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S U M M A R Y
Hypervelocity impacts of asteroids in marine environments produce tsunami waves indepen-
dent of the water depth and the diameter of the projectile. However, the characteristics of the
induced waves are affected by these parameters. We present a model, consisting of the well-
known SALE impact model and a non-linear wave propagation model, to study the generation
and subsequent spread out of the initial wave pattern caused by the strike of an asteroid or
comet in the ocean. The numerical simulation of oceanic impacts requires some changes and
extensions to the original SALE code. Especially, the handling of different materials (water
and solid rocks) is crucial as they are involved in the cratering process. For the simulation of
the propagation of tsunami waves that are generated by the impact process we use a newly
developed wave propagation model, which is based on the non-linear shallow water theory
with boundary conditions derived from the impact model. The run-up of the tsunami wave
on the coastline is implemented as a special case of reflection and is realized by the well-
established MOST code. Besides the model description we exemplify the capability of our
modelling scheme by the simulation of the strike of an asteroid 800 m in diameter on a
5000-m-deep ocean at 10.2 km s−1, the subsequent propagation of the induced tsunami waves
over an artificial bathymetry and the run-up of the wave on the coast.

Key words: hydrocode modelling, impact cratering, long wave run-up, Oceanic impacts,
tsunami wave propagation.

1 I N T RO D U C T I O N

The probability of an asteroid or comet impacting on water is much

higher than for continental sites because two-thirds of the Earth’s

surface is covered by oceans. Depending on the size of the projectile

(asteroid or comet), impact events are directly linked to environ-

mental perturbations on local, regional and global scales. Oceanic

impacts have distinct consequences in comparison to the strike of

a bolide on land due to the water masses involved in the cratering

process. The most striking difference is the generation of tsunami

waves (Crawford & Mader 1998; Paine 1999; Ward & Asphaug

2000; Shuvalov et al. 2002).

Tsunami may cause extensive damage even several thousands of

kilometres away from the point of impact. Therefore, it is important

to investigate the destructive force of these waves as a function of

distance from impact, and the local bathymetry. Apparently the ratio

of the water depth at the impact site to the size of the projectile is

an important parameter assessing the magnitude of the generated

waves (Crawford & Mader 1998; Shuvalov et al. 2002).

If the impact energy of the bolide striking the Earth’s surface is

assumed to be constant, the water depth is the controlling parameter

to determine the characteristics and quantity of the induced waves

(Weiß et al. 2003). The ratio γ between the water depth H and the

diameter of the projectile d (γ = H/d) can be used to evaluate the

influence of the water depth on the cratering process, if the impact

velocity and density of the projectile are kept constant (Artemieva

& Shuvalov 2002).

If γ > 10, the kinetic energy of the bolide is not sufficient to pen-

etrate the water column. No crater structure is formed in the oceanic

crust and only tsunami waves are generated. If γ is between 10 and

1, the water column has a strong influence on the crater formation in

the ocean bottom. The morphology of these craters differs in several

respects from those on continents (Gault & Sonett 1982; Ormö et al.
2002; Shuvalov et al. 2002). If γ < 0.1, the presence of water can

be neglected regarding the crater formation process, and the result-

ing morphology of the crater structures is similar to impact craters

on continents (Artemieva & Shuvalov 2002). Nevertheless, tsunami

waves are generated although the water depth is very small.
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There are two different wave generation mechanisms accompany-

ing the strike of an asteroid in an ocean that trigger tsunami waves:

(i) The excavation of a crater in the ocean bottom gives rise to the

ejection of material out of the crater and the formation of a crater

rim. Driven by gravity, the crater rim eventually collapses and flaps

onto the water surface causing the generation of the first type of

tsunami waves referred to as ‘rim wave’. (ii) The collapse of the

transient cavity in the water column, formed by the penetration of

the projectile, results in the generation of a second kind of tsunami

wave referred to as ‘collapse wave’.

