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Abstract

In order to understand the dehydration process related to phengite decomposition during sub-
duction of crust into the deep mantle, we systematically investigated mineral inclusions in zircons
from Kokchetav diamond-grade eclogites. In the eclogites, phengite is absent from the matrix but
only occurs as inclusions in clinopyroxene. The clinopyroxene is zoned; the core augite contains
K2O up to 0.24 wt%, whereas the rim omphacite contains secondary K-feldspar inclusions. Phengite
may have been consumed during prograde reactions, and K was fixed in clinopyroxene or in a fluid/
melt phase. Inclusions of clinopyroxene and garnet were identified in zircon cores, whereas garnet,
rutile, quartz, and composite inclusions are present in the mantles and quartz occurs in the rims.
Distribution of mineral inclusions in zoned zircons indicates that zircon cores grew at the peak UHP
stage, whereas the rims grew in the quartz stability field during decompression. The composite
inclusions have assemblages of albite + glass + epidote, rutile + ilmenite, quartz + rutile, and rutile
+ albite. The former three-phase composite inclusions have rounded outlines and triple-junction
grain boundaries, suggesting crystallization from fluid or melt. During the growth of zircon from core
to mantle, phengite was consumed, and new garnet, rutile and fluid/melt were formed.

Introduction

THE ORIGIN OF island-arc volcanism is closely
related to the dehydration of subducting lithosphere
(e.g., Tatsumi et al. 1986; Tatsumi and Eggins,
1995). In the case of cold subducting oceanic crust,
most of the fluids are released at depths < 75 km
due to dehydration of amphibole. However, law-
sonite can still carry a considerable amount of fluid
at depths up to 300 km beneath the volcanic front
(Poli and Schmidt, 1995; Schmidt and Poli, 1998;
Okamoto and Maruyama, 1999; Peacock and Wang,
1999; Usui et al., 2003). In the case of warm sub-
duction of oceanic crust, phengite is the only
hydrous mineral stable at depths from 100 to 300
km (Schmidt, 1996, Schmidt et al., 2004; Okamoto
and Maruyama, 1998). Study of dehydration pro-

cesses of the oceanic lithosphere related to phengite
decomposition is important in order to understand
the origin of back-arc volcanism, inasmuch as back-
arc volcanics contain higher K2O contents resulting
from dewatering of subducting lithosphere at greater
depths (150–170 km) (e.g., Tatsumi and Eggins,
1995).

Diamond-grade ultrahigh-P (UHP) eclogite from
the Kumdy-Kol region of the Kokchetav Massif,
northern Kazakhstan, is the best natural sample to
investigate the phengite-dehydration process,
because the UHP metamorphism occurred at phen-
gite-terminal P-T conditions (>5 GPa, 1000°C)
(Okamoto et al., 2000; Fig. 1). In fact, mineral
assemblages of Kumdy-Kol eclogites do not contain
phengite in the matrix; this phase is only preserved
in the core of high-K augite (0.24 wt%) (Table 2 and
Fig. 12 of Okamoto et al., 2000). That is, phengite
was consumed during prograde (or early retrograde)1Corresponding author; email: kazu@earth.sinica.edu.tw
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ZIRCON-INCLUSION MINERALOGY 883

reactions and K might have been transported to
the mantle wedge above the subduction slab with
fluid or melt. However, detailed evidence was oblit-
erated by extensive symplectization during late-
stage amphibolite-facies overprinting related to
exhumation.

Zircon is the best UHP metamorphic mineral
container due to its extreme resistance and stability

over a large pressure-temperature range of condi-
tions (e.g., Chopin and Sobolev, 1995). The study of
mineral inclusions in zircon separates from
Kokchetav UHP rocks has documented several sig-
nificant discoveries (e.g., Sobolev and Shatsky,
1990; Katayama et al., 2000a, 2000b, 2002). In
order to understand the dehydration process related
to phengite decomposition, we investigated mineral

FIG. 1. Phase diagram for the MORB +H2O system showing the P-T condition of the Kumdy-Kol eclogite (modified
from Okamoto et al., 2000). Abbreviations: PA = pumpellyite-actinolite facies; GS = greenschist facies; EA = epi-
dote-amphibolite facies; AM = amphibolite facies; GR = granulite facies; HGR = high-pressure granulite facies; BS =
blueschist facies; Grt = garnet; Cpx = clinopyroxene; coe = coesite; SCP = second critical point. The quartz-coesite curve
is adapted from Bohlen and Boettcher (1982). Diamond-graphite curve is adapted from Bundy (1980). TiO2 II (α-PbO2) –
TiO2 I is adapted from Akaogi et al. (1992) and Withers et al. (2003). The other index reaction curves are adapted from
Poli and Schmidt (1995), Maruyama et al. (1996), and Okamoto and Maruyama (1999).
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884 OKAMOTO ET AL.

inclusions in zircons of a diamond-grade eclogite
from Kumdy-Kol. 

