Hydrol. Earth Syst. Sci. Discuss., 3, 1987—2035, 2006 _"\Hydrology and

www.hydrol-earth-syst-sci-discuss.net/3/1987/2006/ € Earth System
© Author(s) 2006. This work is licensed 5 _ Sciences
under a Creative Commons License. Discussions

Papers published in Hydrology and Earth System Sciences Discussions are under
open-access review for the journal Hydrology and Earth System Sciences

A statistical post-processor for
accounting of hydrologic uncertainty in
short-range ensemble streamflow
prediction

D.-J. Seo, H. D. Herr, and J. C. Schaake

Hydrology Laboratory, Office of Hydrologic Development, National Weather Service, National
Oceanic and Atmospheric Administration, 1325 East-West Highway, Silver Spring, MD 20910,
USA

Received: 9 February 2006 — Accepted: 13 July 2006 — Published: 1 August 2006

Correspondence to: D.-J. Seo (dongjun.seo@noaa.gov)

1987

HESSD
3, 1987-2035, 2006

ESP post

D.-J. Seo et al.

EG

(@



10

15

20

25

Abstract

In addition to the uncertainty in future boundary conditions of precipitation and temper-
ature (i.e. the meteorological uncertainty), parametric and structural uncertainties in
the hydrologic models and uncertainty in the model initial conditions (i.e. the hydrologic
uncertainties) constitute a major source of error in hydrologic prediction. As such, ac-
curate accounting of both meteorological and hydrologic uncertainties is critical to pro-
ducing reliable probabilistic hydrologic prediction. In this paper, we describe and eval-
uate a statistical procedure that accounts for hydrologic uncertainty in short-range (1
to 5 days ahead) ensemble streamflow prediction (ESP). Referred to as the ESP post-
processor, the procedure operates on ensemble traces of model-predicted streamflow
that reflect only the meteorological uncertainty and produces post-processed ensemble
traces that reflect both the meteorological and hydrologic uncertainties. A combination
of probability matching and regression, the procedure is simple, parsimonious and ro-
bust. For a critical evaluation of the procedure, independent validation is carried out for
five basins of the Juniata River in Pennsylvania, USA, under a very stringent setting.
The results indicate that the post-processor is fully capable of producing ensemble
traces that are unbiased in the mean and in the probabilistic sense. Due primarily
to the uncertainties in the cumulative probability distributions (CDF) of observed and
simulated flows, however, the unbiasedness may be compromised to a varying degree
in real world situations. It is also shown, however, that the uncertainties in the CDF’s
do not significantly diminish the value of post-processed ensemble traces for decision
making, and that probabilistic prediction based on post-processed ensemble traces
significantly improves the value of single-value prediction at all ranges of flow.

1 Introduction

To account for uncertainties in the future meteorological boundary conditions of Quan-
titative Precipitation Forecast (QPF) and Quantitative Temperature Forecast (QTF), the
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U.S. National Weather Service (NWS) has been using the ensemble streamflow pre-
diction (ESP) methodology for long-range streamflow prediction since the early 1990’s
(Day, 1985; Smith and Day, 1992; Schaake and Larson, 1998; McEnery et al., 2005).
Recently, the practice of ESP has been expanded to short-range prediction in support
of the Advanced Hydrologic Prediction Service (AHPS, McEnery et al., 2005). In its
original form, ESP accounts for only the meteorological uncertainty and does not con-
sider the parametric (Beven and Binley, 1992; Kuczera and Parent, 1998; Schaake et
al., 2001; Vrugt et al., 2003; Duan et al., 2006) and structural (Refsgaard and Knud-
sen, 1996; Butts et al., 2004) uncertainties in the hydrologic models or the uncertainties
in the initial and boundary conditions of the hydrologic models (Sperflage and Geor-
gakakos, 1996; Refsgaard, 1997; Seo et al., 2003; Slater and Clark, 2006). As such,
if significant hydrologic uncertainties exist, the ESP products are likely to be biased in
the probabilistic sense.

