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Abstract

Point and line singularities are superposed with incident unidirectional saturated and unsaturated flows. The resulting isobars

of 3D Laplacian or advective dispersion equation fields model either seepage face dimples and rills on a tilted hillslope or an

undulated top of the vadose zone above a stagnant water table. The reconstructed shapes of isobars are conchoidal, i.e. convex–

concave. All flow characteristics (drawdowns, velocity and Kirchhoff potential distributions, dimple sizes) are calculated either

explicitly or by elementary computer algebra routines.

q 2005 Elsevier Ltd All rights reserved.

Keywords: Groundwater; Moisture flow; Evaporation; Seepage erosion; Analytic solutions
1. Introduction

Natural eolian erosion of dune-type (hummocky)

landscapes in geomorphology or human-induced

alterations of the land surface (e.g. artificial dimples

and ditches dug in agricultural practice, grading of hill

terraces, or quarries excavated in mining industry)

affect the invisible subsurface hydrological systems.

Prior to these changes groundwater and moisture in

the subsurface can often be viewed as balanced.

Reshaping of the surface can initiate or speed up the

movement of dormant soil water or can drastically

change its unidirectional path under flat topography.

Seepage can focus to fens (humid climates) or sabkhas
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(arid conditions). In the latter regime water does not

spring up and only indirect evidences of seepage, e.g.

precipitates, can be detected on the surface (Yechieli

and Wood, 2002).

In some cases, this topographically intensified

discharge can be beneficial to the flora as plant roots

can intercept moisture that exudes through water

table—atmosphere shortcuts. In other situations

(detrimental to agriculture), exfiltration causes salty

lakes (brackish water discharging directly to the

surface) or patchy salt crust accumulation on

undulation slopes (evaporative moisture fluxes).

Deleterious consequences of focused seepage are

well-known to geotechnical engineers as piping (Ojha

et al., 2003). This relatively fast phenomenon, which

is similar to a slower process of incision of valley

landforms by groundwater (i.e. without any runoff

erosion), is characterised by a ‘finger’ which evolves
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under a dam from the tail water to the upper pool.

Seepage-induced channelization of tilted beaches

dissected by periodically appearing short-lived rills

(effaced by tide waves) is another example of

essentially 3D pattern formation, analysed recently

by Schorghofer et al. (2004). Positive feedback

destabilizes the soil in piping and channelization

because the hydraulic gradient in the proximity of

‘fingers’ amplifies with their growth and triggers

ulterior metamorphosis of the topography (slumping

and collapse of a soil massif).

In this paper, we present explicit analytic solutions

to steady-state problems of saturated and unsaturated

Darcian seepage near irregularities on an inclined and

horizontal isobaric soil surface. For groundwater we

consider the same flow pattern as in Schorghofer et al.

(2004), i.e. a horizontal incident flow discharging

through a tilted seepage face with a dimple that

disturbs this 1D scenario. A genuinely 3D problem is

obtained for an isobaric rill draining an incident flow

streaming to a tilted seepage face. For unsaturated

conditions we study spatial distortion of an incident

1D flow from/to a horizontal water table to/from the

soil surface with a dimple serving as a locus of an

axisymmetric converging flow. Explicit analytical

solutions in terms of the hydraulic head or suction

pressure distributions are obtained by the method of

analytic elements (Strack, 2003). We tackle the same

Rankine-type flow patterns and singularities as in

Kacimov (2000a)—point sinks, sources and dipoles

placed in a unidirectional flow.
2. Groundwater flow to a hillslope dimple

Based on our assumptions, in saturated conditions

the hydraulic head h(x, y, z), which is measured from

the origin of coordinates O of a Cartesian system xyz

(Oz—axis is counter-oriented with the vector of

gravity ðg), satisfies the Laplace equation. The velocity

potential FZKkh, where k is the soil conductivity, is

also a harmonic function.