The present understanding of tsunami in general induced by

other sources like, for example, tectonic deformations due to earth-

quakes or landslides are discussed in Synolakis (1986, 1987),

Synolakis et al. (2001) and Tadepalli & Synolakis (1994). For

oceanic impacts, a variety of numerical models have been pro-

posed to quantify the generation, propagation and inundation

(e.g. Mader 1998a,b; Crawford & Mader 1998; Paine 1999; Ward &

Asphang 2000; Matsui et al. 2002). Only one of them, for example,

Crawford & Mader (1998) uses a combination of impact and tsunami

modelling. They utilized the well-known CTH code (McGlaun &

Thomspon 1990) to compute the impact process and the maxi-

mum excavation in the water. Then the ZUNI model, proposed by

Amsden (1973) and Mader (1988), is used to simulate the collapse

of the cavity and propagation of tsunamis. Following a similar strat-

egy, we present a combination of the SALE code (Amsden et al.
1980; Wünnemann & Lange 2002; Wünnemann & Ivanov 2003;

Wünnemann et al. 2005) and a newly developed non-linear tsunami

wave propagation model to simulate impact-related tsunamis.

Crawford & Mader (1998) discuss only deep-water impacts. In prin-

ciple our model strategy is applicable to impact scenarios with any

kind of water depths. For instance the impact model was used to sim-

ulate shallow water impact events like the Chesapeake Bay impact

(Collins & Wünnemann 2005) where the water depth was very small,

only a few hundred metres, in comparison to the size of the impactor

(several kilometres). In this study we present an example where the

diameter of the projectile was only a fraction of the water depth

as it was the case at the Eltanin impact in the south Polar sea (e.g.

Gersonde et al. 1997; Wünnemann & Lange 2002).

We first elucidate the principal ideas of the SALE hydrocode

that consider the impact process and the generation of the initial

wave pattern. Then, the structure of the 2-D non-linear tsunami

wave propagation and run-up model are described. The third section

presents results of the impact of a 800 m diameter asteroid striking

a 5000-m-deep ocean at 10.2 km s−1.

2 G E N E R AT I O N O F I M PA C T - R E L AT E D

T S U N A M I S

To investigate the generation of tsunami waves by oceanic impact

events we utilize a numerical model to simulate the cratering pro-

cess, beginning with the first contact of the asteroid and the water

surface. A number of models have been proposed to compute the

high velocity strike of an asteroid on both solid and oceanic tar-

gets (e.g. Roddy et al. 1987; O’Keefe & Ahrens 1999; Ivanov &

Artemieva 2002, Shuvalov et al. 2002; Wünnemann & Lange 2001;

Wünnemann et al. 2005). All hydrocodes, used to model impact

cratering, (e.g. CTH, McGlaun et al. 1990, and SOVA, Shuvalov

1999) assume a continuum of the entire spatial area involved in the

cratering process. This assumption allows describing the behaviour

of material by a set of differential equations based on the conser-

vation of mass, momentum and energy. In addition, an equation of

state (EOS) characterizing the thermodynamic state of the mate-

rial at high pressure and temperature as well as the elasto-plastic

response of rocks to strong deformations in terms of failure mecha-

nisms (constitutive equations; CE) are required. A general overview

of hydrocode modelling is given in Anderson (1987) or Knowles &

Brode (1977), respectively.

The simulation of an oceanic impact and the generation of tsunami

waves impose special demands on the model in terms of different

material layering of the target (basement rocks, sediments, water,

and empty space or void) and due to the large deformations taking

place. We use the iSALE hydrocode (e.g. Wünnenmann et al. 2006),

which was used in several impact studies before (Goldin et al. 2005;

Wünnemann et al. 2005; Collins & Wünnemann 2005). The code is

based on the original version by Amsden et al. (1980) and is basically

very similar to the well-known version SALEB by Ivanov et al.
(1997). The major difference consists in the possibility to involve

up to three different material types in the model, whereas SALEB

can handle only two. We present here a more detailed description

of how to deal with different materials in Eulerian mode hydrocode

calculations and how to track sharp material boundaries.

2.1 The Lagrangian/Eulerian kinematic model

As in most hydrocodes, the computational domain is discretized in

a grid of cells with a specified size (dx, dy) to replace the spatial

derivatives in the differential equations by simple (finite) difference

equations. Two different kinematic models can be used: (i) The

Eulerian and (ii) the Lagrangian description. An introduction to

the different kinematic models is given by for example, Anderson

(1987). The difference lies in principle in the way how mass, energy

and momentum are transported through the grid. In the Lagrangian

kinematic model, matter is associated with a cell. Material motions

are calculated by the deformation of the cell, yielding a distortion

of the entire grid. Large deformations can produce spurious results,

if the deformations of the cells are severe. In contrast, the dynamic

motions of mass, momentum and energy are realized in the Eulerian

mod by computing the transport between adjacent cells.