While the hydrologic uncertainties have long been recognized as major sources of
error in hydrologic prediction (Binley et al., 1991; Beven and Freer, 2001; Carpen-
ter and Georgakakos, 2004; McMichael et al., 2006), it is only recently that rigorous
and systematic efforts have begun to address them comprehensively in the ensem-
ble prediction framework (Frantz et al., 2005). The basic components necessary in
the ensemble prediction framework to reduce and to account for hydrologic uncertain-
ties include parameter estimation (Duan et al., 1993, 2006; Gupta et al., 1998), char-
acterization, assessment and modeling of parametric uncertainty (Beven and Binley,
1992; Kuczera and Parent, 1998; Schaake et al., 2001; Vrugt et al., 2003; Duan et
al., 2006), state updating or data assimilation (DA) (Sperflage and Georgakakos, 1996;
Refsgaard, 1997; Seo et al., 2003; Slater and Clark, 2006), ensemble DA (Zupan-
ski, 2005), multimodel ensemble prediction (Georgakakos et al., 2004; Raftery et al.,
2005) and post-processing (Perica et al., 1999). While tremendous progress has been
made in recent years to produce, mostly in research settings, a number of promising
state-of-the-art techniques and methodologies for these basic components, much addi-
tional work is needed to test and to evaluate their operational worthiness and to exploit
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fully the complementarity between the automatic algorithms and human forecasters.
Also, most of the existing operational forecast systems such as the National Weather
Service River Forecast System (NWS 2000) currently lack the hardware and software
infrastructure necessary to implement many of the basic components of an ensemble
prediction system. For these reasons, the transition to full-blown ensemble prediction
is expected to occur incrementally over time. It is also expected that, even if all basic
components of hydrologic ensemble prediction are put into operation, there will always
remain a level of hydrologic uncertainty of mixed origin that is not fully represented due
to less than complete source-by-source accounting of uncertainties. As such, it is ex-
pected that statistical procedures such as the one described in this work will always be
necessary to account for the residual hydrologic uncertainty and hence to render the
probabilistic products as reliable and skillful as possible. It must also be pointed out
that, if all major sources of hydrologic uncertainties are properly addressed by the basic
components in the ensemble prediction system, the residual uncertainty should largely
be statistically structureless. As such, the end state envisioned for the post-processor
within the ensemble prediction framework is a very simple statistical procedure, ideally
nothing more than a white- (but generally heteroskedastic) noise generator, rather than
one of increasing complexity and sophistication. The purpose of this work is then to
develop a simple, parsimonious and computationally inexpensive statistical procedure,
referred to herein as the ESP post-processor, that accounts for hydrologic uncertainties
in short-range (1 to 5 days ahead) ESP in order to improve reliability and, to a lesser
extent, resolution (Wilks, 1995) of the short-range ESP products. The post-processor
is intended for operational use nationally as a basic component in the ensemble pre-
diction system under widely varying conditions of data availability, goodness of the
hydrologic models used, and hydroclimatology of the basins. As such, parsimony and
robustness are particularly important considerations. The main contributions of this
paper to the hydrologic ensemble prediction literature include: a conceptual descrip-
tion of the hydrologic ensemble prediction framework that allows flexible decomposition
and accounting of total hydrologic uncertainty for an evolving forecast system such as
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NWSRFS, development of a very simple and parsimonious statistical post-processor
that is well-suited for the above framework and inexpensive to update in an evolving
forecast system, and a critical independent validation of post-processed streamflow
ensembles using commonly used verification measures that can be communicated di-
rectly to the ensemble and probabilistic prediction community.

Post-processing of streamflow ensembles from hydrologic models has been used
for bias correction in seasonal or long-range ESP (Carpenter and Georgakakos, 2001;
Wood et al., 2002), but is only beginning to gain attention in short-range ESP. To the
best of the authors’ knowledge, Perica et al. (1999), a predecessor to the work de-
scribed herein, represents the first attempt at post-processing short-range streamflow
ensembles. Recently, Hashino et al. 2002) evaluated three bias correction methods for
long-range ESP for diagnostic assessment, the event-based correction (EBC, Smith et
al., 1992), the regression-type, and the quantile mapping (or probability matching, PM)
methods. Their results showed (Hashino et al., 2002) that all bias correction meth-
ods improve skill scores, mostly by reducing both the conditional and unconditional
biases, the EBC-corrected forecasts tend to have the lowest sharpness and discrimi-
nation (Bradley et al., 2004) over all flow quantiles, the PM-corrected tends to give the
highest sharpness and discrimination, and the regression type methods seem to be
in between the above two. The ESP post-processor developed in this work may be
considered a combination of the regression-type and PM methods in that it performs
probability matching conditional on recently observed streamflow.

