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Abstract: Time series of displacement data from unstable rock slopes contain 'hidden' infor- 
mation about the dynamics of slope failure. This information cannot be found when using the 
current linearly causal paradigm based on analytical methods, but is revealed when numerical 
and graphical methods from the toolbox of the Nonlinear Sciences are applied. The occurrence 
of fractal patterns, which suggests a qualitative difference between intrinsic slope movement 
dynamics of time series from the near-to-equilibrium and the far-from-equilibrium dynamical 
states of slope failure systems, is an example of such a 'hidden', diagnostically important indi- 
cator. It helps to identify the stage of immediate danger of rock fall occurrence, just in time to 
launch an efficient early warning. Phase portrait and correlograms of time series proved to be suit- 
able for earlier revelation of transitions from the near-to-equilibrium to the far-from-equilibrium 
dynamical states, as well as for helping to distinguish between intrinsic slope movement dynamics 
and climatically driven reversible deformation activity. 

The holistic paradigm of the nonlinear complex 
character of natural systems is gaining credit in 
various fields of geoscience (e.g. Turcotte 1997, 
2000; Phillips 1999; Viles 2001; Sivakumar 
2004). Natural geosystems are in fact very complex 
and highly interactive; their parts interplay with 
each other, forming 'a network of networks', with 
the possibility of surprising new qualities emerging 
in their behaviour or attributes. These qualities 
could not be deduced simply from the quality of 
the interacting parts, because the whole geosystem 
is more than just a sum of its parts. In addition, find- 
ings about such systems are contextually dependent. 
They can be fixed in being causal or random at the 
same time, according to the specific relationships 
that are studied within them, or because of the 
relationship chosen according to the spatial-tem- 
poral scale used. 

The problems that arise when we try to under- 
stand these very complex systems using linearly 
analytical tools of 'classical' physics are well 
known, as discussed in nearly every book dealing 
with nonlinear dynamics and dynamical systems 
(e.g. Cohen & Stewart 1995; Bar-Yam 1997; 
Kantz & Schreiber 1997; Meakin 1998). Here, we 
would like to stress that current 'classical' 
methods fail not only in their 'holy aim' to be able, 
if initial conditions within the system are known, to 

predict future behaviour precisely, but sometimes 
also in an adequately realistic description of the 
actual state of the given geosystem. 

This situation was recognized in the early stages 
of research in rock slope failure (cf. Terzaghi 1962; 
Mtiller 1980). Since then, two different approaches 
have been developing side by side in the field of 
engineering geology. The first one, known as a 
'classical' geomechanically based approach, aims 
at elaborating complex models that take into 
account more and more factors and processes (e.g. 
Poisel & Preh 2004; Poisel & Roth 2004). 

The other approach is instead based on a holistic 
model of dynamics of unstable slope (i.e. on the 
description of the behaviour of that slope). The 
quest for such a model was started by Bjerrum & 
Jorstadt (1968) in their famous paper about rock 
falls and their forecasting in Norway. They called 
their approach the 'Observational Method', 
because it was based on assessment of slope moni- 
toring results. To fix an actual degree of rock slope 
instability, the authors recommended a scaled list of 
symptoms, characteristic dynamical patterns of dis- 
placement and deformation phenomena, whose 
scaling would correspond with the different stages 
of preparation of catastrophic slope collapse. 

Since then, such 'empirical-phenomenological 
models' of temporal development of slope 
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movement activity have been used to assess instant 
slope instability and temporal prognostication of 
rock fall occurrence (Saito 1969; Voight & 
Kennedy 1979; Fuzukono 1984; Zvelebil 1985, 
2004; Rochet 1992; Zvelebil & Moser 2001). 
Those models were applied mainly to interpret the 
geometric features of data curves in common, 
time-deformation, Cartesian plots of monitoring 
time series. Limitations of those empirical- 
phenomenological models have, however, been 
questioned since they first came into use (e.g. 
Zvelebil 1996; Moser et  al. 2002; Moser 2003). 