The Eulerian description appears much more suitable for impact

calculations, since we have to deal with very large deformations,

fluid flow and phase transitions. However, the transport of mass

across cell boundaries gives rise to artificial mixing of different

kinds of matter along material boundaries, referred to as artificial

numerical diffusion. For example, in the present study the model

implies boundaries between water and solid rock or between mat-

ter (basement rock, sediment or water) and void (empty space or

vacuum, an atmospheric pressure is not taken into account). The

material transport from one cell to one of the adjacent cells, which

potentially contains a different kind of matter, yields mixed cells

with at least two different materials. Finally, sharp boundaries, for

instance the free surface, become more diffuse the more time steps

have been integrated. The free surface depicts the interface between

matter- and vacuum-filled (void) grid cells in our model and is very

important to determine the wave height, which is a crucial parameter

regarding the objective of the present paper.

2.2 Internal material boundaries for the Eulerian

kinematic model

To avoid material mixing and to preserve sharp material boundaries

we introduce a procedure to the original code, to construct internal

cell boundaries between different kinds of matter or between matter
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and void (free surface) in cells containing a mixture of materials.

By means of the volume fraction of each material in the actual cell

and the adjacent ones the internal boundaries between void and

matter or between rock and water, respectively, are calculated. This

means, if all three or four kinds of material (basement/sedimentary

rocks, water, void) are present at once in a cell, two or three internal

boundaries have to be constructed. In consideration of the positions

of the internal boundaries, the transport of mass between adjacent

cells (advection) is carried out. These simple assumptions allow the

advection of matter, while preserving clear boundaries along the

free surface, and between water and rocks.

Fig. 1 shows a simple numerical simulation of a block impact-

ing on a target using the three different solution schemes: Pure

Lagrangian, pure Eulerian and the Eulerian mode containing the

construction of internal cell boundaries along the free surface. For

simplicity there is only one boundary between void and matter in

this example; different kinds of matter (water, rock) are not involved.

Although the Lagrangian model (Fig. 1a) shows a sharp free sur-

face boundary the cell deformations become large and thus, the

finite difference approximation is inaccurate. In the Eulerian model

Figure 1. Comparison between the numerical models of the impact of a projectile on a target using different kinematic models. The Eulerian description results

in an artificial numerical diffusion along the free-surface. In the Lagrangian description spurious results occur due to large deformations of numerical cells. The

introduction of internal cell boundaries in the Eulerian solution scheme allows the computation of large deformations while preserving material boundaries.

(Fig. 1b) the numerical solution is stable, but there is no sharp bound-

ary between matter and void. As the last example (Fig. 1c) shows,

introducing internal cell boundaries enables the computation of any

deformation while conserving a well-defined free surface. Similar to

the example of the free surface, material boundaries between solid

rock and water or basement and sediment can be calculated.

2.3 Constitutive Equations (CE) and model setup

To compute the thermodynamic state of the material we use the An-

alytical Equation of State (ANEOS, Thompson & Lauson 1972) for

water and granite. A more realistic assumption would be the usage of

basalt instead of granite for the ocean crust. Unfortunately ANEOS

is yet not capable to handle basaltic material. In general, the ther-

modynamic properties of the ocean crust material play only a minor

role in crater formation and can be neglected for the simulation of

the wave characteristic induced by the impact process. In our model

we assume that water behaves purely hydrodynamically without any

viscosity. In contrast rocks behave plastically (ductile) only beyond a
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certain yield point. Below the so-called plastic yield strength Y rocks

respond elastically to the given stress. The elastic failure of rocks

is calculated by the von Mises yield criterion, wherein strength Y
is a function of pressure and temperature Y = f (p, T ). A detailed

description of CE is given in Wünnemann & Ivanov (2003) and

Collins et al. (2004).

All models in the present study are carried out on a computational

grid of 700 × 450 cells in radial and vertical direction, respectively.

