated for each intermediate step in the evaluation trace with

respect to a given observable. This requires augmenting the evalua-

tion trace with the necessary extra code lines and variables. This can

be done through the use of a pre-processor. The AD is especially

powerful when used with the adjoint method since the augmented

evaluation trace does not need to be modified for each parameter.

Several pre-processors have been developed that use AD, including

GRESS (Horwedel 1991, 1992), ADIFOR (Bischof & Griewank

1992), and TAMC (Giering & Kaminski 1988). These codes read

in application codes and create new codes that calculate sensitivity

coefficients for specified sets of variables by adding the additional

lines and variables needed to the evaluation trace. The primary draw-

back of this method is that it tends to be not as efficient as a chain

rule or adjoint version of the application code written by someone

with intimate knowledge of the application code’s structure.

2.1 Adjoint methods

Our goal is to provide an efficient way of computing the sensitivity of

some pre-defined cost function with respect to a distributed param-

eter. In the context of fluid flow and mass and energy transport, this

means determining the sensitivity of a functional of an observable

quantity, such as concentrations, fluxes, pressures, or temperatures,

to changes or uncertainties in system parameters such as diffusivity,

topography or numerical discretization parameters. For example,

one might want to know the sensitivity of arrival time of a particular

concentration level at some distance from a source to the spatial

variability of sorption properties. The methodology is applicable to

a wide range of disciplines.

An advantage of using the adjoint sensitivity approach is that

it is well understood, having been used by a variety of disciplines

since its first introduction during the Manhattan Project (Wigner

1945). The adjoint operators, originally defined by Lagrange, have

been thoroughly explored theoretically (Marchuk 1995). The adjoint

method uses a reverse or backward mode of differentiation to find

the sensitivity coefficients. This makes it much easier to implement

AD methods to find sensitivity coefficients. Instead of calculating

the sensitivity of the measure at each intermediate step with respect

to an observable, one calculates the sensitivity of the measure with

respect to each intermediate value (Griewank 2000). This means we

have only one dependent variable rather than a dependent variable for

each step in the evaluation trace so we can use the same augmented

evaluation trace in the AD method to find the sensitivity with respect

to all the observables rather than constructing a new augmented

evaluation trace for each observable.

The method has been broadly applied in solving many prob-

lems in the physical sciences, including nuclear reactor safety issues

(Wigner 1945; Cacuci et al. 1980; Oblow & Pin 1986; Cacuci 1990;

Cacuci et al. 2005), oil reservoir engineering for well placement

studies and economic analyses (Chavent Duprey & Lemornier 1975;

Li et al. 2003), oceanography and meteorology (Errico & Vukicević

1992; Errico 1997; Li & Navon 2001; Bennett 2002), fluid flow con-

trol and optimization (Gunzburger 2003; Homescu & Navon 2003),

chemical engineering for process control (Rabitz 1981; Scott 1988;

Van Noorden et al. 2003), economics (Seierstad 1982; de Jongh

1997) and water resources management (Sykes et al. 1985; Kool

et al. 1987; Knopman & Voss 1987, 1988; Katopodes & Piasecki

1996). It has also been used for estimating and controlling error in

numerical solutions (Cao & Petzold 2004). Navon (1998) provides

a survey of adjoint methods of parameter estimation in meteorology

and oceanography. The adjoint equations combined with variational

data assimilation to create the 4D-VAR method has become essen-

tial to meteorologic and oceanographic forecasting (Bennett 2002).

The method was first introduced in the late 1980s and early 1990s

(Le Dimet & Talagrand 1986; Talagrand & Courtier 1987; Le Dimet

& Navon 1988; Tziperman & Thacker 1989; Courtier & Talagrand

1990). One of the first applications to an operational meteorological

model was by Navon et al. (1992).

Here we will focus on the development of adjoint models for use

in computational fluid dynamics (CFD). In this case, we generally

have a non-linear model,M that maps a set of input parameters, p =
(p1, . . . , pk), in k-dimensional space into a set of output variables,

ψ = (ψ 1, . . . , ψ n), in n-dimensional space. We can then define a

scalar cost function, J (ψ) = J (M(p)) that is designed to give a

representation of the state of the model. In CFD, heat or concen-

tration fluxes are commonly used as cost functions. If we add a

small perturbation to the input, the resulting perturbation to the cost

function can then be approximated as:

δJ = 〈∇ψJ , δψ〉 = 〈∇ψJ , Mδp〉 = 〈∇pJ , δp〉, (10)

where M is the Jacobian:

Mi j = ∂M j/∂pi , (11)

and the inner product is defined such that:

〈∇ψJ , δψ〉 =
(

∂J
∂ψ1

, . . . ,
∂J
∂ψn

)
· (δψ1, . . . , δψn). (12)

This gives the TLM (Kalnay 2003). We can use eq. (10) to find the

sensitivity. This is known as the forward method because it finds

the sensitivities by starting with the input parameters and moving

forwards.