Nonlinear analysis and modelling of time series 
data offer an opportunity to overcome those limit- 
ations. More than 16 years ago, Zvelebil (1984) 
started to compare the complex hierarchical pat- 
terns of time series from dilatometric (thermal 
expansion/dilation) monitoring of rock cracks, 
according to the concepts and methods of self- 
organizing systems such as those discussed in 
Nicholis & Prigogine (1977) and Prigogine & 
Stengers (1984). He arrived at the conclusion 
that 'Part of the important information which is 
embedded in monitoring time series, is hidden. 
When current linear-based methods are employed 
it mimics itself as a seemingly random noise (e.g. 
Rfi~ek & Zvelebil 1993). Hence, we should look 
for new more appropriate methods, and the 
toolbox of nonlinear dynamics seems to be a 
reasonable choice' (Zvelebil 1996). 

The present paper deals with the preliminary 
results of a joint challenge for an engineering geol- 
ogist, a mathematician, and a physicist to find new, 
mathematically rigorous tools for better handling of 
monitoring data from unstable rock slopes. 

Search for hidden information 

In this paper, the term 'nonlinearity sensu  str icto 

(s.s.)' is defined, in a mathematical sense, as 
dynamics that cannot be reduced to a standard 
linear autoregressive model or its static, possibly non- 
linear transformation. A special example of such pro- 
cesses can be deterministic chaos. 'Nonlinearity 
sensu  lato (s.1.)' implies a wider, hence vague 
meaning; it has been introduced in the field of Non- 
linear Science to provide a summarizing label for 
the very specific behaviour features of complex 
systems that are difficult to elucidate within the ordin- 
ary frame of linear paradigms (i.e. nonlinearity s.s., 
emergency, self-affinity, self-organization, self- 
organized criticality, etc.) (e.g. Bar-Yam 1997). 

In our search for hidden information, we used 
data from a regional monitoring network of sand- 
stone rock slopes in northwestern Bohemia (e.g. 
Zvelebil 1989, 1995; Zvelebil & Park 2001). The 
network started operating in 1979 in order to 

monitor the Czech-German traffic corridor 
through the deep canyon of the River Labe. It has 
been gradually expanded to encompass slopes 
above settlements and tourist paths in areas of the 
highest rock fall risks within the National Park 
Bohemian Switzerland. From the wide spectrum 
of methods available for measuring rock slope 
deformations, dilatometry was chosen. Using that 
method, systematic measurements of changes in 
length (displacements) of measuring lines placed 
across rock cracks, have been carried out. 

Nowadays, the network spreads over 327 rock 
volumes with more than 900 sites where dilato- 
metric measurements of relative displacements 
along rock cracks are currently measured (cf. Vafi- 
lovzi & Zvelebi12005). The longest monitoring time 
series span over 25 years. The data set includes 
nearly all the developmental stages of sandstone 
rock slope instability. The quality of time series 
differs according to the monitoring techniques; 
these include manual measurements, carried out 
with a portable rod dilatometer, which cover the 
longest time interval and the broadest spectrum of 
developmental stages occurring in the course of a 
rock fall preparation. Unfortunately, the quality of 
the data suffers from irregular sampling and from 
variations in the sampling time interval, which 
ranges from a few days to one month. This irregular 
sampling forced us to modify well-established 
methods of Nonlinear Dynamics (e.g. Kantz & 
Schreiber 1997), or to re-sample the data in order 
to perform the analysis. The series used for the 
analysis included some 480 to 612 samples and 
the available time span was from January 1984 to 
June 2001. Besides the time series obtained from 
manual dilatometry, we also analysed the results 
supplied by automatic acquisition systems. They 
include from 13,000 to 123,000 samples taken at 
regular frequencies of 5 or 10 minutes. Those 
time series spanned from 3 to 14 months. 

Slope monitoring signals consist, as do all signals 
from natural dynamical systems (e.g. Perry et  al. 

2000), of a mixture of coexisting and interacting 
dynamics. For this reason, signals relating to rock 
mass failure have to be distinguished from displace- 
ments and deformations of different origin. There is 
quite a long list of displacements/deformations due 
to causes other than slope movements resulting 
from rock mass failure (cf. Zvelebil 1989); it 
includes mainly data due to reversible responses 
of the rock mass to perturbations by the external 
environment. The most important one is rep- 
resented by changes of rock-block volumes due to 
temperature variations. The patterns of these thermal 
dilations of rock blocks correspond to the hierarchi- 
cally structured system of climatic cycles, from the 
diurnal and seasonal up to ones taking many years 
(Zvelebil 1995). The whole polygenetic assemblage 
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of those reversible responses to perturbations by the 
external environment will be called the 'standard 
activity' (SA) in the following sections. 