The sketch in Fig. 2 illustrates the setup of the computational do-

main. We use a cylindrical grid geometry with the left boundary

being the axial symmetry axis. The 2-D geometry constrains the

model to vertical impacts only. We use ‘free-slip’ boundary con-

dition in radial direction and at the top of the mesh and ‘no-slip’

condition at the bottom of the grid. To avoid any interfering reflec-

tions of waves, when they hit the boundary of the computational grid,

we expand the outer 70 cells in each direction (r- and z-direction,

see Fig. 2) by a factor of 1.05 (e.g. dx n+1 = 1.05 × dxn, where dx
is the spatial increment). Thereby we can cover a much larger area

with the computational domain so that the amplitude of the waves

(for instance shock waves) generated by the impact process have de-

creased significantly before they are reflected at the grid boundaries

and no interfering effects between reflected waves and the generated

tsunami waves can occur. The spatial resolution is 50 m in the inner

(high resolution) area in the vicinity of the point of impact and the

maximum cell size at the boundary of the grid (in the expanded area)

is maximal ∼400 m. The total grid covers an area of approximately

43.7 × 33.8 km. The impactor has a diameter of 16 cells (800 m)

and hits the surface at a velocity of 10.2 km s−1. The water column

is represented by a layer of 100 cells (5000 m). In previous test

calculations we found that 10 cells per material layer is the lower

resolution limit to assure a stable solution of the problem but at least

20 cells are generally aspired.

Figure 2. Set-up of the SALE-3MAT computational grid. Note the cylindrical geometry of the grid. For simplicity the sketch shows a reduced number of

cells only. The outer 70 cells in r- and z-direction and the upper 50 cells are extended by a factor of 1.05 to rule out interfering wave reflections from the grid

boundaries.

We do not consider an atmosphere in our models, and assume that

cells containing neither water nor rock are empty. A set of snapshots

of an oceanic impact at different points in time is shown in Fig. 3.

3 P RO PA G AT I O N M O D E L W I T H

RU N - U P

The numerical simulation of the propagation and run-up of tsunami

waves represents a central part of our modelling study. Therefore,

we discuss our novel implementation of the wave propagation model

here more in detail.

Classical approaches simulating the propagation of tsunami

waves are the shallow water equations (SWE; Synolakis 1987) and

the Bousinesq equations (BE; Peregrine 1967). SWE and BE are

depth-integrated approaches regarding the velocity field (no veloc-

ity variations with depth). For example, SWE can be easily obtained

by integrating the Euler equation with respect to depth. As demon-

strated later, SWE can be also derived by neglecting the dispersive

terms in the BE.

The starting point of our hydrodynamical model is the Boussi-

nesq approach proposed by Perigrine (1967). Beji & Nadaoka (1996)

expanded the BE with special regard to an improvement of the dis-

persive characteristics:

∇t �w + �w(∇h · �w) + g∇hη = �D

with �D = (1 − β)
h

2
∇h

[
∇h ·

(
h

∂ �w
∂t

)]
− β

h2

6
∇h

(
∇h · ∂ �w

∂t

)
+ β

gh

2
∇h [∇h · (h∇hη)] − β

gh2

6
∇h[∇2η], (1)

where �w represents the horizontal velocity field, h is the water

depth, η denotes the surface elevation due to the wave and g is the
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Figure 3. Snapshot series of the impact of an asteroid 800 m in diameter

striking an 5000-m-deep water at 10.2 km s−1. Different stages of crater

formation and wave generation are illustrated: (t = 0 s) initial state, the

projectile first touches the surface of the water; (t = 150 s) formation of

the transient crater, which describes the approximate maximum extent of

the cavity; (t = 500 s) the transient cavity has collapsed and a central peak

has formed; (t = 1250 s) driven by gravity the central peak collapses and

triggers the first wave; (t = 1500) oscillations of the central peak result

in the generation of a series of subsequent waves; (t = 2500 s) final wave

characteristic consisting of three different wave signals.

gravity. The parameter β controls the dispersive properties of eq. (1)

and is commonly set to β = 1/5 (Beji & Nadaoka 1996). Eq. (1)

gives reliable results for a maximum depth to wavelength ratio of

h/λ = 0.25–0.5 (Perigrine 1967; Beji & Nadaoko 1996; Lynett &

Liu 2002).

Eq. (1) separates non-dispersive elements on the left-hand side

from dispersive elements on the right-hand side. The right-hand side

of eq. 1 is now substituted by the parameter D which denotes the dis-

persive elements. If D = 0 the conditions for the SWE are satisfied.

Both cases D = 0 and D > 0 (corresponding to the right-hand side

of eq. 1), are utilized as a momentum equation of the hydrodynamic

model. It is used to simulate the propagation of impact-induced

tsunami waves. Complementing the approach the following equa-

tion of continuity is used:

∇tη + [h + η](∇h · �w) + �w · ∇h[h + η] = 0. (2)

The finite difference scheme is utilized to implement eqs (1) and (2)

in a computer model.