In congruity with Schorghofer et al. (2004)

experiments, we study a porous wedge with a

horizontal impermeable base F1F4E2E1 (Fig. 1a). A

constant head vertical boundary F1F2F3F4 is distance

L from the wedge edge and the groundwater level

there is H above the base. The wedge angle is a and it
extends infinitely in y-direction. The tilted plane

F2F3E2E1 is isobaric, i.e. all water that seeps out

either evaporates or runs off without any ponding. If

F2F3E2E1 is smooth, then seepage is perfectly 1D

with a horizontal specific discharge vsZkH/LZ
k tan a (Polubarinova-Kochina, 1977 abbreviated

further as PK).

As Schorghofer et al. (2004) showed, a rill BC

(Fig. 1b), which emerges due to local erosion, makes

seepage 3D, i.e. this channel, topographically

depressed with respect to F2F3E2E1, focuses ground-

water flow. Schorghofer et al. (2004) assumed that the

channel is empty and modeled numerically its bottom

as a fixed seepage face boundary.

We shall not prescribe the shape of BC, as

Schorghofer et al. (2004) did, but reconstruct it as a

part of solution using the method that PK classified as

semi-inverse. The method assumes that the flow

domain boundary or its part is derived from a

prescribed distribution of hydrodynamic singularities

(or equivalently, from a postulated domain in one of

characteristic planes—hodograph, Zhukovskii func-

tion, etc.). For example, a hydrodynamic source

placed in a unidirectional flow generates a division

boundary (which in what follows will be called a

separatrix), which is considered as a semi-infinite

impermeable body disturbing the ambient uniform

flow (e.g. Panton, 1984). This idea dates back to

Rankine who designed ship shapes by distributing

different singularities in an incident flow. The method

was well-accepted by groundwater hydrologists (PK).

Kozeny channels, ultimately stable slopes and optimal

hydraulic structure contours (PK, Kacimov, 2001;

Kacimov and Obnosov, 2002) have been found by this

method in saturated conditions. In soil physics the

approach has been recently implemented for the

Gardner soil (Warrick and Fennemore, 1995) when

flow is governed by the advective dispersion equation

(ADE).

The semi-inversely reconstructed shapes both in

fluid and subsurface mechanics do not coincide with

real ones. Topography, with already complex catch-

ment-scale relief features, upon zooming in reveals

intricate concave and convex zones interspersed by

man-made berms, banquettes, opencast sites, furrows,

etc. The analytic shapes, however, can be close to

these elements of natural landforms or geotechnic

objects. For instance, Fujii and Kacimov (1998)



Fig. 1. Saturated wedge with horizontal seepage (a), vertical cross-section passing through the dimple axis (b), nontrivial micromound of

groundwater (c), dam section with a transient phreatic surface (d).
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calculated a sink-induced shape of an empty (isobaric)

tunnel draining a ponded soil surface that at certain

conditions is nearly circular while a filled (constant

head) tunnel is always circular (PK). Since our

governing equations—the Laplace and ADE—are

elliptic the net effect of the derived shapes on the

ambient pressure field is spatially limited. In other

words, far enough from the placed singularities the

disturbance introduced by them on the ambient field

decays with asymptotics described by PK for the

Laplace equation and by Philip et al. (1989) for ADE.

In this sense the semi-inversely calculated forms

might not be worse than regular shapes posited in the

direct method (e.g. a putatively rectangular rill of

Schorghofer et al., 2004), which also, only attempt to

mimic the ‘real’ geometry.

The simplest analytic elements that we combine in

order to simulate seepage near a dimple in Fig. 1b is a

unidirectional flow and a sink at point O (PK) such
that the resulting potential is:

Fðx; y; zÞ Z k tan ax C
q

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 Cy2 Cz2

p (1)

where q is the strength of the superposed sink. Now,

we search for a surface BC which satisfies the seepage

face condition FCkzZ0, i.e. using (1) and this

seepage face condition we get the equation

x tan a Cz ZK
q

4kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 Cy2 Cz2

p (2)

We transform our coordinate system as

x Z xacos a Czasin a; ya Z y;

z ZKxasin a Czacos a
(3)

i.e. align the Oxa axis with the slope surface, and the

Oza axis normal to it.