Geological Setting

The Kokchetav Massif is situated in the central
domain of the composite Eurasian craton, and
underwent Cambrian collisional orogenic events
(Dobretsov et al., 1995). This massif is composed of
several Precambrian rock series, Cambro-Ordovi-
cian volcanic and sedimentary rocks, Devonian vol-
canic molasse, and Carboniferous-Triassic
shallow-water and lacustrine sediments; these rocks
were intruded by multi-stage granitoids (Dobrestov
et al., 1995). The UHP-HP metamorphic unit of the
massif is a thin (1–2 km), more or less coherent,
subhorizontal sheet, structurally overlain by a
weakly metamorphosed unit, and underlain by the
Daulet Suite (Kaneko et al., 2000). The UHP-HP
unit mainly consists of para- and orthogneiss,
marble, eclogite, and amphibolite. Eclogites occur
as lenticular masses within diamond-bearing gneiss

and marble, and yield P-T estimates of P > 6 GPa
and T = 950–1050°C based on coesite exsolution
from titanite in marble (Ogasawara et al., 2002),
K2O content in clinopyroxene, and garnet-clino-
pyroxene geothermometry (Okamoto et al., 2000;
Katayama et al., 2002) (Fig. 1). Metamorphic
diamonds have been identified in pelitic gneisses,
marbles,  and garnet  pyroxenites from the
Kumdy-Kol region in the central part of the massif
(Sobolev and Shatsky, 1990; Zhang et al., 1997;
Ogasawara et al., 2000; Katayama et al., 2000b,
2001). Coesite also widely occurs in eclogite, mica
schist, and whiteschist as inclusions in zircon and
garnet from the Kumdy-Kol, Barchi-Kol, and Kulet
regions (e.g., Shatsky et al., 1995; Korsakov et al.,
1998; Parkinson, 2000). Ultrahigh-P metamorphism
of the diamond-bearing and associated rocks took
place in the Middle Cambrian, as indicated by
Sm-Nd and U-Pb zircon of ages between 530 and
540 Ma (Cloué-Long et al., 1991; Shatsky et al.,
1999). Muscovite and biotite of diamond-bearing
gneiss yielded 40Ar-39Ar of ages 517 ± 5 Ma and 516

TABLE 1. Mineral Parageneses in Matrix, Clinopyroxene, and Zircon1

Sample Grt Cpx Qtz Rut Ilm Ab K-fel Phn Epi Gl Comp.2

Matrix + + + +

Symplectite + + +

Inclusion in cpx +

Inclusion in zircon

Zircon core + +

Zircon mantle + + + +

Zircon rims + + +

Composite inclusions

Pl + Epi + Gl + + +

Grt + Rut + +

Ab + Rut + +

Qtz + Rut + +

Rut + Ilm + +

1Mineral abbreviations: Grt = garnet; Cpx = clinopyroxene; Qtz = quartz; Rut = rutile; Ilm = ilmenite; Ab = albite; K-fel = K 
alkali-feldspar; Phn = phengite; Epi = epidote; Gl = glass.
2Composite inclusions.
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886 OKAMOTO ET AL.

± 5 Ma, respectively, which have been interpreted
as cooling ages (Shatsky et al., 1999). SHRIMP
U-Pb dating of UHP mineral-bearing zircon cores
and sub-UHP mineral-bearing rims (representing
peak UHP and retrograde metamorphism) yield 537
± 9 and 507 ± 8 Ma, respectively (Katayama et al.
2001), although Hermann et al. (2001) dated that
UHP core, HP granulite mantle, and amphibo-
lite-facies rims at 527 ± 5, 528 ± 8, and 526 ± 5 Ma,
respectively. 