In order to minimize errors in distinguishing 
between signals due to SA manifestations and those 
peculiar to rock slope displacement, all data without 
any detectable evidence of slope movement activity 
were omitted from the analysis, and the remaining 
time series were divided into two groups: one repre- 
senting the 'near-to-equilibrium' signals and the 
other representing the 'far-from-equilibrium' states 
of unstable slope systems. The 'near-to-equilibrium' 
(NTE) series were recorded on slopes that exhibit 
irreversible long-lasting slope movements, but 
where no patterns indicating rapid slope collapse 
were identified (e.g. Figs l a, 5a-c). The 'far-from- 
equilibrium' (FFE) series were obtained from 
recently collapsed slopes only (Figs 2a, 3a, 4a, 5d, e). 

Graphical tools: phase space portrait and 

correlogram 

A major achievement of Dynamical Systems 
Theory has been that of bringing us back to geome- 
try as an important and rigorous tool for studying 
system dynamics (Abraham & Shaw 1992). The 
geometrical patterns of common displacement- 
time plots have played a prominent role in data 
interpretation using current empirical-phenomeno- 
logical models (Voight & Kennedy 1979; Fukuzono 
1985; Zvelebil 1985, 1996; Zvelebil & Moser 
2001). These types of plots of rock slope displace- 
ments are represented by Figures la, 2a, 3a, 4a, 
and 5a. In this paper, two other ways to analyse 
time series, phase portraits and correlograms, 
were tested. Although these are quite common 
tools in Dynamical Systems and Harmonical analy- 
sis, they have not yet been used in the field of slope 
monitoring. 

Phase portraits of 'raw', that is, non-filtered 
monitoring time series embedded in two- and 
three-dimensional phase space, have been found 
to be quite appropriate in fulfilling the crucial task 
of detecting the transition from NTE to FFE 
dynamics. A phase space is a vector space, in 
which any point specifies the instant state of the 
given system and vice versa. It is a powerful tool 
for giving a geometrically synoptic display of 
characteristic patterns of very complex behaviour 
that, as for non-deterministic systems, can be dis- 
played by a huge (possible infinitive) set of states 
and some kinds of transition rules that specify 
how the system may proceed from one state to the 
other (Kantz & Schreiber 1997, pp. 30-31). As 
the behaviour of the system develops in time, a 
sequence of its state points clusters into a geometri- 
cal entity of state trajectory within phase space. 

Any geometrically regular pattern that emerges by 
clustering of system state trajectories in phase 
space corresponds to certain regularities in beha- 
viour of the given system. 

Geometrical patterns of the NTE state are shown 
in Figure 1 and the FFE ones in Figure 2. The phase 
portraits are more synoptic than the current displace- 
ment-  time plots of the series in question, especially 
when very long time series are being studied. In the 
phase portrait, all regular patterns which should 
otherwise be laboriously traced along the whole 
length of such time series, are 'compressed' in one 
section of phase space, making an attractor image, 
that is, a distinct geometrical pattern that represents 
the whole group of similar but not necessarily equal 
types of behaviour of the given system. Any tran- 
sition from the given set of patterns of behaviour 
to some other type of behaviour corresponds to the 
system state trajectory that is, usually quite dis- 
tinctly, heading out of the basin of a given attractor 
(compare Fig. lb with Fig. 2b). 

In Figure 2b, the heading-out trajectory was inter- 
preted as an indication of a phase shift from the 
current NTE state (marked ~1, near  the origin in 
Fig. 2b) to an FFE type of system behaviour 
(marked a). It was possible to detect this NTE- 
FFE shift even 13 months before (Fig. 2a). The 
inverse development is marked 82 in Figure 2b. In 
Figures 3a and b, there is another representation of 
the FFE to NTE shift, which occurred in the course 
of new local crushing at the toe of a high rock wall. 
After an initial, high activity of new joint spreading, 
a stress rearrangement towards an inner less- 
disturbed zone occurred, resulting in a gradual 
low-down of the displacement along the new joint. 