3.1 Basic numerical scheme and boundary conditions

Considering the complete set of equations in (1) results in a large

number of terms. To keep the computational problem simple, we

split the terms and omit all orthogonal and spatially mixed deriva-

tives. The resulting equations read:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= �Du

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= �Dv,

(3)

with

�Du = (1 − β)h

[
h

2

∂3u

∂x3
+ ∂h

∂x

∂2u

∂x∂t
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2
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+ 1

2
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(4)

In both equations (eqs 3 and 4), u and v represent the orthogonal

components of the horizontal velocity field �w. Eqs (3) and (4) are nu-

merically solved on a 2-D Eulerian mesh, resulting in a classic ‘2+1’

problem. As already outlined, this approach is depth-integrated and,

therefore, no discretization along the vertical is required. The so-

lution technique corresponds to a centred finite difference scheme,

including the Lax method (Press et al. 1992). According to Perigrine

(1967) it can be used for dispersive computations. For non-dispersive

elements, numerical operators are defined as:

δ(t) f = 1

�t
( f (x, y, t + 1) − f (x, y, t)),

δ(x,t) f = 1

2�x
( f (x + 1, y, t) − f (x − 1, y, t))
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and

δL AX f = 1

4
( f (x + 1, y, t) + f (x − 1, y, t)

+ f (x, y + 1, t) + f (x, y − 1, t))

With the help of these operators, eqs (2) and (3) can be written as:

Momentum equations:

δ
(t)
L AX u = −uδ(x)u − vδ(y)u − gδ(x)η + �Du

δ
(t)
L AX v = −uδ(x)v − vδ(y)v − gδ(y)η + �Dv.

(5a)

Equations of continuity:

δ
(t)
L AXη = −[h + η](δ(x,t+1)u + δ(y,t+1)v)

− uδ(x)[h + η] − vδ(y)[h + η], (5b)

�Du and �Dv are either �Du,v = 0 or correspond to eq. (4).

Each parameter at point P(x , y, t + �t) depends on the adja-

cent points P(x + �x , y, t), P(x − �x , y, t), P(x , y + �y, t),
P(x , y − �y, t) (explicit numerical integration scheme) and the

Lax-operator is determined for the point P(x , y, t) at the previ-

ous time level. The condition of stability of the numerical scheme

(eq. 5) is the Courant-Friedrich-Levy (CFL) criterion: �x+�y
�t < c.

The velocity c represents the travel velocity of the tsunami wave

with c = √
g[h + ηmax,t ], and �t , �x , �y are the time and spa-

tial increments, respectively. The subscripts max and t represent

the maximum wave elevation in the computational domain at time t.
Hence, the time step, being derived by the CFL criterion, varies with

time. A further improvement is the application of the Lax-operator

to each parameter at point P(x , y, t) to increase the stability of

the numerical scheme. The implementation of the LAX -operator al-

lows the model to run without an additional diffusion term like μ

(∇2η) (see e.g. Marchuk & Anisimov 2001), where μ represents the

kinematic viscosity.

The computational domain of the entire model generally consists

of a generation (impact model) and the propagation domain and

run-up zone. The impact simulations provide the initial conditions

for the wave propagation model (Boussinesq approach) given by eqs

(1)–(4). To simulate the propagation in the near-shore area and run-

up, the MOST code is used, which is described in greater detail in the

next section. To simulate open ocean boundaries conditions (avoid-

Figure 4. Schematic sketch of the computation of the run-up process along the shoreline using the MOST code (after Titov & Synolakis 1995).

ing reflections), a layer of 200 extended cells is added to each side of

the wave propagation domain. The extension zone is implemented

by a layer of cells with increasing cell-size according to: dx extcell
i+1 =

a · dx extcell
i where a is between 1.01 and 1.03. If a � 1.03 reflections

occur at cell boundaries. A similar method is utilized in the iSALE

code to prevent reflections of waves at the grid boundaries (see

Section 2.3).

For the model results in the present study, we used the

Boussinesq equation because dispersion is the crucial process dur-

ing the propagation of the waves. The result of dispersion will be

shown as a decaying wave amplitude with distance r to the point of

impact proportional to r−1 in Section 4.