Fig. 3. Streamlines in an axial section yZ0 of SID, qZ1, aZp/4.
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Using (3) we simplify (2) to a quartic whence the

final equation of our BC follows

za ZK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4

a C4a2
p

Kr2
a

2

s
; a Z

q cos a

4pk
;

ra Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a Cy2
a

q (4)

As is clear from (4), in the system xayaza the dimple

is axisymmetric, i.e. its shape is the same in any plane

passing through Oza line. The dimple depth measured

along Oza is da Z
ffiffiffi
a

p
. The asymptotics of the crater

banks is rawK1/za as za/K0. We select dimension-

less coordinates as ðX;Y ;Z;RÞZ ðxa; ya; za; raÞ=
ffiffiffi
a

p
.

Fig. 2 shows the dimple contour (one half due to

symmetry) in a cross-section perpendicular to the

plain XOY and passing through point O. The inflexion

point of this curve is RiZ ð4=3Þ1=4 z1:075,

ZiZK1=31=4 zK0:76. The contour equation in polar

coordinates is ðrpZ1=sin u where u is the angle

measured from the plane XOZ to the contour point and

ðrp is the contour point radius vector originated at O.

This curve belongs to the class of conchoids, which

were recently shown to possess amazing optimality

features (Kacimov, submitted).

The Stokes stream function J, which corresponds

to the field (1), can be found elsewhere (e.g. Panton,

1984). For the plane yZ0 it is

J Z 0:5k tan a z2K
q

4p
1 C

x

x2 Cz2

� �
VBC Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2a C

4

cos2aðR2 CR4Þ
2

K4

ffiffiffi
2

p
x tan aK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4KR2

p
tan2a

ðR2 CR4Þ
3=2

s
(5)
We plotted streamlines J/q in Fig. 3 with the

dimple contour shown in bold for qZ1 and aZp/4.
Fig. 2. Contour of a sink-induced dimple (SID).
Clearly, everything that is above the contour in Fig. 3

is not physical (air zone) and should be truncated. In

xOz plane (Fig. 1b) the dashed line is the Rankine

body contour, which we define as a streamline defined

as separatrix S1SS2. In groundwater hydrology, this

separatrix demarcates the part of an incident

groundwater flow intercepted by a well (Kinzelbach

et al., 1992).

From (1) we calculate the magnitude of the specific

discharge vector as jðvjZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

x CF2
y CF2

z

q
. Along BC

we come after some algebra to:
where R4 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R4C4

p
and VZjvj/k.

Fig. 4a shows V(X) at YZ0 and aZp/3, p/4, p/8

(curves 1–3, correspondingly) calculated from (5).

Fig. 4b shows V(X) at YZ1 for the same values of a.

According to (5) and the graphs V/tan a at X/G
N, but the velocity limit is reached from above for the

uphill part of the transects and from below—for the

downhill ray. There is a maximum and minimum for

each V(X) curve in Fig. 4. These extrema become

more pronounced with the increase of a and with

approaching the plane YZ0.



Fig. 4. Magnitude of velocity along the SID contour in cross-sections YZ0 (a) and YZ1 (b), curves 1–3 correspond to aZp/3, p/4, p/8.
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For stability of the dimple, the most important

parameter is the peak Vmax and the location Xmax of

this maximum, which are shown in Fig. 5 (curves 1

and 2) as functions of a at YZ0. The extrema in Fig. 5

and below were found by the FindMinimum routine of

Mathematica (Wolfram, 1991). Fig. 5 shows that Vmax

far exceeds the critical value, which PK determined to

be 1 for cohesionless soils. It might explain why small

depressions in Schorghofer et al. (2004) experiments

evolve in long rills.

We note that the local slope angle is also important

to assess the seepage-induced instability because high

V at the spot of the dimple normal to ðg will only cause

hovering (‘boiling’) of dismembered soil particles

while on steeper parts of the slope gravitational

sliding can also occur (Kacimov and Obnosov, 2002).

The velocity minimum Vmin and its locus Xmin are

shown in Fig. 6 as functions of a at YZ0. Curiously

enough, that for a specified rill shape, along with a

trivial phreatic surface shown in Schorghofer et al.