Correlograms of the time series can help us to 
identify where displacement patterns from different 
parts of the slope display interrelated features, that 
is, which series are produced or influenced by the 
same process. In this paper, the variant called XY 
plot in MATLAB usage is adopted. Data from 
different time series or of the same type (but from 
different places) or of different types (e.g. displace- 
ment and temperature) from the same place, are 
plotted in two 2D or 3D plots. Any relationship 
between those time series is characterized by a 
specific pattern, which may be quantified by measur- 
ing coupling and synchronization (Palu~ et al. 2001; 
Palu~ & Stefanovska 2003; Pikovsky et al. 2003). 

In Figures 4a-b,  we show data from different 
parts of a large, unstable rock pillar. The high 
degree of synchronization of movement events 
can be spotted between records from the uppermost 
scarp and the lower frontal and toe parts of the pillar 
(Fig. 4b). The results of the analyses shown in 
Figure 4 support our preliminary assumption about 
the existence of deep-seated phenomena affecting 
the whole rock mass. 
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Fig. 1. (a) Regular and (b) phase space portrait plots of the same time series representing the medium stage of 
preparation of a rock fall, that is, the 'near-to-stability' (NTS) state of the system. The data refer to a twenty-year 
record of a slowly sinking and toppling rock block with a volume of 1600 m 3, which forms the toe of a 100 m high 
rock wall. It may be observed that it is sometimes difficult to assess the intrinsic dynamics of relative displacements 
between rock blocks by slope stability failure using time-displacement data, as the patterns of Figure la are distorted 
by some underlying 'noise' (here named 'standard activity', SA). SA may be a result of (a) seasonal activity with 
amplitude of about 3 mm, generated by volume changes of rock blocks as a result of temperature variations, and to 
(/3) an almost cyclic activity, with a duration of 10-11 years; this type of SA may also be of climatic origin. The 
intrinsic dynamics of slope stability failure (~) show instead a long-lasting linear trend with a gradient of 0.1 mm/year. 
Other types of displacements of dubious origin (6) include a 3-5 year cycle, which may be simulated by a simple 
vector addition of a 10-11 year almost cyclic SA with linearly increasing irreversible displacement, or may be at 
least partially caused by changing the rate of irreversible slope movements. A two-dimensional phase space portrait 
of the same regularly resampled data set is shown in (b). It may be seen that the resulting pattern mimics a 
hypothetical attractor. Six loops of state trajectories shifted by translation gliding (a) along the symmetry axis of the 
attractor correspond to the periods of increased activity of irreversible movements, and all denser areas (/3) correspond 
to periods of relative calm. 

Numerical tools: distributions and temporal 

correlations 

Full details of  mathematical scrutinizing of given 
monitoring time series are presented in Palu~ et al. 
(2004). Here, we summarize our main results. For 
this type of  analysis, the basic division into two 
groups (the NTE and FFE groups) was retained; 
however, the majority of time series had to be 
excluded from the analysis because they were incom- 
plete (gaps too large in the records). Only four FFE 
and five NTE series were suitable for analysis (see 
Fig. 5 and Figs la  and 2a). The chosen time series 

were also regularly resampled upto 1024 samples. 
Because the raw dynamics of the series was clearly 
dominated by atmospheric influences, mainly by 
temperature (visible demonstrations of  SA), the 
atmospheric variables were also considered in our 
analyses. With this aim, meteorological data were 
resampled. 

Our numerical  tools include techniques of uni- 
and multivariate surrogate data with simple phase 
randomization, fast Fourier transform and the 
Schmitz & Schreiber (1999) construction method, 
and the method of  informat ion- theoret ic  func- 
t ionals- redundancies  of  Palu~ (1995a, b). The 

 at University of Michigan on June 28, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


NONLINEAR SCIENCE ISSUES IN ROCK SLOPES 83 

(a) /,-~' 

-0.4 ~1 . - " ' 

~" -0.8 

o -1.2 

132 
-1.6 

1.0 

0.6 
0 

0.2 

0 
-0.2 

-0.6 

1250 3250 T (days) 5250 

(b) 

o . 

