
A precise late Permian 40Ar/ 39Ar age for Central Iberian 
camptonitic lamprophyres

The Avila batholith of central Spain is composed, predominantly, of crustal-melt peraluminous granites cut
by small-scale mafic alkaline bodies. Dating of the Gredos sector mafic camptonitic lamprophyre dykes was
undertaken to constrain the Late Variscan tectonomagmatic evolution of the region. A well constrained late Per-
mian, Capitanian, age of 264.5 ± 0.9 Ma was obtained by 40Ar/39Ar geochronology using amphibole separates.
This new age clearly distinguishes the dykes from other episodes of alkaline mafic magmatism in the region.
We suggest that the lamprophyre dykes were emplaced into already solidified granitoids after the tectonic con-
trol on magma generation changed from purely extensional to transtensional.
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INTRODUCTION 

Interpretation of the Late Variscan geodynamic evolu-
tion of the Sierra de Gredos sector of the Avila batholith
has been hampered by uncertainty regarding the age of
camptonitic lamprophyre dykes cutting widespread
crustal-melt granitoids of the region.

The dykes were originally suggested to be early Permian,
Cisuralian, 283 ± 30 Ma by Rb/Sr (WR) (Bea et al., 1999;
geologic time scale of Gradstein et al., 2004). Studies of
comparable dykes suites cutting the more easterly Sierra de
Guadarrama sector of the Avila batholith dated lamprophyres
dykes at 277 ± 5 Ma by K/Ar (phlogopite) (Villaseca et al.,

2004).  Furthermore, notably in agreement with the current
work, Perini et al. (2004) mentioned an unpublished date of
264 ± 1.3 Ma by 40Ar/39Ar (amphibole) for the Guadarrama
sector lamprophyres. More recently, however, Orejana et al.
(2005), whilst remarking on the poorly constrained nature of
the geochronological data in the complex Guadarrama dyke
swarm, approximately averaged the aforementioned dates
and settled on an age of 270 Ma. 

In this study we present a well-constrained late Permi-
an, Capitanian, age of 264.5 ± 0.9 Ma determined by
40Ar/39Ar  geochronology performed on amphibole mine-
ral separates from Gredos sector mafic camptonitic lam-
prophyre dykes. This new date provides a fixed point in
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A) Scheme of the Iberian Massif. Grey areas represent plutonic, mostly granite-granodiorite, rocks. The main palaeogeographic zones
(after Farias et al., 1987): CZ: Cantabrian Zone; WALZ: Western-Astur Leonian Zone; GTOMZ: Galicia Tras-os-Montes Zone; CIZ: Central Iberian Zone;
OMZ: Ossa Morena Zone; SPZ: South Portuguese Zone. B) Geological map of the Avila batholith, the rectangle indicates the detail shown in C. C) Geo-
logical map of the Gredos Sector. Geochronological sampling localities are indicated by a grey star.
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the generation and, thus, tectonomagmatic evolution of
the Iberian K-rich mafic rocks during the late Variscan. 

GEOLOGICAL SETTING AND FIELD RELATIONS

The Central Iberian Zone, the central part of the
Variscan chain in the Iberian Peninsula, comprises Pro-
terozoic and early Palaeozoic metasediments and
orthogneisses intruded by late Palaeozoic, ~330 to 300
Ma, collision-related granitoids (Martínez Catalán et al.,
2004 and references mentioned therein) (Fig. 1). Early
Variscan deformation in the region, ~360 to 350 Ma,
almost doubled the thickness of the crust principally by
underthrusting of the Ossa Morena Zone lower crust
beneath Central Iberia (Azor et al., 1994). This main
compressional stage was followed by an extensional
phase and development of sub-horizontal shear zones
associated with which was the main episode of granite
production (Bea et al., 2003 and references mentioned
therein). 