3.2 Run-up

The calculation of the tsunami wave run-up is a complex problem;

a variety of methods have been proposed (Synolakis 1987; Harbitz

& Pedersen 1992; Marchuk & Anisimov 2001; Titov & Synolakis

1995, 1998). Among them, different assumptions for the solution

of this problem can be distinguished. Analytical approaches often

emanate from linear or, at least, piecewise linear geometries in the

coastal areas (Kanoglu & Synolakis 1998). The accuracy of nu-

merical or semi-numerical (Harbitz & Pedersen 1992) methods is

strongly affected by the spatial resolution.

To compute the run-up, the MOST (method of splitting tsunamis)

code is used, developed by Titov & Synolakis (1995, 1998). MOST

uses SWE to consider the propagation of waves along the shoreline.

The MOST code is made up of two arrays: A, B. In the array A

the wave propagation is computed by the SWE Array B is nested

into array A and covers the region where the method of the moving

boundary is used in order to compute the runup of the waves (see

Fig. 4). Fig. 4 defines in a simple sketch the computational param-

eters along the shoreline. The basic assumption is a straight line

between the last ‘wet point’ (n and n − 1 in Fig. 4) and the position

of the shoreline. New computational points are added according to

the flow velocity over land. Within MOST, the characteristics of

tsunami waves are always discretized by a constant number of grid

points. During shoaling and run-up, the wavelength decreases as

MOST reduces the spatial step size to keep a constant number of

characteristic grid points along the wave. A more comprehensive
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description about run-up algorithm may be drawn from Titov &

Synolakis (1995).

The algorithm to compute the run-up used in MOST is very sim-

ilar to a method proposed by Marchuk & Anisimov (2001). This

method considers only a ‘1+1’ propagation and run-up problem

(Marchuk & Anisimov 2001), an extension to a ‘2+1’ problem

to compute the propagation and run-up with only one model is in

progress.

Figure 5. (a) Recorded wave elevation versus time using iSALE beginning 50 s after impact. (b) position of the water surface in the spatial resolution of the

wave propagation model after 157, 182, 207, 232, 257 and 282 s. (c) Initial conditions for the wave propagation. The dotted lines represent the original data

(see Fig. b) and the solid lines are smoothed.

However, the MOST is much more reliable at present state. It

is tested against laboratory experiments and analytically solvable

problems (Titov & Synolakis 1995, 1998). These studies show that

MOST reproduces reliable run-up values also for breaking tsunami

waves; even if a highly non-linear 2-D wave-breaking algorithm,

for example, given in Chen et al. (2000), is not implemented. Ad-

ditionally, it has been shown that MOST is capable to simulate the

run-up of real tsunami events, for example, the 1994 Kurils Islands
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Tsunami (Titov & Synolakis 1998), the 1996 Peru Tsunami (Titov

& Synolakis 1998), the 1993 Okushiri Tsunami (Titov & Synolakis

1998) and the 1998 Papua New Guinea Tsunami (Synolakis et al.
2002; Okal et al. 2002).

3.3 Defining initial conditions

Modelling the evolution of impact induced tsunami waves from (i)

generation to (ii) propagation to (iii) the final run-up of the wave

on the coast requires different numerical solutions schemes. To deal

with the specific condition at each of those evolution stages we have

constructed a chain of different models covering different scales in

time and space, which are (i) the iSALE code for the impact simula-

tion (Section 2), (ii) the wave propagation model (Section 3.1) and

(iii) the MOST code for the run-up (Section 3.2). The models are

carried out in exactly this order. Due to the complete different struc-

ture of the utilized codes (in particular between iSALE and the wave

propagation code), it is of no advantage to connect them directly,

but instead to define appropriate boundary/interface conditions to

transfer the required information (wave elevation and velocity field)

from one model to the following one. This is most crucial for the

connection between iSALE and the wave propagation code. There

are basically three conditions which must be fulfilled to avoid se-

vere numerical artefacts in the calculations: (a) The shock wave,

induced at the early stage of the impact, must be decayed since the

wave propagation code can not deal with compressive waves, (b)

vertical movements of the water column have to be small because in

the wave propagation code it is assumed that vertical velocity com-

ponents can be neglected (condition for BE) (c) wave breaking is a

turbulent phenomena which is not modelled very well in the iSALE

code but is certainly beyond the capability of the wave propagation

model.