. .  , o . v , , . oo  

-0.6 -0.2 0 0.2 0.6 1.0 DT 

Fig. 2. (a) Time-displacement plot and (b) phase portrait of time series from site L2 show the transition from (a) 
near-to-stability (NTS) to (/3) far-from-stability (FFE) states of a slope system. The time-displacement plot 
(a) enabled us to empirically detect markers of the NTE-FFE transition from November 1997, whereas the 2D 
phase portrait diagram (b) allowed us to detect this same information one year earlier, when a state trajectory heading out 
of the NTE attractor was clearly defined. 
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Fig. 3. (a) Time-displacement plot and (b) 3D phase space portrait of the FFE (a) to the NTE (fl) transition in the rock 
slab of Figure 1. From the phase portrait diagram, one may see that there is a general shift of the system state 
trajectory towards the NTE attractor, before it finally sets inside the/3 space. 
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Fig. 4. (a) Displacement patterns of time series from three different positions ($5, $6, $7) within a rock pillar with 
3 a volume of 3000 m . (b) Correlograms of the same data set. The high degree of synchronization (a) between data 

from the uppermost section of the pillar ($7) and those from the lowermost section ($5) suggests that slope movements 
are induced by deep-reaching processes. The lack of synchronization (13) between data from section ($7) and ($6) 
was instead interpreted as resulting from an independent process occurring near the surface and affecting smaller rock 
volumes. Minor synchronization events (marked by the arrows in/3) have been related to the rock mass response 
to climatic perturbations. 
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Fig. 5. Dilatometric measurements of relative displacements observed across cracks in sandstones: NTE dynamics 
(a-c), FFE dynamics (d, e). 

intrinsic slope dynamics of both the NTE and FFE 
time series were characterized using analyses of 
the residuals (Fig. 6) obtained from the dilatometric 
series after removing meteorological influences. 
Those residuals were obtained by triple linear 
regressions (DATAPLORE SW Package, 2006). 
The plots of empirical probability for amplitudes 
larger than the given value were constructed for 
the distribution tests. In order to study the dynamics 
and temporal correlations, the power spectra 
of residuals were calculated (DATAPLORE 
SW Package, 2006). Scaling of the distribution of 
fluctuations and of the distribution of energy over 
the power spectrum, as well as a possible scaling 
of fluctuations in their temporal evolution were 
studied using a detrended fluctuation analysis 
(Peng et al. 1994, 1995; Goldberger et al. 2000). 
Using the listed tools, the following results were 
obtained. 

(1) Nonlinear dynamics s.s. The necessary con- 
ditions for proving the presence of nonlinear 

(2) 

dynamics s.s. were not fulfilled (Figs 7-10). 
Our finding predominantly concerned the 
strong influence of atmospheric variability and 
seasonality on monitoring the time series, as 
these were mainly expressed by their SA com- 
ponent. The influence proved to be linear, but, 
at the same time, not trivial. Note that two pre- 
viously unknown thne lags of 100 and 123 days 
were found from regressions of the annual cycle 
of atmospheric temperature dynamical features 
onto the dilatometric series. 
Nonlinearity s.l. This was detected in the 
intrinsic slope dynamics of the FFE series, 
but not for the NTE ones. There is a qualitative 
difference of correlation decay in the 
dynamics of the NTE and FFE series. The 
residuals from the NTE series possess non- 
trivial, but nevertheless linear dynamical 
features. They are non-Gaussian, asymmetri- 
cally distributed, fat-tailed (e.g. Malamud 
2004; Malamud & Turcotte 2000) fluctuations 
with short-range correlations (Fig. 1 la). 
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Fig. 6. Linearly detrended NTE (a) and FFE (b) time series of dilatometric measurements D, and time series relative to 
(c) atmospheric temperature T, (d) humidity H, and (e) precipitation R. 

Nonlinearity s.1. could be considered for the 
FFE residuals. They are characterized by an 
asymptotic power-law distribution on the 'fatter' 
side of their non-Gaussian distribution (Figs l lb 
and 12). Its decay coefficients range between 4 
and 5, that is, outside the range of stable Lrvy 
distribution 0 < / . ~ <  2 (Schertzer & Lovejoy 
1991). For this type of fluctuation, the dynamics 
is intermittent and high-order moments diverge. 
Furthermore, the dynamics of FFE residuals pos- 
sesses persistent long-range correlation of self- 
affine processes (an occurrence of l /f ,  that is, of 
pink noise, see Turcotte 1989; Barrow 1995; 
Malamud & Turcotte 1999). Moreover, two 
scaling regions were consistently identified by 
both the spectral and the detrended fluctuation 
analyses. In time-scales between 4 and 11 
weeks, the persistence is characterized by the 
spectral decay coefficient /3 ~ 2, which corre- 
sponds to a Brownian motion. Time-scales from 
11 weeks to almost 2 years are described by the 

spectral decay coefficient /3 ~ 1.5, which corre- 
sponds to a fractional Brownian motion. 