The backward or adjoint method starts with the output variables

and works backwards. It is much more computationally efficient

because it is more amenable to AD (Section 2), when there are

generally many less output variables than input parameters. The

adjoint of an operator is defined as:

〈A∗x,ψ〉 = 〈x, Aψ〉. (13)

If we are limited to a finite-dimensional real vector space as in most

CFD problems, the adjoint of an operation is simply the transpose:

A∗ = AT. (14)

Therefore:

〈∇ψJ , Mδp〉 = 〈M∗∇ψJ , δp〉. (15)

From eq. (10) we get:

∇pJ = M∗∇ψJ = MT∇ψJ . (16)

We then define the adjoint variables such that:

∇ψJ = δψ∗. (17)
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The adjoint variable, δψ∗, can then be used to find the sensitivity

coefficients:

∇pJ = MT(∇ψJ ) = MTδψ∗, (18)

and the gradient of the cost function with respect to the parameters

gives the sensitivity coefficients. If we have an integration of � time

steps, we can find the gradient of the cost function with respect to

the input variables by moving backwards from the gradient of the

cost function with respect to the output:

∇pJ = MT∇ψJ = MT
0 . . . MT

�∇ψJ
= MT∇ψJ = MT

0 . . . MT
�δψ(�)∗. (19)

Note that although we actually began with a non-linear model both

the TLM and adjoint models used to find the sensitivity coefficients

are linear.

2.2 4D-VAR

When simulating geophysical fluid flows, it is never possible to de-

fine exact deterministic equations controlling the evolution of the

system. One reason for this is that there are always uncertainties

in our knowledge of the system. Another reason is that there are

many processes such as conduction of heat and viscous dissipation

that occur at subgrid scales. These processes must be estimated by

diffusivity terms. The equations, therefore, are one piece of data

available about the system. Other data available to the modeller are

the observations collected both at the start of the model time (initial

conditions) and throughout the model runtime. These observations

themselves have two main types of uncertainties. The first is the

measurement error. The observations are likely to be of different

types with widely varying uncertainties. For example, for an ocean

simulation one may have temperatures inverted from satellite data

and buoy measurements of wave speeds. For a mantle convection

simulation one may have seismic tomographic data showing tem-

perature anomalies in the mantle, surface heat flux measurements,

and past plate positions. Also, the available observations will likely

have widely varying spatial and time coverage. This motivates a

search for a method that can account for the heterogeneous nature

of the available data. One way to formulate the problem is as an

optimal control problem. We want to find the optimal prediction for

the natural fluid flow that both fits the available observations and

is constrained by the flow equations (Le Dimet et al. 1997, 2002).

The adjoint method for solving optimal control problems has been

well developed in CFD engineering in order to solve problems such

as the optimal shape of a wing for minimizing drag (Gunzburger

2003). The 4D-VAR method uses optimal control adjoint methods

to find the trajectory in space–time of the output variables, ψ that

minimize the cost function while obeying the physical equations

that act as constraints. This gives a problem of minimization with

constraints (Talagrand & Courtier 1987).

In an optimization problem, the goal is to find the parameters,

p that minimize a given cost function, J (p, obs), subject to the

constraints of the physical equations, E (Gunzburger 2003). The

physical equations of fluid flow in the system are given by:

E(x, t, p) = 0. (20)

We can then define a cost function that measures the error between

the prediction calculated by the physical equations using the chosen

parameters and the observations:

J =
∫ τ

0

∫
�

f(obs, p) d� dt, (21)

integrated over the model volume, �, and total time, τ .

We now have an optimization problem that requires minimizing

eq. (21) subject to the constraints of eq. (20). Usually, when resolving

a problem with constraints, one forms the Lagrangian:

L(p,λ) = J (p) +
∫ τ

0

∫
�

λ(x, t) · E(p, x, t) dx dt, (22)

whereλ(x, t) are the undetermined Lagrangian multipliers (Sanders

& Katopodes 1999). One of the shortcomings of the 4D-VAR

method is that the use of a strong constraint assumes that the model is

perfect. There are methods to account for this problem by including

the model error in the cost function.