The axis of the Central Iberian Zone in central Spain
is dominated by the Avila batholith which crops out over
~13,000 km2 (Bea et al., 2004; Fig. 1). The batholith is
divided into two sectors: Gredos to the west and Guadar-
rama to the east. The Gredos sector, the focus of the cur-
rent study, comprises numerous juxtaposed plutons of
peraluminous granitoids which were divided into facies
by Bea et al. (1999). In the core of the batholith, large
low-pressure anatectic complexes crop out (Fig. 1). These
granites and migmatites are cut by camptonitic alkaline
lamprophyre dykes, forming broadly north-south trending
swarms in eastern Guadarrama (Ubanell et al., 1984; Vil-
laseca et al., 2002) and central Gredos (Bea and Corretgé,
1986; Bea et al., 1999) (Fig. 1). 

The dykes of the Gredos sector, although typically lat-
erally discontinuous and only 5 cm to 2 m thick, form a
broad ~10 km wide, N-S to NNE-SSW trending swarm of
some 100 steeply-dipping bodies (Bea et al., 1999; Fig. 1).
To the north, in the Menga and Alberche granitoid facies
the dykes form a broad swathe whereas the southerly
extension of the swarm, in the Hoyos granitoid facies, is
much more laterally restricted, ~3 km wide (Fig. 1). 

Detailed mapping of the dykes reveals sharp contacts
between the camptonites and host granitoids (Fig. 2A),
the latter often having a diffuse band of episienite near the
contact. However, despite the presence of such clear
marker horizons, discontinuous and poor exposure of
dyke contacts with the country rock make it difficult to
determine the nature of the stress field during individual
dyke emplacement. Nevertheless, on a regional scale, the
difference between a N-S to NNW-SSE regional swarm
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A) Outcrop photograph of a lamprophyre dyke cutting the
Hoyos granodiorite. B) Hand specimen photograph of a typical camp-
tonitic lamprophyre. Note the large, abundant, kaersutite amphibole
phenocrysts. C) Thin section photomicrograph of dated lamprophyre,
GREB-750. Note the lack of any indication of resorption, or reaction
with the groundmass, of the kaersutite amphibole phenocryst. See
text for details.
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trend and NNW-SSE to NW-SE local dyke trends indi-
cates that the area was under bulk sinistral transtension
during dyke emplacement. Rather than simple shear, the
zone was also affected by a component of extension at a
high angle to the strike-slip deformation (c.f., Dewey et
al., 1998).

PETROGRAPHY AND MINERAL CHEMISTRY

Detailed descriptions of the petrography of the Gredos
dykes have been published by Bea and coworkers (Bea
and Corretgé, 1986; Bea et al., 1999). These authors not-
ed the distinctive highly porphyritic nature, ~30 modal %,
of the camptonites. The abundant phenocrysts include,
large, up to a few cm length, kaersutite amphibole (Figs.
2B and 2C), zoned clinopyroxene with cores of Ti-Al-
poor augite and Ti-Al-rich augite overgrowths, carbonate
and Ti-magnetite and ulvöspinel. More evolved dykes
may also contain plagioclase phenocrysts. Less common
is Ti-phlogopite, evidence of textural disequilibrium with
the mesostasis, including anhedreal embayed outlines and
rims of coronitic kaersutite, led Bea and Corretgé (1986)
to interpret the phlogopite as xenocrystic. The mesostasis
is fine-grained panidiomorphic and composed of kaersu-
tite, Ti-augite, plagioclase (An50-10), alkali feldspar, Ti-
magnetite, ilmenite, and pyrite, with sparse chalcopyrite
and sphalerite, epidote, titanite and calcite. Such an
assemblage is indicative of crystallization from an alka-
line, Ti-rich, magma. 

SAMPLES AND METHODS

Two representative camptonite dykes were selected
for dating: one from the north of the swarm where it cuts
the Menga granodiorite, the other from the south of the
swarm where it cuts the Hoyos granodiorite (Fig. 1). 

Amphibole phenocrysts could be obtained with rela-
tive ease from the porphyritic camptonitic lamprophyres
(Fig. 2B). First, samples were cut into 1 cm thick slices
and amphibole-rich zones snapped out with pliers. After
rinsing in alcohol, ~70-80 mg of 0.25-0.5 mm fraction
grains were hand-picked under a binocular microscope.
These grains were then washed for 15 min in distilled
water in an ultrasonic bath. One amphibole concentrate,
Amp-1, was prepared from the northerly dyke (GRECH-
2), and two amphibole concentrates, Amp-2 and Amp-3,
were prepared from the southerly dyke (GREB-750).