The information obtained by using this nonlinear 
approach for the study of unstable rock masses also 
poses new questions; some of them are discussed in 
the following sections. 

Discussion 

Specific results 

There is a disproportion of spatial-temporal scales 
between monitoring records and the development 
of slope failure. The relatively short NTE time 
series represent merely point-like samples of the 
precritical stages of slope failure systems, whereas 
the FFE time series roughly match the critical pre- 
collapse stage. Unfortunately, in our case study, 
sampling of FFE time series was too coarse to 
reveal the finer details of their dynamics. Hence, 
our information is relevant only for dynamical 
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Fig. 10. Testing nonlinearity in residuals of the triple linear regression of the detrended FFE dilatometric time 
series on the meteorological variables, using (b, d) mutual information I (X(t); Y (t + ~-)), and the check of the surrogate 
data using (a, c) linear mutual information L (X(t); Y(t + r)). See caption of Figure 7 for key. 
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Fig. 11. The empirical probability P(lxl > X) to observe amplitudes larger than a given value X (where x is a deviation 
from the mean value) for the triple regression residuals of an example of (a) NTE and (b) FFE time series of 
dilatometric measurements. Diamonds and squares illustrate left and right sides of the distribution, respectively. The 
solid line shows the average distribution of 105 of a 1024-sample time series randomly drawn from the Gaussian 
distribution with the same mean and variance as the residual under study. 
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patterns that are sufficiently robust to be fixed by a 
14-day frequency sampling condition. On the other 
hand, these patterns reoccur so frequently that they 
may be spotted, at sufficient significance levels, 
within a time interval of about 15 years. 

Our results also show that the response patterns 
of slope failure systems, which represent a family 
of complex highly interactive catastrophic events, 
met our theoretically based expectations, as they 
allowed us to unravel previously hidden infor- 
mation, such as a time lag response of 100 and 
123 days. On the other hand, the linear (even 
though nontrivial) nature of dilatometric time 
series modulation by climatic influence is rather 
surprising. In fact, it does not conform to the find- 
ings of other authors (e.g. Tausch et al. 1993; 
Kupfer & Cairns 1996; Phillips 1999), as climatic 
driving, or driving containing any climatic and 
therefore inherently chaotic component, implies 
the high possibility of unstable, chaotic elements 
in the dynamics of the system. 

In any case, the relatively simple linear form of cli- 
matic modulation does not a priori imply any theor- 
etical restriction to improving the ability and 
reliability of filtering out the SA component from 
the monitoring signal. The question of whether the 
intrinsic NTE dynamics really possesses climatic 
driving or is a consequence of insufficient filtering 
of the SA component has still remained unanswered. 
Comparison of the dynamics of NTE time series with 
records from stable slopes where only the SA com- 
ponent is present should help answer this question. 

The reliability of fixed patterns to correspond 
with intrinsic slope failure dynamics is relatively 
greater for FFE series. In this case, dynamics 
includes fluctuations with hyperbolic intermittency 
and scaling spectra and is supposed to occur in 
response to the action of cascading, energy-transfer- 
ring processes (e.g. Schertzer & Lovejoy 1991). The 
robust fitting of the distribution of FFE residuals can 
indicate the occurrence of a self-organizing process 
(Bak & Chert 1991; Jensen 1998; Turcotte 2000; 
Turcotte & Rundle 2002; Sornette et al. 2004). The 
existence of two scaling regions implies that the 
intrinsic fractal dynamics of FFE is scale-dependent. 
Therefore, the next step should be a fractal analysis 
on short time-scales using high-frequency time 
series from automated data acquisition systems. 

In any case, the qualitative difference between 
the NTE and FFE dynamics, as well as the geome- 
trically distinct transition form NTE to FFE states 
and the occurrence of fractal patterns of time 
series residuals after SA filtering, seem to be quite 
important for further enhancement of the early 
warning issue. With this aim, these were success- 
fully used for the safety evaluation of monitoring 
data during emergency remedial works in I-I~ensko 
village in 2002 (Zavoral 2002; VaY-ilov~i & Zvelebil 

2005). The most recent case history of early dis- 
tinguishing of rock fall danger, and a successful 
time-prediction of that rock fall occurrence in 
Kamenice River Gorge (Vafilov~i & Zvelebil 
2005), has shown that correlograms of displacement 
time series from different monitoring sites, as well 
as those relating deformation and temperature 
changes from the same site, may be useful tools 
for monitoring data assessment. For this reason 
they are currently being introduced as a regular 
part of an integrated monitoring system for the 
whole territory of the Czech-Switzerland National 
Park. The method of displacement/displacement 
correlograms was also successfully applied to clear 
kinematics of slope movements endangering the 
Spi~ Castle, Slovakia (Ba~kova 2004; Vlfiko 2004). 