We want to find the extrema of the Lagrangian (Le Dimet &

Talagrand 1986). In order to accomplish this, we use the varia-

tional operator, δ, of the Lagrangian. Taking the variation of the

Lagrangian, we obtain:

δL = ∂L
∂p

δp + ∂L
∂λ

δλ. (23)

We have also formed the TLM of our problem in the above step

(Ehrendorfer 1992). For an arbitrary displacement, (δp, δλ), we

have reached an extremum when δL = 0 (Daley 1991). The deriva-

tive of the Langrangian with respect to each displacement direction

must be zero at the extremum:

∂L
∂λ

= E(p, x, t) = 0, (24)

and

∂L
∂p

= ∂J
∂p

+ ∂G
∂p

= 0, (25)

where G is:∫ τ

0

∫
�

λ(x, t) · E(p, x, t) dx dt. (26)

We can see, however, from eq. (18) that if we integrate the time

integral from τ to 0, G is simply the adjoint equations, and the La-

grange undetermined multipliers are the adjoint variables (Schröter

et al. 1993). Of course it is also important to know whether one is

approaching a minimum or maximum in the Lagrangian. This re-

quires the use of the second-order adjoint method (Ngodock 1996;

Le Dimet et al. 1997). Eqs (24) and (25) are the Euler–Lagrange

equations and can be solved using the method of representers

(Bennett 1992, 2002).

3 C O N TA M I N A N T T R A N S P O RT

E X A M P L E S

Two simple examples illustrate the utility of the adjoint approach,

in the context of steady porous flow and transient transport. The

transport equation for a sorbing tracer with saturated flow is:

ε(1 + R)
∂C

∂t
+ ∇ · (vC) − ∇ · (εD∇C) = Ṡ(x, y, t), (27)

where C is concentration; v is water velocity; D is diffusiv-

ity/dispersivity; Ṡ is a source/sink function; t is time; R is retar-

dation; and ε is the porosity. R, v, and ε may be spatially varying.

The equation governing flow is given by:

∇ · (ρv) = −∇ ·
(

ρ
k

μ
∇ p

)
= Ṁ, (28)

where p is pressure; k is permeability; Ṁ is a mass source/sink;

ρ is fluid density; and μ is fluid viscosity. In eq. (28), Darcy’s law

relates velocity, v, and the pressure gradient in soils at low Reynolds
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912 C. A. Hier-Majumder et al.

Figure 1. Faulted rock sequence for example demonstrating sensitivity of

contaminant transport model to permeability distribution. Low-permeability

rock is dark grey, intermediate permeability rock is medium grey and high-

permeability rock is light grey. Outflow refers to the narrow strip where the

vertical fault intersects the bottom boundary.

Figure 2. Values of dJ /d ln k at each point in the domain as computed

with the adjoint algorithm. The absolute values are not important since this

is an artificial problem.

number. Boundary and initial conditions are given as appropriate for

both equations. The sensitivity of C and any functional involving C
to any of the other variables appearing in eqs (27) and (28) along with

the boundary and initial conditions can be determined efficiently

through use of the adjoint concept.

The sensitivity of a functional of C with respect to variations in

permeability, dispersion, and sorption, is important in studies of so-

lute transport. An example for a cost function measuring cumulative

vertical contaminant flux across a plane at a particular depth in a

domain is:

J =
∫

d Ah

∫ τ

0

wlCδ(y − y0) dt, (29)

where Ah is the area; w l is the liquid mass flux; and y0 is the moni-

toring depth. We emphasize, though, that J can have a great variety

of forms, involving, either explicitly or implicitly, the dependent

variables. For the forward problem defined here, we will naturally

be interested in dJ /d R or dJ /dk, since R and k (the permeability

field) are the major distributed independent variables. The particular

forms for these will be given in the next section.

Following the optimization procedure in Section 2.2, the adjoint

equations corresponding to the forward model (eqs 27 and 28) were

obtained from integration (eq. 25):

−ε(1 + R)
∂C∗

∂t
− ∇ · (vC∗) − ∇ · (εD∇C∗)

= −C∗∇ · v + ∂J
∂C

, (30)

−∇ ·
(

ρ
k

μ
∇ P∗

)
= ∇ ·

(
C

k

μ
∇C∗

)
, (31)

and then discretized. The last term in eq. (30) is easily derived from

eq. (29) and is given by:

∂J
∂C

= wlδ(y − y0). (32)

This will of course depend on the particular definition of J .

For each dependent variable, there is a forward equation and a cor-

responding adjoint variable (indicated by *) and adjoint equation.

Boundary conditions for the adjoint variables have the same form

as for the forward model, except that they are homogeneous. Fur-

ther, instead of an initial condition, the time-dependent adjoint C∗

satisfies an end time condition, C∗(x, τ ) = 0, allowing eq. (30) to be

solved stably, even though running backwards in time. eq. (30) has

been manipulated to have the same form on the left side of the equal

sign as the forward model, eq. (27), except for sign. This allows

the use of the same numerical discretization treatment used in the

forward model. The right-hand side of eq. (30) contains new source

terms compared to eq. (27). The first source term results from the

manipulation of the original adjoint equation, and the second derives

from the cost function J .