Samples and monitor standard DRA1 (25.26 ± 0.07
Ma sanidine, Wijbrans et al. 1995) were irradiated for 55
hrs at the Beijing 49-2 reactor. To obtain the best control
on irradiation of our samples, that is the best J-values for

our 40Ar/39Ar  geochronological studies, monitor DRA1
was packed in quartz tubes between every five unknown
samples. The J-value uncertainty of 0.15% was propaga-
ted into the age calculations for every sample (Wijbrans et
al., 1995; Qiu and Wijbrans, 2006). Prior to analysis, the
system blank was reduced by heating the whole apparatus
to 150ºC, for ~24 hours, using an infrared lamp and heat-
ing tape. The samples were step heated with a CO2 laser
(MIR10-50W) operated by New Wave Research© Laser
Ablation System version 1.8.13.0 software. Correction
factors for interfering argon isotopes derived from Ca and
K are: (39Ar/37Ar)Ca = 8.984 x 10-4, (36Ar/37Ar)Ca = 2.673 x
10-4 and (40Ar/39Ar )K = 5.97 x 10-3. Two SorbAC NP10
pumps purified the released gases. One operated at
~400ºC and the other at room temperature. The purifica-
tion time was 5 min for amphibole. The purified gas was
analyzed for argon isotopes in a VG5400-Ar mass spec-
trometer operated using Noble Gas Software (version
2.93). The 40Ar/39Ar  data were reduced, and graphs were
produced, using the ArArCALC software package
(http://earthref.org/tools/ararcalc/index.html) which consists
of Visual Basic® routines that operate as add-ins in
Microsoft Excel®.

RESULTS

Fresh, inclusion-free, kaersutite phenocrysts are euhe-
dral and apparently in textural and compositional equilib-
rium with their host groundmass in which, notably, the
amphibole is also kaersutitic (Fig. 2C). In the absence of
petrographic or geochemical evidence for secondary post-
solidification processes, that could potentially cause
geochronological resetting, dates obtained from the kaer-
sutite phenocrysts should constrain the age of crystalliza-
tion of the K-rich mafic camptonite dykes. This supposi-
tion was investigated using 40Ar/39Ar dating.

Three kaersutite phenocryst concentrates from two
camptonite dykes yielded well-defined plateau ages
which overlap within error, ranging from 264.3 ± 0.9 Ma
to 264.6 ± 1.6 (Fig. 3, Tables 1 and 2). Although there is
no uniform convention on the definition of a plateau in
40Ar/39Ar  dating (McDougall and Harrison, 1999) we
took the definition of Dallmeyer and Lecorche (1990)
who considered that a plateau may be established when
“ages defined by two or more contiguous gas fractions
(with similar K/Ca ratios) each representing >4% of the
total 39Ar evolved (and together consisting of >50% of the
total quantity of 39Ar evolved) are mutually similar within
a ± 1% intralaboratory uncertainty”. Our plateaux meet
these criteria, the 40Ar/39Ar  age spectra produced by
stepped heating with a CO2 laser are flat, concordant, uni-
form release patterns with 85-100% of gas yielding the
plateaux (Fig. 3A, Tables 1 and 2). Such flat age spectra
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indicate uniform 40Ar distribution inside the crystal
lattice of the amphiboles implying that the samples
were closed systems since their crystallization, that
is undisturbed by physical or chemical processes
since cooling through their Ar closure temperature, ~
500ºC for calcic amphibole (MacDougall and Harri-
son, 1999). Accordingly, the amphiboles had rela-
tively constant K/Ca over 98-100% of 39ArK released
for the three samples (Fig. 3B). In addition, the
absence of “saddle-shaped” spectra rules out a sig-

nificant component of excess 40Ar, i.e., not formed
by in-situ decay of 40K. Furthermore, the total fusion
and isochron ages for the three mineral separates are
in excellent agreement, overlapping within error,
with the plateau ages (Fig. 3, Table 2). Therefore,
we conclude that the well-constrained late Permian,
Capitanian, age of 264.5 ± 0.9 Ma reflects the time
of cooling and, assuming that this was rapid, crystal-
lization of the Gredos sector mafic camptonitic lam-
prophyre dykes. 
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40Ar/39Ar dating results.TABLE 1
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Continued.TABLE 1