Petrography and Mineral Chemistry

Petrography
Eclogite samples from the Kumdy-Kol region are

intercalated within diamond-bearing gneisses and
marbles. Detailed petrography and mineral chemis-
try of the Kumdy-Kol eclogites have already been
described by Okamoto et al. (2000). The studied
eclogite sample (#K06) consists of garnet + clino-
pyroxene + quartz + rutile (Table 1). Symplectite
(augite + albite with minor ilmenite) is dominant in
matrix clinopyroxene. Garnet contains few inclusion
minerals. In garnet aggregate domains, K-rich
clinopyroxenes (K2O = 0.24 wt%) are preserved
(Table 2). In these clinopyroxenes, phengites are
preserved in the core and secondary K-feldspar in
the rim.

More than 500 zircon grains were separated from
the eclogite sample (#K06). Approximately 200 zir-
con grains were mounted on an epoxy disc and pol-
ished. Mineral inclusions from 78 zircons were
examined. Most zircons are rounded and colorless,
and are less than 100 microns in size. Secondary
electron microscope images revealed that many zir-
cons show distinct, and typically complex zonal fea-
tures. The zoning pattern is also confirmed by
cathodoluminescent (CL) colors. Backscattered
electron images of zoned zircons are shown in Fig-
ures 2 and 3. They consist of a dark core (brightest
in CL), a lighter mantle, and a rim. A metamict zone
the center of the core. The core-mantle boundaries
are generally very sharp. 

Analytical techniques
Chemical analysis of major elements was performed
u s i n g  a n  e l e c t r o n  p r o b e  m i c r o a n a l y z e r
(JEOL-JXA8800; Jeol Co. Ltd, Tokyo, Japan). All
analyses were performed at an accelerating voltage
of 15 kV, 12 nA beam current, and counting time of
10-20 s. The oxide, atomic number, absorption and
fluorescence (ZAF) correction was employed. The

Fe3+ contents and CaEs (Ca0.5 0.5AlSi2O6) compo-
nent in clinopyroxene were calculated based on the
work of Ryburn et al. (1976) and Katayama et al.
(2000a), respectively. Calculation details were also
described in Okamoto et al. (2000). 

Inclusions in zircon
The distribution of inclusions shows a correla-

tion with the zonal texture of the host zircon (Table
1). The core contains garnet, clinopyroxene, and
glass, whereas garnet, rutile, and composite inclu-
sions (multiple inclusions) occur in zircon mantles.
Chemical composition of the glass is variable and
inaccurate because the domain was less than three
microns across. Analytical data suggest that this
material was K- and Ca-rich fluid or melt (Table 2).
The composite inclusions consist of multiple inclu-
sions within a single rounded domain (Fig. 3). Thus
textural characteristics indicate that zircon cores
grew at the peak UHP stage (or early retrograde

FIG. 2. BSE image of representative zircon zonal texture.
The dark core has an idiomorphic outline, and contains a
luminescent metamict zone. The relatively brighter mantle is
rimmed by a brightest thin zone.
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ZIRCON-INCLUSION MINERALOGY 887

stage?) after phengite was consumed, whereas
the rims grew in the quartz stability field during
decompression. 

The composite inclusions have assemblages of
albite + epidote + glass, rutile + ilmenite, quartz +
rutile, and rutile + albite (Table 1). The three-phase
composite inclusions (albite + epidote + K-bearing
glass) (Table 2) have rounded outlines and triple-
junction grain boundaries. Zircon overgrew from the
wall to interior of the composite domain (Fig. 3A-2).
Two-phase inclusions are characterized by a combi-
nation with rutile, namely rutile with garnet, albite,
quartz, or ilmenite. 

The chemistry of garnet and clinopyroxene
inclusions also support the idea that zircon cores
grew at the UHP stage and rims at the decompres-
sion stage. Garnet from the cores contains higher
almandine + spessartine components and lower
grossular component than that of rims and matrix
(Fig. 4A). Clinopyroxene from the core has higher

jadeite component than that from the matrix (Fig.
4B). As described above, clinopyroxenes are absent
from the mantle and rim of the zircons. Clinopyrox-
ene inclusions in zircon contains a significant (max-
imum = 11 mol% and average = 4 mol%) (Table 2)
CaEs component (Ca0.5 0.5AlSi2O6), although this
component is negligible in the matrix clinopyrox-
ene. This is consistent with clinopyroxene composi-
tions of coesite-bearing eclogite samples from the
Kumdy-Kol area (Katayama et al., 2000a).