The numerical procedure consists of several steps. First, eq. (28)

is solved for pressure, and then the steady state velocity field v is

computed from Darcy’s law. Eq. (27) provides the forward solution

for C(x, t). Next the adjoint solution, C∗, of eq. (30) is computed,

running backwards from the end time, τ , to the initial time. Then

eq. (31) provides P∗. Finally the forward and adjoint solutions are

used to compute the sensitivity of J from integration of eq. (25).

3.1 Sensitivity of solute concentration to permeability

The first example applies the adjoint method to computation of

the sensitivity of solute outflow to the permeability distribution for

contaminant transport in a faulted rock sequence. The 2-D domain

consists of three materials (Fig. 1), a low-permeability rock (dark

grey), an intermediate permeability soil (medium grey), and a high-

permeability fractured layer (light grey) with a vertical fault. Side

boundaries are no-flow. Inflow occurs along two narrow segments

of the upper boundary as indicated in Fig. 1, with the Inflow 1 rate

Figure 3. Distribution of dJ /d R(x, y) for the case with a five-spot moni-

toring arrangement. Injection site is shown by black X labelled I and extrac-

tion site is shown by black X labelled E. Monitoring locations are shown by

numbered white crosses.
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Figure 4. Distribution of dJ /d R(x, y) for the case with collinear moni-

toring locations. Injection site is shown by black X labelled I and extraction

site is shown by black X labelled E. Monitoring locations are shown by

numbered white crosses.

larger than that of Inflow 2. Outflow is tracked through the indicated

segment at lower right. After a steady flow has been established, a

contaminant is injected below the centre of the Inflow 1 region, at

half the depth of the top soil layer. Here, the contaminant is assumed

to be non-sorbing, that is, R = 0 in eq. (27). We define cumulative

contaminant transport, J , through the outflow as:

J =
∫

d Ah

∫ T

0

wlCliδ(y − y0)[H(x − x1) − H(x − x2)] dt, (33)

where H is the Heaviside function, defined from (x1, y0) to (x2, y0)

that gives the horizontal location of the outflow region, and y0 defines

the depth of the outflow measurements. Integration of eq. (25) shows

that the sensitivity of J , with respect to the permeability field, is:

dJ
d ln k

= ρv · ∇ P∗ −
∫ τ

0

Cv · ∇C∗ dt. (34)

It is convenient to take this derivative with respect to the log of

permeability because permeability can vary over many orders of

magnitude. Note that the derivative depends on the solution of both

forward equations and on both adjoint variables.

Eq. (34) is derived in the following way. Eq. (33) is perturbed

with respect to C, permeability k and pressure P. The forward model

(eqs 27 and 28) are also perturbed with respect to C, P, and k. Since

the forward perturbed equations are satisfied by the perturbed fields,

subtracting the unperturbed equations from the perturbed equations

is still 0. These equation differences are weighted by as yet undefined

functions and added to the perturbation of eq. (33). We can do this,

since the added terms, being 0, do not change eq. 33 or its perturbed

form. That sum is then integrated over time and space. Integration

by parts allows recombination of terms, and almost magically, the

perturbation of J simplifies to an integrand involving a term times

dk, if a term multiplied by dC is taken to be 0, and another term

multiplied by dP is taken to be 0. These so-constrained terms in-

volve the previously unknown weighting functions. Since they were

unassigned, we are free to choose them so that the coefficients of

dP and dC become 0. The forms of these coefficients are the ad-

joint equations (eqs 30 and 31), and the unassigned variables are

the adjoint variables C∗ and P∗. In the process of performing the

integration by parts mentioned earlier, so-called natural boundary

conditions arise. If we further choose the adjoint variables to satisfy

them, and we are free to do so, then the only term that remains in

the expression for dJ is a coefficient times dk, and that coefficient

is simply what we seek, dJ /dk. The cost of simplifying the expres-

sion for dJ is that now we must solve the adjoint equations for C∗

and P∗. But these are easy to solve; numerically the same coding

used to solve the forward equations for C and P can be used, with

minor adjustments.

Fig. 2 shows contours of dJ /d ln k, at each point in the domain

as computed with the adjoint algorithm. Actual values are not im-

portant here, since the goal is to illustrate the kind of information

that the adjoint solution can provide. In this example, the outflow is

most sensitive to permeabilities in the region of the inflows, to the

low-permeability layer between the two high-permeability layers,

and to the intersection of that layer with the fault.