Kaersutite 40Ar/39Ar ages for Central Iberian camptonitic lamprophyres.TABLE 2

DISCUSSION

To consider the implications of the different expres-
sions of Variscan magmatism and, in particular, the tim-
ing of the camptonite dyke emplacement, it is relevant to
summarize the relative ages of the main magmatic

episodes in the Gredos sector of the Avila batholith.
Granitic melt production in the region took place during
the Early Carboniferous to Early Permian, over 55 million
years from 352 to 297 Ma (Montero et al., 2004a). A limi-
ted melting event occurred coincident with the main
Variscan collision at ~350 Ma. Later extensive anatexis,
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at ~330 Ma, produced melts which pooled in migmatite
complexes and, at ~320 Ma, segregated into small scale
leucogranite bodies. Subsequently, from 325 to 305 Ma,
extensional collapse-related sub-horizontal shear zones
provoked extensive in-situ lower- and, in particular, mid-
crustal melting throughout the region. After peaking at
309 Ma melt production decreased significantly and had
stopped completely by 297 Ma (Montero et al., 2004a).
Superimposed upon this widespread granitic magmatism
was a punctual episode of originally alkaline mafic mag-
matism, ~312 Ma, currently preserved in heavily conta-
minated localized stocks and enclaves of appinitic com-
position (Bea et al., 2004; Montero et al., 2004b). So, the
new, late Permian, 40Ar/39Ar  age of 264.5 ± 0.9 Ma, for
the camptonite dykes clearly fixes their emplacement as
younger than the main Variscan magmatism in the
region.

The marked change in emplacement style of alkaline
mafic melts from “mixed” stocks at 312 Ma to “pure”
dykes at 264 Ma, implies a change in regional tectonic
regime. During extensional collapse sub-horizontal shear
zones facilitated crustal melting (Montero et al., 2004b)
so small-scale melts of the metasomatized mantle lithos-
phere could only proceed to the surface with some diffi-
culty. These melts would have interacted with the ponded,
mid-crustal melt, granitic magma resulting in the forma-
tion of the aforementioned mixed appinitic stocks. By
contrast, we suggest that the camptonite dykes emplaced
at ~264 Ma in the already solidified granitoids soon after
the tectonic control changed from purely extensional to
transtensional. Within this context opening lithosphere-
scale rheidal fractures would have facilitated the passage
of metasomatized mantle lithosphere melts to shallow
depths. 

Vaughan and Scarrow (2003) proposed that K-rich
mantle metasomatism controls the initiation and position
of lithosphere-scale strike-slip shear zones. This idea is of
particular interest in geodynamic reconstructions given
the suggestion of Bonin et al. (1998) that K-rich magma-
tism is commonly related to strike-slip faulting in a post-
orogenic setting. We propose, more specifically, that K-
rich mafic magmatism is in fact typical in tardi-orogenic
settings related to the main collisional process as a last-
gasp release of melts of metasomatized lithopsheric
mantle in a final melt-focussed transtensional judder
once other larger-scale tectonomagmatic events, and
thus potentially-masking magmatism, has been
switched off.

The suggestion, from the current work, that tardi-oro-
genic lamprophyres act as a geodynamic marker of the end
of extensional collapse and a change of tectonic regime to
transtension merits investigation at a broader scale.

CONCLUSIONS

- A well constrained late Permian, Capitanian, age of
264.5 ± 0.9 Ma is assigned to the Gredos sector mafic
camptonitic lamprophyre dykes.

- This age is interpreted as the time of cooling and,
assuming that this was rapid, crystallization of the mafic
dykes.

- The Central Iberian tardi-orogenic lamprophyres act
as a geodynamic marker for a change from pure extension-
al to transtensional control of tapping of alkaline mafic
magmas from the metasomatized mantle lithosphere.
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