The shock wave (a) does not cause any difficulties since shock

waves travel much faster (approximately half as fast as the original

impact velocity, which is >10 km s−1) than surface waves and de-

cay very quickly by ∼r−2 (Melosh 1989), where r is the distance

to the point of impact. Therefore, any interference between shock

wave and the tsunami can be neglected after ∼8–10 s in 40 km

distance. To satisfy the conditions (b) and (c) we have to look at

a specific example. The panels in Figs 5(a), (b) and (c) illustrate

the time and spatial evolution of the wave characteristic by means

of an impact of a 800 m meteorite (in diameter) with a velocity of

10.2 km s−1 into a 5000-m-deep ocean (compare with snapshot se-

ries in Fig. 3). To meet the condition (b), namely that the vertical

velocity component needs to be small to allow the application of

the BE in the wave propagation code, the oscillation of the central

peak must be damped down. Fig. 5(a) shows a time series of the

elevation of the water column at the centre (point of impact). The

time on the x-axis starts when the central peak begins to form (after

∼50 s) by the water rushing back into the excavated cavity. After

250 s vertical movements can be neglected. In Fig. 5(b) each panel

shows a snapshot of the water elevation versus distance from point

of impact for a series of subsequent time steps. From these figures

it can be deduced that three distinct waves are formed by the col-

lapse of the water cavity and subsequent oscillations of the water

column (compare the number of oscillations in Fig. 5a). Very steep

waveforms in Fig. 5(b) at t = 157–232 s indicate breaking of the

waves. In order to satisfy condition (c), namely that no wave break-

ing occurs, the transition between iSALE and the wave propagation

model can not take place before 257 s, as illustrated in Fig. 5(b). In

all examples we have calculated so far the wave breaking condition

(c) was always the one defining the point in time for the transi-

tion between the two codes. We have not investigated thoroughly,

whether the temporal order, when each of the conditions (a–c) are

fulfilled, stays the same or whether all three conditions (a–c) must be

checked for each different impact scenario (varying water depth, im-

pact velocity, impactor size). Certainly condition (a), the shock wave

decay, is always satisfied first but there might be scenarios possible,

where the oscillations of the central peak do not produce breaking

waves.

We also compared the wave pattern between iSALE, running

it much longer than shown in Fig. 5(b), with the results from the

wave propagation model using the wavefield from Fig. 5(b) at t =
257 s. We obtained very similar results so we conclude that numeri-

cal artefacts from the transition between the two different codes can

be ruled out.

Apart from the wave elevation, the depth-averaged radial veloc-

ity field is also required as initial conditions for the wave prop-

agation code. For the given example both data sets are shown in

Fig. 5(c). In order to achieve stable numerical solutions the data sets

are smoothed with the aid of a binomial algorithm. Deviations in

elevation at each point are usually less than the spatial resolution

of iSALE. Depth-averaged velocities are generally in good agree-

ment with the equation for the travel velocity of tsunami waves:

ui = ηi · √
g[hi + ηi ], where ui is the velocity at position i , hi the

water depth, η i the wave elevation and g represents gravity. Since

vertical impacts produce radial wave patterns, the initial wave eleva-

tion and the depth-averaged velocity are projected onto a circle with

respect to the distance to the point of impact (see Fig. 6). Thus, the

initial conditions of the wave propagation model cover the entire

area of this circle. The projection of the depth-averaged velocity

is realized with respect to the two components of the horizontal

velocity field required in the wave propagation model.

The transition between the wave propagation code and MOST is

easily done by the input of wave elevation data and the horizontal

velocities into MOST at a point of time where the main pattern of

the tsunami wave is in the range of the array (A) of the MOST code

(see Fig. 4). Surface elevation and the velocity field in this region of

the wave propagation model serve as initial conditions of the MOST

code.

4 E X A M P L E : A N I M PA C T I N T O A N

O C E A N I C E N V I RO N M E N T A N D

P RO PA G AT I O N O F S U B S E Q U E N T

T S U N A M I WAV E S OV E R A N

A RT I F I C I A L B AT H Y M E T RY

To demonstrate the capability of the proposed solution scheme we

simulate the tsunami wave generation, propagation and run-up by

means of an impact onto an artificial marine environment. In this

example, the impactor is 800 m in diameter and hits an ocean with a

water depth of 5000 m. The geometry of the basin is given in Fig. 6.