(2004), a phreatic surface M1M0M2 can form near
Fig. 5. Global maximum Vmax of velocity (curve 1) on the SID

contour and its abscissa Xmax (curve 2) as functions of slope.
the promontory B in Fig. 1c similarly to PK (Fig. 157).

At stagnation point M0 the streamline of groundwater

flow bifurcates, i.e. a micromound is formed. Water

moves from the separatrix MM0 to two different vents

(alcove and slope). The area BM1M2M0 lies above the

micromound but can be madefied by capillarity. In our

semi-inverse model and flow scheme phreatic

surfaces do not exist but a zone of relatively small

groundwater velocity can be detected by Vmin.

Fig. 7 presents the graphs V(Y) at aZp/4 and

XZK1, 0, 2 (curves 1–3). The graphs show that in

these sections the dimple can both increase and

decrease the velocity with respect to the background

flow.

We recall that the influence of a point sink is

proportional to 1/r where r is the distance to the sink.

Consequently, point O in Fig. 1a should be far enough

from F1F4E2E1 to neglect this influence and to neglect

the fact that a single sink perturbs the no-flow

condition along the base. This can be rectified by an
Fig. 6. Global minimum of velocity Vmin (curve 1) on the SID

contour and its abscissa Xmin (curve 2) as functions of slope.



Fig. 7. Magnitude of velocity along the SID contour in cross-

sections XZK1, 0, 2.

Fig. 8. Rill contours for different lengths of inducing line sinks,

cross-sections YZ0 and 1, curves 1–3 correspond to SZ1, 3, 6.
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image source under F1F4E2E1 that will be illustrated

in Section 4.
3. Flow to a rill

In order to model Schorghofer et al. (2004)

channels, i.e. depressions elongated in the xa

direction, we use another analytic element, a linear

sink (well). In all other sections of the paper problems

are axisymmetrical with respect to the vertical axis

while in this section the arbitrary orientation of the

sink makes the problem genuinely 3D. In this case the

Stokes scalar stream function is not applicable and

one should deal with a vector potential as a stream

function (Steward, 2002).

We assume that along a rectilinear segment OM

of a length s (Fig. 1a) sinks are distributed

uniformly with a constant strength qs per unit length

such that the total strength of the element is sqs. In

other words, we place a well of an infinitesimal

radius just on the slope surface. PK gave the

corresponding potential as

Fw Z
qs

4p
log

sKxa C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsKxaÞ

2 Cy2
a Cz2

a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a Cy2
a Cz2

a

p
Kxa

(6)

Combining (6) with the incident unidirectional

flow (1) and searching for a seepage face boundary

FCkzZ0 we arrive at an equation of the rill

surface
Z Z log
SKX C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSKXÞ2 CY2 CZ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 CY2 CZ2

p
KX

;

a Z
qscos a

4pk

(7)

where (X, Y, Z, S)Z(xa, ya, za, s)/a, i.e. Z is

dimensionless deviation of the rill surface from the

slope plain. Unlike the dimple, we could not solve

(7) explicitly and FindRoot of Mathematica was

used. In this way we present in Fig. 8 the contours

Z(X) for SZ1, 3, 6 (curves 1–3) in cross-sections

YZ0 and YZ1 (upper and lower graphs) in Fig. 8.

Contours Z(Y) in cross-sections XZK2, 0, 2 (from

left to right) are shown in Fig. 9. We skip over the

analysis of the rill velocity field.

We note that the Schorghofer et al. (2004)

apparatus with a constant head H in Fig. 1a can be

viewed as an analytic element of a transient back-

ground system with a reservoir water level Hr(t)

(Fig. 1d) varying with time. Then at Hr(t)!Hm a free

surface F2R2 is formed. If Hr is monotonic as for

example in Kacimov and Yakimov (2001) then the

height H(t) of the Schorghofer et al. (2004) triangular

element at each instant can be approximated by the

Pavlovskii (PK) formula

HðtÞ Z
H2

r ðtÞ

tan a Lr C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

r KH2
r ðtÞtanK2a

p� � (8)



Fig. 9. Rill contours for different lengths of inducing line sinks, cross-sections XZK2, 0, 1 (from left to right).
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which is based on the Dupuit–Forchheimer approxi-

mation and which, as PK proved for steady regimes,

matches with the full potential solution. If our

emerged dimple or rill is downstream of the

constant head section F2F1 (but still well above

R1E1), then we can model seepage towards it as

steady state. Indeed, the recession of Hr(t) (as in

Schorghofer et al., 2004, field conditions) causes a

drop of R2F2 and a change of E1F1F2 ensues. The

velocity vsZkH(t)/L(t) remains, however, constant

(of course, if the Boussinesq equation in the element

R1R2F2F1 holds).