The adjoint algorithm allows us to quantify these sensitivities

in an efficient manner. Traditional methods of determining perme-

ability sensitivity require that the permeability be perturbed at each

node of interest followed by recomputation of the forward model for

each perturbation. Since the number of nodes usually ranges from

hundreds to millions, it is generally prohibitively expensive to use

such a method for studying the sensitivity at more than a few nodes.

In contrast, the adjoint formulation requires only two model simu-

lations, the forward and the adjoint. An additional simple auxiliary

calculation completes the process.

3.2 Sensitivity of contaminant concentration to

retardation

The second study addresses the sensitivity of contaminant concen-

tration, C, to the retardation factor, R(x). The governing equations

are the same as in the previous example, but the measure and sensi-

tivity parameters are different. In this case the cost function is taken

to be the least-squares sum of differences between observed concen-

trations and those calculated from best estimates of the distribution

of retardation, R(x, y):

J =
∫ τ

0

n∑
i

(C − Cobs)
2
i dt, (35)

where i represents an individual monitoring point, and n is the total

number of monitoring locations. The measure in eq. (35) is a typical

measure that would be used in an inverse problem to determine

R(x, y) in a region (Hagelberg & Travis 1997). In this example,

we have generated a set of ‘data’, that is, histories of C at the n
monitoring points, assuming that we already know the permeability

and sorptivity fields. The goal is to determine how well R can be

recovered using these ‘data’ histories and assuming that we now

initially do not know how the R field is distributed spatially. With

this definition of J , we find that

∂J
∂C

= 2

∫ τ

0

n∑
i=1

(C(x, t) − Cobs(t)) dt. (36)

C© 2006 The Authors, GJI, 166, 907–922

Journal compilation C© 2006 RAS



914 C. A. Hier-Majumder et al.

Figure 5. Algorithm for the 4D-VAR method.

This expression is required for the last term in eq. (30). Our intention

here is not to solve this inverse problem but to show how the adjoint

approach can provide the critical information, dJ /d R, needed to

solve it. In particular, our interest here is in how dJ /d R varies

with the location of monitoring points. Since we assume that the

permeability field is known, and since R does not affect flow, only

the transport equation (eq. 27) is perturbed, and there is only one

adjoint, C∗, governed by eq. (30). The optimization procedure in

Section 2.2 then gives:

dJ
d R

(x) =
∫ τ

0

C
∂C∗

∂t
dt. (37)

Since v is known, we need only solve the forward equation (eq. 27)

and its adjoint (eq. 30) then compute dJ /d R from eq. (37).

The study region is shown in Fig. 3. Water is injected contin-

uously near the upper right corner of a closed permeable domain

and extracted at the lower left. This creates a steady flow through a

region of variable but known permeability. Then a pulse of solute

is introduced at I, and the subsequent concentration histories at five

monitoring locations are recorded and taken as ‘data’. In the inverse

problem, we would make a guess at the initial R distribution, usually

an average constant value based on the data, and proceed to improve

on that initial guess through an iterative process, using the values

of dJ /d R to update the R field at each iteration. But here we only
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Figure 6. Minimization of the cost function with the steepest descent

method. The cost function decreases exponentially. (a) small initial per-

turbation. (b) large initial perturbation. A larger initial perturbation results

in a larger cost function.

want to show how the sensitivity of J to R can vary dramatically

depending on the monitoring strategy.

Fig. 3 shows the distribution of dJ /d R for a five-spot moni-

toring location, while Fig. 4 shows dJ /d R when the monitoring

locations are collinear near the extraction point. In the first case,

the monitoring observations are sensitive to R mostly in the vicinity

of their locations, and the domain is not very well covered. In the

second case, however, high R sensitivity covers much more of the

domain. The patterns will of course depend on v, and v depends on

permeability, k, assumed known here. Clearly the location of mon-

itors can strongly affect the value of data collected. This behaviour

is seen in other disciplines. A singular vector approach has been

used in meteorology in conjunction with the 4D-VAR method to

find the optimal locations for collection observations by finding the

directions where errors in the state vector will propagate most at the

time of interest (Daescu & Navon 2004).

4 4 D - VA R F O R WAT E R T R A N S P O RT

I N A C O N V E C T I V E M E D I U M

Our final example examines the use of 4D-VAR as applied to water

transport in a 2-D porous convective medium. The 4D-VAR method

is an algorithm that uses adjoint sensitivity analysis to assimilate

observations into a numerical model during the model run. The

incorporation of observations at times throughout the model run

leads to less reliance on the initial conditions and improvements in

model forecasts. We have applied this technique to a case of water

transport by convective flow in the Earth’s mantle.