Discussion and Conclusion

The relation between zonation and inclusion
mineralogy from zircon suggests that phengite was
consumed when the zircon core formed. As men-
tioned above, the three-phase composite inclusions
of albite + glass + epidote have rounded outlines
and triple-junction grain boundaries. The zircon
overgrew from wall to interior of the composite

FIG. 3. BSE image of composite inclusions in zircons. Zircons (A and B) exhibit high contrast (A-1, and B-1) and low
contrast (A-2 and B-2), respectively. A-1 and B-1 show zonal structure of the zircons, and A-2 and B-2 show composite
and single inclusions. Abbreviations: Grt = garnet; Rt = rutile; Gl = glass; Ep = epidote; Ab = albite. In A-2, three
inclusions have triple junction boundaries in a single rounded domain. Zircon grew from the domain wall to the interior.
In B-2, two-phase composite inclusions have a sharp boundary. 
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888 OKAMOTO ET AL.

domain. These features suggest that the composite
inclusions may have crystallized from a fluid or melt
phase during late UHP or retrograde phengite
decomposition. Mineral assemblages in zircon cores
and mantles delineate a phengite-consuming reac-
tion: phengite + clinopyroxene (+ coesite) = garnet +
rutile + fluid/melt. A similar reaction such as
phengite + clinopyroxene + coesite = melt + garnet
has been investigated in several UHP experiments
(e.g., Schmidt, 1996; Okamoto and Maruyama,
1998).

We compared the chemical compositions of the
glass with fluid/melt trapped in UHP and kimber-
litic diamonds, and experimentally determined
melts from basalt. In Figure 5, single glass inclu-
sions in the zircons are K-rich and Na-poor. On the
other hand, melt compositions from hydrous K-rich
MORB (and even metasediments) experiments at 4–
5 GPa are K-rich and Ca-poor (Schmidt et al.,
2004). The melts derived from basaltic compositions
at 1–2.5 GPa, are Na-rich and identical with TTG
and adakites (e.g., Martin, 1999). This suggests that
the glass formed at UHP peak or early retrograde
conditions. 

Schmidt et al. (2004) have recently re-deter-
mined the phengite-out reaction above 6.5 GPa.
They suggested that a supercritical melt containing
potassium and other solutes appears at pressure
above a singular endpoint (or second critical point)
(Ricci, 1951; Boettcher and Wyllie, 1969; Stalder et
al., 2000; Poli and Fumagalli, 2003). At pressures
above the second critical point, there is complete
miscibility between melt and fluid. Such a melt/
fluid phase is termed “supercritical melt,” which
increases element solubility continuously from low
T to high T. The lack of matrix phengite in the
Kumdy-Kol eclogite (Okamoto et al., 2000) suggests
that phengite decomposed during prograde UHP
metamorphism at P > 6 GPa, supporting the inter-
pretation by Schmidt et al. (2004). Moreover, sys-
tematic change in bulk geochemistry of Kokchetav
mafic rocks from amphibolite to diamond-grade
eclogite also supports K-dissolution due to phengite
decomposition at the UHP stage. Concentrations of
K and other LIL elements decrease with increasing
metamorphic grade, whereas no variation in HFS
elements occurs with increasing metamorphic grade
(Yamamoto et al., 2002).

The existence of two-phase composite inclusions
(rutile with quartz or albite) implies that the “super-
critical” melt phase was Si-rich and heterogeneous.
Presence of rutile in the two-phase composite indi-

cates that rutile was insoluble in the supercritical
melt. That is, even where pressure exceeded the
second critical point, HFS elements are retained in
rutile from both subducting and exhuming oceanic
crust. 

The present study concludes that the subducted
Kokchetav UHP eclogites lacked fluid- and K-bear-
ing phases at depths of approximately 180 km. How-
ever, minor fossil fluids may have been preserved in
zircon as well as in clinopyroxene (Katayama and
Nakashima, 2003), garnet and rutile (Katayama et
al., 2006). 
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FIG. 4. Garnet (A) and clinopyroxene (B) compositions
from the zircon inclusions and matrix. Abbreviations: Alm =
almandine; Sps = spessartine; Grs = grossular; Jd = jadeite;
Aug = augite; Acm = acmite. 
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