We stress that by (6) the ‘gaining’ nature of the rill

is postulated. However, any surface channel (well,

river, lake, etc.) can also be ‘losing’ or of a ‘flow-

through’ type (Kacimov, 2000a, Steward and Jin,

2001). Fissiparous or coupling rills can be easily

modeled by three line sinks crossing at one point. The

whole rill pattern is a composition of multiple line

sinks.
4. Dimple draining a phreatic surface flow

In the previous two sections the undisturbed flow

was horizontal and generic to the so-called dam

problem of PK. Few modifications are necessary to

convert our solutions to a free surface flow over a

tilted impervious layer.
As balanced conditions we consider a uniform

groundwater flow over an impermeable bedrock

E1F1F4E4 that dips at an angle a (Fig. 10a). The

water table E2F2F3F3 is a perfect plane, which is

parallel to the bed and the saturated thickness is H.

The velocity magnitude of this uniform flow is vsZ
k sin a.

According to PK, flow in Fig. 10a can originate

from a feeding reservoir in the uphill part as depicted

in Fig. 10b, which represents a longitudinal cross-

section of the flow domain in Fig. 10a. The reservoir

bottom is sloped at an angle p/2Ka, the free

boundary is exactly a ray Uxa perpendicular to the

reservoir bottom and the flow domain is a quadrant.

Because all streamlines are straight and parallel to the

free surface we can select any of them as an

impermeable bed. Note, that both the Dupuit–

Forchheimer approximation and the full potential

theory give identical flows for the regime in Fig. 10b

(PK).

Thus the background (pre-dimple) potential is

FuZkx sin a cos aKkz sin2a. We combine it with a

point sink potential and search for an isobaric dimple

contour. Rotating the axes according to (3), i.e.

aligning Oxa with the undisturbed free-surface, the

isobar FCkzZ0 is obtained from the equation

za ZK
q

4pk cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a Cy2
a Cz2

a

p ; (9)



Fig. 10. SID in a phreatic surface flow over a dipping bed; 3D view (a), a vertical cross-section (b), rill contours for dimensionless base depths

DZ0.1, 5, 10 (curves 1–3).
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Evidently, (9) is reduced to (4). The only difference

with (4) is that now aZafZq/(4pk cos a). Therefore,

the dimple shape coincides with that one shown in

Fig. 2 (coordinates normalised to the new value offfiffiffiffi
af

p
).

If we use a single sink, then its action does not

preserve the no-flow condition along E1F1F4E4 and

E2F2F3F3 (recall that the isobaricity condition along

the dimple contour is rigorously satisfied in the semi-

inverse method). This may be quite important as flows

over sloping beds often are shallow, i.e. H in Fig. 10

can be small. Consequently, now we shall add an

image source placed at point xaZ0, yaZ0, zaZK2H.

Then the sink–source pair provides the no-flow

condition along E1F1F4E4 in Fig. 10a. Obviously,

the image source will affect less the area F2F3E3E2

than the sink.

We introduce dimensionless coordinates

ðX;Y ;Z;R;DÞZ ðxa; ya; za; ra;HÞ=
ffiffiffiffi
af

p
. Then the con-

tour of a sink–source generated atmospheric pressure

isobar is searched as a solution of the 12-th order

algebraic equation with respect to Z, which follows
from

Z ZK
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 CZ2
p C

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 C ðZK2DÞ2

p (10)

Again, we used the FindRoot routine of Mathema-

tica to determine the roots of (10). Fig. 10c shows the

calculated half-contours for DZ0.1, 5, 10 (curves

1–3, correspondingly). Curves 2 and 3 practically

coincide, that implies that we can assume DZN i.e.

instead of an implicit solution of (10) we can use

the explicit conchoid Eq. (4) (remember the change

a/af).
5. Moisture flow to a dimple

Evaporation/infiltration through the soil surface is

usually (Philip, 1991) modeled under the assumption

of its flat topography. A flat water table beneath makes

the problem 1D. However, both boundaries can be

tilted or curved that calls for 2D or 3D analysis

(Kacimov, 2003, 2004, Kacimov et al., 2004).