The first step in the 4D-VAR method is to define a cost func-

tion to measure the error between the forecast and the observations

(Talagrand & Courtier 1987). Then the adjoint equations will be

used to evaluate the gradient of the cost function obtained by ap-

plying a variational procedure to the Lagrangian of the problem

Section 2.2 (Courtier & Talagrand 1990). The cost function and its

gradient are given to a minimization algorithm (Burden & Faires

1993) in order to find the initial conditions that will give the optimal

forecast. The 4D-VAR method has been applied to problems in both

meteorology (Courtier & Talagrand 1990), hydrology (Bélanger &

Vincent 2004), and convection (Hier Majumder et al. 2005). We use

the following cost function:

J = 1

2

∫ t2

t1

∫
�

([H ] − [Hobs])
2 dx dt, (38)

where [H] is the predicted water concentration and [H obs] is the

observed water concentration. In general the cost function requires

an interpolation operator to match the time and space locations of

the observations with those of the forecast. In our case since we are

dealing with twin experiments, we have neglected this operator in

eq. (38). It is also usually necessary to use a weighting factor in

the cost function to account for the varying reliability of different

observations (Navon et al. 2005). In our case this was not necessary

since we are dealing with only one observation. In general, a cost

function is often also comprised of several other terms not consid-

ered in eq. (38), including a background error term, an observation

error covariance term, and a term accounting for model error (Bunge

et al. 2003).

In our case, we do not need to solve the full Euler–Lagrange

system (eqs 24 and 25) since we can reformulate our problem as

one without constraints (Talagrand & Courtier 1987). Since phys-

ical equations of the model are deterministic, it is evident that the

state of the system at the time of observation depends only on the

initial conditions, p0, of the system. Since the cost function is an

implicit function of the initial conditions, varying the initial condi-

tions will allow us to find a solution of the physical equations that

minimizes the cost function (Ehrendorfer 1992). According to the

theory of optimal control (Lions 1968), the control variables of the

problem are the initial conditions. Therefore, in our problem we can

remove the constraints since no restrictions are applied to the initial

conditions. The gradient of the cost function (eq. 38) with respect

to the initial concentration of water is given by the adjoint variables

evaluated at time τ = t2 (Courtier & Talagrand 1990):

∇Jp0
= λ(x, z, τ = t2). (39)

Our forward model for convection in the mantle is described

by the dimensional incompressible Navier–Stokes equations in the

infinite Prandtl approximation (Richard et al. 2002):

∇ · u = 0, (40)

∂4�

∂x4
+ 2

∂4�

∂x2z2
+ ∂4�

∂z4
= −ραg

η

∂T

∂x
, (41)

∂T

∂t
+ u · ∇T = ∇κ · (∇T ) + �, (42)

where u is the velocity; � is the stream function; ρ is the density;

α is the coefficient of thermal expansivity; g is the gravitational

acceleration; T is the temperature; η is the viscosity; κ is the thermal
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Figure 7. Comparison of forecasts of water concentration with a direct simulation and the 4D-VAR method for a small initial perturbation. (a) Prediction from

direct simulation. (b) Observation. (c) 4D-VAR prediction. In the 4D-VAR forecast one can see that the undulations in the right-hand corner of the prediction

have disappeared, and that the 4D-VAR method has reproduced the observations. Greyscale varies from minimum to maximum water concentration. The

absolute values are not important since this is an artificial problem.

diffusivity; and � is the internal heat generation. The conservation

of water content is given by Richard et al. (2002):

∂[H ]

∂t
+ u · ∇[H ] = κH ∇2[H ] + κH ∇ ·

(
[H ]∇ μ

RT

)
+ S, (43)

where [H] is the water concentration; κH is the water diffusivity; μ

is the pure material chemical potential; R is the gas constant; and S
is the source/sink term.

The adjoint equations corresponding to eqs (40)–(43) are found

by differentiating (Gunzburger 2003):

u∗
x = [H ]

∂[H ]∗

∂x
+ T

∂T ∗

∂x
− ∂J

∂ux
, (44)

u∗
z = [H ]

∂[H ]∗

∂z
+ T

∂T ∗

∂z
− ∂J

∂uz
, (45)

∂4�∗

∂x4
+ 2

∂4�∗

∂x2z2
+ ∂4�∗

∂z4
= −∂u∗

x

∂z
+ ∂u∗

z

∂x
− ∂J

∂�
, (46)

∂T ∗

∂τ
= ux

∂T ∗

∂x
+ uz

∂T ∗

∂z
+ κ∇2T ∗ − ∂κ

∂x

∂T ∗

∂x

−∂κ

∂z

∂T ∗

∂z
+ ραg

η

∂�∗

∂x
− J

∂T
, (47)