The geometry itself is subdivided into two parts: a constant depth

part of 5000-m-deep water and a constant slope of 1:25 towards

to the shoreline. The parameter C gives the distance between the

impact centre and the initial shoreline; thus the distance from the

impact centre to the toe of the beach is C − 250 km = 750 km for

C = 1000 km. In order to show the wave evolution for different

C’s, we set C to C 1 = 1000 km as given in Fig. 6, C 2 = 2000 km,

and C 3 = 3000 km. The width of the basin is kept constant at W =
500 km for the different cases. The wave elevation as a function

of time is measured every two kilometres (gauge points) along the

section A-A′. Fig. 7(a) gives two of such time series at distances
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Figure 6. The lower panel gives and example bathymetry with C as the distance between the point of impact and the shoreline. Along the section A-A′, the

wave elevation is recorded by gauge points. The impact area is highlighted by the circle. The middle panel illustrates the domain of the wave propagation,

covering only the wet part of the example bathymetry. Water deflection due to the impact is implemented as initial conditions according to Fig. 6(c). The two

upper panels depict the arrangement of arrays for the wave propagation as well as the arrays A and B used in MOST.

of 100 km (dashed line) and 300 km (solid line) from the impact

centre demonstrating that the wave height is significantly lower at

300 km compared to 100 km. Furthermore the period of the wave

increased. The time series of the gauge points along the section A-A′

can be used to generate a plot of the maximum wave amplitude as

a function of the distance to the impact centre. Fig. 7(b) represents

such a diagram which shows that the results are in agreement with

dispersive wave theory: the damping of the wave amplitudes (solid

lines) are proportional to r−1 given by the dashed line. (Fig. 7b). The

dotted line in this figure is a wave damping proportional to r−0.5 as

it would be the case for the non-dispersive theory. However as the

pattern of the individual wave evolutions show, the wave amplitudes

increase again from a certain distance to shore. This process, being

known as shoaling, begins when the waves enter the slope. The right

ends of the graphs mark the wave height just before the inundation

begins, which is associated to locations close to the shoreline. For

the case C 1 = 1000 km, the wave height at the beach toe is Abt =
4.61 m and the graphs ends at As = 9.66 m. For C 2 = 2000, Abt is

1.54 m and As = 4.56 m, for C 3 = 3000 km, Abt = 0.8 m and As =
1.8 m.

The run-up value (run-up) is defined as the vertical distance be-

tween the initial position of the shoreline to its position at maximum

inundation for each point along the shore. Fig. 7(c) gives the run-

up along the coasts for all cases whereas R1 marks the case C 1 =
1000 km, R2 is the case C 2 = 2000 and R3 represents the case C 3 =
3000 km. The distribution of the run-up along the coast with consis-

tently higher values in the central part can be ascribed to the linear

character of the shoreline and the circular character of the source.

5 S U M M A RY A N D F U T U R E

P RO S P E C T S

In order to model the generation, propagation and run-up of tsunamis

caused by oceanic impacts, we use a numerical strategy consisting of

impact simulations with the iSALE code and the calculation of the

tsunami wave propagation and run-up. The newly developed wave

propagation model is based on dispersive (simplified BE) and non-

dispersive (SWE) equations. The MOST code is utilized to compute

the run-up.
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Figure 7. (a) Tide gauge records 100 km (dashed line) and 300 km (solid line) from the impact centre to illustrate the decay of the wave height by dispersion.

(b) log–log plot of the maximum wave amplitude versus distance to the impact centre (solid lines). The dotted line shows the damping of the wave elevation

obeying a function proportional to r−0.5; the dashed line resembles damping proportional to r−1. (c) Run-up height along the shoreline of the different distances

to the impact area.

In the present approach, the impact and the tsunami model

are not directly connected in one model. The wave pattern is

first calculated by the impact model (iSALE) and then the po-

sition of the water surface (wave elevation) is used as a bound-

ary condition in the tsunami wave propagation model. By means

of a simple example the complexity of propagation and run-

up of a tsunami wave is demonstrated although a more sophis-

ticated analysis is required and will be subject of upcoming

investigations. However, the presented example indicates, how

the amplitude of a tsunami wave is linked to the boundary
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conditions, namely the given bathymetry and the impactor-water

depth ratio.

The combination of both models allows the computation of a

wide range of oceanic impacts, ranging from deep water to shallow

water impacts and is only restricted by the maximum computable

grid resolution in the impact calculations. For instance very large

impactors and very shallow water (γ < ∼0.2) cannot be resolved

yet. Future work will focus on the method how to determine more

impartially the distance where both models are linked. Furthermore

a parameter study over a broad range of γ -ratios and artificial and

natural bathymetries is in progress.
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