Fig. 11. Vertical (axial) cross-section of SID in the vadose zone; evaporating (a) and flow-through (b) dimple.
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In this section we consider axisymmetric unsatu-

rated exfiltration-infiltration from a horizontal water

table AED towards a dimple BMC that is maintained

at constant suction (Fig. 11a illustrates a vertical

cross-section). Far from Oz the soil surface is

horizontal and coincides with the xOy plane of a

Cartesian coordinate system xyz, with the z-axis co-

oriented with ðg. The asymptotic thickness of the

horizontal layer is z1. Therefore, at large rZffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Cy2

p
flow is purely vertical, i.e. we have

infiltration to the water table at high moisture content

of the soil surface and exfiltration (evaporation) from

the water table if the soil surface is dry enough. At

small r a preferential moisture flow is funneled to BC.

We recur to the quasilinear model and for the sake of

brevity drop the model description referring the reader

to Philip (1989). We shall use all notations from

Philip’s Eq. (1) to Eq. (8). The dimensionless Kirchhoff

potential q satisfies the ADE in cylindrical coordinates:

v2q

vr2
C

v2q

vz2
C

1

r

vq

vr
K2

vq

vz
Z 0 (11)

Philip (1989) considered the case of infiltration

from a point source set above the water table. He
combined the Kirchhoff potential of this source with an

image sink located symmetrically under the water table

and with an ambient stagnant moisture distribution in

an upper half-plane. Philip derived an explicit solution

in terms of the potential for the domain above the water

table. The vicinity of the Philip source is to be excluded

from the solution domain as the Kirchhoff potential

there exceeds the saturation limit and the quasilinear

model breaks.

In our application we invert the Philip solution, i.e.

we put a sink above the water table and an image

source below the water table (Fig. 11a). Besides, we

generalise the ambient conditions at large r, as we did

in Kacimov (2000b) with another flow pattern of

Philip, i.e. we consider a uniform flow to/from a flat

soil surface.

Thus, according to Philip (1989) the sink–source

pair mirrored about the water table generates the

Kirchhoff potential

qss ZK
Q exp z

8p

expðKrÞ

r
K

expðKr1Þ

r1

	 

;

r Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 Cz2

p
; r1 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 C ðzK2z1Þ

2

q (12)
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where QO0 is a dimensionless strength of each

singularity.

If a horizontal soil surface (Fig. 11a, dashed line)

were maintained at potential q1 then the correspond-

ing potential there would be

qv Z q1 C ð1Kq1Þ
expð2zÞK1

expð2z1ÞK1
(13)

As we can readily infer from (13), background

evaporation occurs at q1!exp(K2z1); at q1Oexp(K
2z1) we have descending infiltration and q1Zexp(K
2z1) corresponds to the Philip (1989) regime of a

stagnant ambient moisture.

By summing (12) and (13) we get the full potential

as

q Z qss Cqv (14)

The Stokes stream function f (defined by Philip,

1989, Eq. 12) satisfies the equation

v2f

vr2
C

v2f

vz2
K

1

r

vf

vr
K2

vf

vz
Z 0 (15)

For our sink–source pair this function (metahar-

monically conjugated with the potential component

(12) and satisfying (15) in the sense of Bystrov, 1959)

is expressed as:

fss Z1K
exp z

2

!
ðr CzÞexpðKrÞ

r
K

ðr1 CzK2z1ÞexpðKr1Þ

r1

	 

:

(16)

We emphasize that in (16) fssZ1Kf1 where f1 is

the corresponding Philip’s (1989) function, Eq. (16).