∂[H ]∗

∂τ
= ux

∂[H ]∗

∂x
+ uz

∂[H ]∗

∂z
+ κH ∇2[H ]∗

−κH

(
∂

∂z

μ

RT

)
∂[H ]∗

∂z
− ∂J

∂[H ]
, (48)

where * indicates the adjoint variable, and τ = t2 − t is the inverse

time. eqs (44)–(48) are then discretized. The initial conditions are:

δH
(
x, z, t |t1

) = 0, (49)

H ∗ (
x, z, t |t2

) = 0, (50)

δT
(
x, z, t |t1

) = 0, (51)

T ∗ (
x, z, t |t2

) = 0. (52)
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Figure 8. Comparison of the water concentration forecast between a direct simulation and the 4D-VAR method for a large initial perturbation. (a) Prediction

from direct simulation. (b) Observation. (c) Prediction from 4D-VAR forecast. In the 4D-VAR prediction the noise has disappeared and the structure has been

recovered. Greyscale varies from minimum to maximum water concentration.

The boundary conditions are set so that the adjoint variables along

with their first and second derivatives with respect to x and z are zero

at all boundaries. The gradient of the cost function (eq. 38) with

respect to the water concentration is given by the adjoint variables

evaluated at τ = t2 (Courtier & Talagrand 1990):

∇J�0
= �∗(x, z, τ = t2), (53)

∇Ju0 = u∗(x, z, τ = t2), (54)

∇JH0
= H ∗(x, z, τ = t2), (55)

∇JT0
= T ∗(x, z, τ = t2). (56)

The algorithm used in conducting the 4D-VAR study is shown in

Fig. 5. Since we do not have any experimental data to use as obser-

vations to assimilate into the forecast, we used a twin experiment

set-up. We conducted an initial direct simulation that we consid-

ered as our observations. We then perturbed the initial conditions of

this direct simulation with a sinusoidal function. A direct simula-

tion with the perturbed initial conditions allowed us to obtain a first

forecast. Using the observations obtained previously, we calculated

the error between the initial forecast and the observations. Then we

minimized the cost function (eq. 38) using its gradient (eqs 53–

56) and the steepest descent method. We chose the steepest descent

method for simplicity but use of the conjugate gradient would have

been potentially more efficient (Zou et al. 1993; Wang et al. 1995).

After the minimum of the cost function is found, which is defined as

occurring when the norm of its gradient reaches a value of less than

10−8, we have obtained the optimal initial conditions that provide an

optimal forecast when used in a second direct simulation. The final

error between the forecast and the observations is then minimal.

We present the results obtained for two cases, a small and large

perturbation of the initial conditions. The small perturbation is on

the order of 1 per cent for the temperature and 19 per cent for

the water concentration. The large perturbation is on the order of

9 per cent for the temperature and 39 per cent for the water concen-

tration. The forecast time is 5 million yr.

Fig. 6 shows the value of the cost function with respect to each

iteration during the course of minimization with the steepest descent

method. A large number of iterations are required to obtain conver-

gence. Nevertheless, the cost function diminishes rapidly during the

first few iterations. We have used a logarithmic scale since the con-

vergence curves resemble exponential curves. Fig. 6 shows that the
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Figure 9. Comparison of temperature forecast between a direct simulation and the 4D-VAR method with a small perturbation in the initial conditions. (a)

Forecast from direct simulation. (b) Observations. (c) 4D-VAR forecast. In the 4D-VAR forecast the undulations have disappeared in the centre of the structure,

but there is still some blurring. The principal vortex structure, however, has been retrieved. Greyscale varies from minimum to maximum temperature. The

absolute values are not important since this is an artificial problem.

larger the initial perturbation, the more difficult it is to minimize the

cost function. With a small perturbation (Fig. 6a), the cost function

reaches a value of less than 1; whereas with the larger perturbation

(Fig. 6b) the convergence stabilizes around 10. In both cases, the

cost function diminishes several orders of magnitude.

We now bring our attention to the moment when the water has al-

ready begun to pass from the upper to lower mantle via the transition

zone. There is a large concentration of water at the boundary be-

tween the transition zone and the lower mantle (Figs 7 and 8). When

the initial conditions are perturbed slightly, the 4D-VAR prediction

succeeds in correcting the noise in the prediction (Fig. 7). Even

with a larger initial perturbation, the 4D-VAR method reproduces

the observations (Fig. 8). In studying the temperature distribution

for the two preceding cases, we see that the temperature forecast

is improved with the 4D-VAR method (Figs 9 and 10). This im-

provement occurs despite the fact that only the water concentration

is considered in the error function (eq. 38). This is explained be-

cause the coupling of the physical equations (eqs 40–43) forces a

correction in the initial temperature in order to obtain better results

in the water concentration forecast. Fig. 9 demonstrates that the

4D-VAR method can retrieve the correct vortex for the convection

cell even with undulations caused by a small perturbation in the

initial conditions. However, the forecast is still blurred. The effect

of the initial perturbation is most evident in Fig. 10 where there is

significant noise in the prediction. Despite this, the 4D-VAR method

succeeded in reconstructing the principal characteristics of the con-

vection cell.