G e n e r a l  imp l i ca t i ons  

Sticking to current evaluation tools for monitoring 
data, which are based on linear reductionist para- 
digms, may result in biased or incorrect handling 
of slope dynamics analysis. The list of possible 
errors and misleading conclusions includes the 
following: 

(1) Overestimation of the proportion of random 
noise within the signal, accompanied by an 
inability to see the 'hidden' order. This is 
our topical case of hidden information 
masked by white noise. 

(2) The linear presumption; it is only the external 
influence that matters in changes of system 
dynamics. This disregards the possibility of 
dynamical changes due to the action of inner 
mechanisms of slope failure, as well as the 
existence of various responses, differing in their 
timing, of the slope system to the same pertur- 
bations. This is a cardinal phenomenon to be 
considered in every triggering-factor study. 

(3) The complex nature of slope failure and the 
variety of local conditions dictate that fully 
quantitative specifications are practically 
impossible, and that even location specifica- 
tions can be exceedingly difficult to obtain 
(Phillips 1999). 

The above discussion suggests that (1) most of 
the work done for fixing 'critical threshold values' 
for external influences on catastrophic slope 
instability events (e.g. Dikau & Schrott 1999; 
R y b ~  1999, 2004; Schmidt & Dikau 2004) is 
biased by methodical incorrectness; (2) there is a 
theoretically given limit for adequacy of results 
from linearly-causally based numerical models of 
slope deformation behaviour and stability failure, 
which cannot be overcome by any further refine- 
ment (even for the most sophisticated ones, such 
as FEM and DEM methods). On the other hand, 
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there is also an exponential law stating the minimal 
amount of data needed for plausible conclusions 
about time-series patterns in nonlinear analyses. 
The practical limit to the embedding dimension of 
time series that can be analysed in practice has 
been fixed at a value of 4 (e.g. Hunt et al. 2003). 
Therefore, when analysing relatively short time 
series (as is quite normal in many practical cases) 
rather dangerous assumptions have to be adopted, 
either that the dynamics of the variable chosen for 
that analysis is affected by only a few state variables 
(e.g. Henttonen & Hanski 2000) or that such a small 
embedding level allows detection of nonlinearity 
s.s. even for large-dimensional time series (e.g. 
Nychka et al. 1992). 

In any case, applying inadequately modified 
methods to data of poor quality or insufficient quan- 
tity may result in mathematically inconsistent or 
implausible findings; hence, a multidisciplinary 
approach is inevitably necessary for elaborating 
appropriate models in the spatio-temporal domain. 
A possible way of simulating the process of rock 
slope collapse preparation as the development of 
hierarchically structured, complex systems with 
multifactor control is by using Self Organized Criti- 
cality models, which qualitatively differ from the 
currently used engineering-oriented ones. In this 
way, quite new pieces of knowledge could be 
revealed that have not yet been discovered through 
spatially-temporally limited field observations 
(see Holland 1998; Bossomaier & Green 2000). 

distinguishing between intrinsic slope move- 
ment dynamics and climatically driven SA 
activity. 

(3) The qualitative difference between intrinsic 
slope movement dynamics of the NTE and 
FFE time series is important for assessing 
slope behaviour. The NTE series possess a 
linear non-Gaussian but asymmetrical fat- 
tailed distribution of movement events. In 
contrast, the FFE series are nonlinear (s.1.) 
features of persistent long-range correlation 
of self-affine processes with two scaling 
regions. 

(4) The graphical methods and the numerical 
testing of fractal features seem to be very prom- 
ising for assessing the state of immediate rock 
fall danger. To this end, it also suggested that 
modelling the dynamics of preparation for 
rock slope collapse as a complex self-organizing 
system may be appropriate to reveal the crucial 
dynamical patterns of slope failure systems. 
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