This difference is due to inversion of Philip’s

singularities i.e. we set fssZ0 along the segment OM

and fssZ1 along the ray ON while Philip’s pair has

f1ZK1, 0, respectively.

The stream function that corresponds to the

background exfiltration-infiltration potential (13) is

fv Z
4p

Q

1Kq1 expð2z1Þ

expð2z1ÞK1
r2 (17)

and the linearity of the quasilinear model allows us to

assemble the full stream function:

f Z fss C fv (18)
Fig. 12a portrays the right half of isobaric lines,

qZconst and stream lines; fZconst plotted in

coordinates (r, Kz) by ContourPlot of Mathematica

for QZ1, z1Z1, q1Z0 (isopotential lines spanning

from qZ0 to 0.8 with an increment of 0.2 and

streamlines fZ0.5, 2.5, 5.5, 10.5, 15.5). The upper

curve indicates the dimple contour qZ0. As usually in

the semi-inverse technique, the part of the flow

domain above BC should be discarded.

Fig. 12b illustrates the flow net for q1Z0.14 and

the same Q and z1 as in Fig. 12a with equipotential

lines qZ0.14, 0.2, 0.4, 0.6, 0.8 and streamlines fZ0.2,

0.4, 0.6, 0.613, 0.753. The isopotential lines are

qualitatively the same as in Fig. 12a but the

streamlines are not. The first peculiarity of the

isobaric dimple in Fig. 12b is the existence of a

critical streamline fcZ0.613, which divides the soil

into three subdomains. This separatrix is shown

schematically in Fig. 11b as S1S2S3. In Fig. 12b, it is

the only nonsmooth streamline that is kinked at point

S2 where the flux vector swerves (compare with

kinked streamlines in PK and Kacimov and Youngs,

2005). At this (and only this) stagnation point

(remember that we work in an axial cross-section,

i.e. S2 is a trace of a 3D stagnation circle) all three

forces—gravitational, capillary, viscous resistance

coined in terms of the Darcy law—which govern the

movement of moisture are balanced.

To the right of S1S2S3 moisture moves from the soil

surface to groundwater and f decreases there from fc to

KN (recall that Philip’s, 1989 stream function was

limited as 0!f1!1). Between ME and S2S3 water

table loses moisture to the dimple and 0!f!fc.

Above S1S2S3 we have fc!f!fh, moisture makes a

loop, i.e. it infiltrates to the subsurface from S1H and

exfiltrates through HS3 where H is a hinge point

similar to the Toth model of topographically driven

groundwater (Kacimov, 1996).

For our example the line fhZ0.753 marks the hinge

point by just touching the dimple contour. Within the

flow domain in our porous layer fh gives an absolute

maximum of f although in the truncated air part above

MHS the stream function increases further. Because f

increases from 0 to fh along MH the maximum fh
corresponds to the total amount of exfiltration through

the soil surface (we recall that in congruity with our

normalization fOMZ0 the Stokes stream function at

certain r equals the total flow rate through a circle of



Fig. 12. Flow net for a quasilinear SID at QZ1, z1Z1; soil surface under infinite tension (a) and relatively wet surface (b).
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radius r). A part fc exudes through MS3 as originated

from the water table. The rest (fhKfc) oozes out

through S3H and enters the soil through HS1. The

subsurface residence time of this part of our flow that

circulates around H is small and the quality of this

water is different as compared with what ascends from

the water table. We can call the near-H zone a fast

return flow (we recall that either rain or irrigation

should madefy continuously BMC in order to

maintain this circulation). The stream lines fZ0.2,

0.4, 0.6 in Fig. 12a are disconnected within our soil

layer, i.e. they consist of two branches each.