The results obtained for the two cases considered indicate that

the 4D-VAR method is capable of correcting erroneous initial con-

ditions and producing improved forecasts. Since the minimization

required a large number of iterations, it is necessary to use the least

number of grid points possible in order to produce results without

an unreasonable delay for forecasts of longer time intervals. The

4D-VAR runs took about four times as long to compute and re-

quired twice as much memory as the DNS runs. It is possible to

stop the convergence process before the completion of minimiza-

tion. This will improve the calculation time, but the forecast will not

be optimal. In future work the replacement of the steepest descent

method with a conjugate gradient or quasi-Newton method will also

reduce the convergence time. Use of pre-conditioning, limited mem-

ory BFGS (L-BFGS) or truncated Newton methods will also speed

up convergence rate (Zou et al. 1993; Li et al. 2003). Scaling of

the cost function, finding the condition number of the Hessian with

respect to the control variables, and regularizing the problem us-

ing a Tikhonov regularization method can also improve the conver-

gence. It is also possible to improve predictions by changing the cost
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Figure 10. Comparison of temperature forecast between a direct simulation and the 4D-VAR method with a large perturbation in the initial conditions. (a)

Forecast from direct simulation. (b) Observations. (c) 4D-VAR forecast. The direct simulation forecast is significantly affected by the perturbation and is very

noisy. In the 4D-VAR forecast the noise has been reduced and the gross structure of the principal forecast has been recovered. Greyscale varies from minimum

to maximum temperature. The absolute values are not important since this is an artificial problem.

function. For example the error in temperature could also be con-

sidered in the cost function.

5 C O N C L U S I O N S

In this paper we demonstrated the use of the adjoint sensitivity

method for complementing numerical models in the environmental

and geophysical sciences. The adjoint method provided a simple

and efficient means of calculating the sensitivity coefficients of a

model. Several cases were presented showing the use of the method

for modelling water and contaminant transport in the Earth’s crust

and mantle.

We demonstrated the use of the adjoint sensitivity analysis in

models of contaminant transport through porous media. The first

example consisted of a faulted rock sequence into which a con-

taminant was injected. The contaminant concentration was then

measured at an outflow region. The adjoint sensitivity method

was used to determine the regions in space where the model is

most sensitive to the permeability function. The adjoint method

allowed us to quantify these sensitivities in a very efficient

manner, requiring the computational burden equal to approxi-

mately twice the computer time needed for a single forward

simulation.

The second example of the use of the adjoint method in contam-

inant transport models addresses the best placement of monitoring

locations in a simulation that seeks to determine spatial distribution

of retardation of contaminant from measurements of concentration

at a few selected monitoring points. We found that the location of

monitoring points can strongly affect the quality of the data col-

lected. When the monitoring points were placed according to a con-

ventional five-spot spacing in the domain, they were only sensitive

to retardation in their immediate vicinity. However, when the moni-

toring points were placed collinearly near the extraction point, they

provided more extensive sensitivity coverage to retardation through-

out the domain. This example shows how using the adjoint method

can greatly improve the quality of data collected by indicating the

optimal placement of monitors.

The final example looked at the use of the adjoint method to

assimilate data into a model for water transport in the convecting

mantle. The method was used to incorporate observations into the

model throughout the model run. This allowed us to obtain accu-

rate forecasts of the water concentration, temperature, and velocity

distributions in the mantle even with an imperfect knowledge of the

initial conditions. The development of models that do not rely too

heavily on the initial conditions is important in many fields in the

geosciences as it is impossible to ever have a completely accurate
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knowledge of parameters such as initial velocities and temperatures

in a natural system. The adjoint approach can also be used to help

better estimate the possible initial conditions when the final state is

known, such as has been done in mantle convection (Bunge et al.
2003).

A C K N O W L E D G M E N T S

We thank Monica D. Christiansen for her help with conducting sim-

ulations. CAH-M was supported by NASA and the Carnegie Insti-

tution of Washington. She was also supported during parts of this

study by the LLNL post-doc program. BJT and DAY acknowledge

the support of DOE under the grant ‘Fluid Flow in the Earth’s Crust’.

DAY was also supported by NSF. APV thanks NSERC of Canada

for support, and Guillaume Richard thanks CNRS of France. We

express our sincere thanks to I. M. Navon for an extremely thor-

ough and helpful review. We also thank an additional anonymous

reviewer.

R E F E R E N C E S
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