The vertical, vz, and radial vr components of

velocity (Philip’s Eq. (12)) were also expressed
explicitly by direct differentiation of (14) or (18)

with the help of a build-in function D of Mathematica

(we drop these formulae here). In Fig. 13, we show

vz(r) at zZ1, QZ1, z1Z1 for q1Z0.12, exp[K
2]z0.135, 0.14, 0.204, 0.3 (curves 1–5). Curve 1

illustrates the case of a sufficiently dry soil (pure

exfiltration). Curve 2 corresponds to the critical limit

when outside the dimple moisture is stagnant. Curve 3

intersects the abscissa axis (that corresponds to point

S2 in Fig. 11b). Curve 4 represents the limiting case

when point S2 in Fig. 11b merges with point E. Curve

5 shows the case of pure infiltration. There is a

remarkable analogy between the flow topology in

Fig. 11 and losing–gaining sections of constant head



Fig. 13. Vertical component of velocity along the water table at zZ
1, QZ1, z1Z1 for q1Z0.12, exp[K2]z0.135, 0.14, 0.204, 0.3

(curves 1–5).
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horizons in fully saturated artesian aquifers (Kacimov

and Youngs, 2005).

The dimple depth dZzM is plotted in Fig. 14a as a

function of z1 at q1Z0.14 and QZ0.1, 0.5, 2.5 (curves
Fig. 14. Unsaturated SID depth for q1Z0.14 as a function of the

asymptotic thickness of the soil layer at QZ0.1, 0.5, 2.5 (curves

1–3) (a) and of the sink strength (b) at z1Z1, 2, 3 (curves 1–3).
1–3). Fig. 14b shows d(Q) at q1Z0.14 and z1Z1, 2, 3

(curves 1–3).

All the analysis above can be replicated for the

Philip (1989) flow pattern with a source above the

water table to which the potential (13) is added. Then

the resulting semi-inverse isobar will model a

topographical hump, whose apex zone, possessing

a higher total head, will generate a return flow to a

planar lowland.

We note that the horizon AD in Fig. 11 can be

substituted by a more adequate trough-shaped water

table (Kacimov and Youngs, 2005) from which water

is lost for nonuniform evaporation. The water table

depression can be modeled as another reconstructed

equipotential qZ1 of our contiguous sink and source

with the latter having smaller strength than the former.

The groove on the water table will be proportional to

the disbalance of the singularities.
6. Conclusion

By the method of analytic elements we obtained

rigorous solutions to problems of axisymmetric and

3D seepage when a flat or tilted soil surface is

topographically disturbed by a dimple or rill that act

as shortcuts for saturated or unsaturated seepage. In its

standard form the method is implemented through

distribution of singularities and determining their

intensity from the condition of a given shape of an

object (an airfoil, condenser, lake, soil heterogeneity,

etc.) placed in a background flow (Bakker and Nieber,

2004; Lifanov, 1995; Strack, 2003). We followed a

semi-inverse approach of PK and, in lieu of specifying

the boundaries of the flow domain, we reconstructed

its part—a dimple or rill—as an isobaric surface

mathematically emerging from superposition of

singularities.

A sink-generated dimple contour satisfying a

seepage face boundary condition is found in an

explicit form for an incident horizontal groundwater

flow discharging through a slope of arbitrary

declivity. Slight modifications bring about exactly

the same shape when the background flow forms a

tilted phreatic surface parallel to a tilted base of

a hillslope. The shape of a rill we reconstructed as a

seepage-face isobar generated by a line sink interfer-

ing with an ambient uniform flow.



A.R. Kacimov / Journal of Hydrology 318 (2006) 262–275274
In furtherance of Philip’s (1989, 1991) quasilinear

solutions for the vadose zone flows we placed a point

source and sink in such a manner that the flow domain

had a horizontal isobaric surface (water table) and a

dimpled isobaric shape above the water table

(undulated soil surface under constant suction). The

sink deflects descending/ascending moisture flux and

enables modeling evaporation and gravitational vent

of moisture to a valley from a commanding plateau.

As in the Toth model for saturated flows in hummocky

landforms, the isobaric dimple slope has a varying

total head that signifies intermittent zones of recharge

and discharge.

The found convex–concave shapes and corre-

sponding simple solutions can serve: as benchmarks

for numerical codes; for assessment of tide-induced

piping in the beach hyporheic zone; in estimates of

intensification of flows to catchment-scale

depressions, and thereby indication of the potential

for erosion initiation and promotion of further erosion

to make new landscape forms; in tuning-up standard

evaporation models on the scale of catchments by

taking into account relief features and intricate

moisture circulation topology; etc.
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