As noted above, parsimony and robustness are very important for operational via-
bility of the procedure. As such, we make conscientious effort to keep the regression
model as simple as possible. Because the proposed procedure is only one of many
pieces in the hydrologic ensemble prediction system under development at NWS, it is
necessary to ascertain its important, but limited, role in end-to-end hydrologic ensem-
ble prediction. For that, we present below an overview of the ESP process from the
end-to-end uncertainty-accounting perspective and describe the simplification made to
treat (for now) all hydrologic uncertainties as an aggregate, in the absence of individual
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2 Overview of ESP and aggregation of hydrologic uncertainty

The complete ESP process that accounts for all major sources of uncertainty (see
Fig. 1) amounts to numerically evaluating the probability distribution of the forecast
flow at some future times given the observed flow up to and including the current time
via the total probability law (Krzysztofowicz, 1999):

f1(arla,) = /fz(CIf|%, S¢)f3(5¢19,)d ¢ (1)

where f;’s denote probability density functions (PDF), and g, q, and s; denote the
predictand, i.e. the streamflow at some future times, the observed flow up to and
including the current time, and the model-predicted streamflow at the future times, re-
spectively. In writing PDF’s, we denote only the experimental values of the random
variables for notational brevity in this paper. For example, f,(g¢|q,) in Eq. (1) abbrevi-
ates f1?|¢0:>(qf|qo), where Q; and Q, denote the random variables, and q; and g, denote
the respective experimental values of the random variables. Throughout this paper,
we denote the experimental values of the random variables and the random variables
themselves by lower- and uppercase letters, respectively. The PDF’s in the integrand
in Eq. (1) may be rewritten as:

f3(s¢lao) = ///f4(sf|bf: 1,P. Qo)s(brli, P, Go)fe(Pli. qo)f7(ila,)dbrdidp ()

0¢e(ar. a5, S¢)
0q;

f2(g¢la,. S¢) = ’ fe(€(qr. 0. S¢)1Q0. Sr) (3)

where b; denotes the boundary conditions of precipitation and temperature at the fu-
ture times, / denotes the model initial conditions, p denotes the model parameters,
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and &(-) denotes the error in predicting g; given q, and s;, w, expressed as a function
of g¢, q, and s;, i.e., w=¢€(qg¢, q,. S¢). The error function ¢(-) is obtained by inverting
the statistical prediction model for g, n(-), expressed as a function of q,, s; and w,
i.e., gr=n(q,. s, w) (see Sect. 3 for an example in the normal space). The conditional
PDF’s f5(bsli. p. q,), fs(pli. q,) and f7(ilg,) in Eq. (2) correspond in ESP to the me-
teorological input pre-processor, the parametric uncertainty processor, and the initial
condition uncertainty processor (see Fig. 1) that generate ensemble traces of B;, P
and /, respectively. In Eq. (2), because By is independent of /, P and Q,,, f5(b¢|i, p, q,)
may be reduced to f5(b;) and, because model parameters are independent of / and
Q,, f5(p|i, g,) may be reduced to fg5(p). Also, if there is no updating of model states
based on observed streamflow, 7 (i|g,) and f4(s¢|bs, i, p, q,) in Eq. (2) may be reduced
to 17(7) and f4(s¢|by. 7, p), respectively. The ensemble traces of B¢, P and / thus ob-
tained may then be input to the hydrologic models, represented by 7,(s¢|bs. 7, p, q,) in
Eq. (2), to generate ensemble traces of S; that reflect the meteorological uncertainty,
the parametric uncertainty and the uncertainty in the model initial conditions. The con-
ditional PDF fg(w/|q,. S¢) in EQ. (3) represents the hydrologic error model and generates
ensemble traces of W that reflect the uncertainty in predicting g, given g, and s;. Fi-
nally, the statistical prediction model, g;=n(q,, s;, w), inputs the ensemble traces of
W and generates ensemble traces of the predictand q;, which now reflect both the
meteorological and hydrologic uncertainties.

The motivation for decomposing total hydrologic uncertainty into constituent uncer-
tainties as described above is at least three-fold. The first is to utilize the existing
and emerging DA, including state updating, capabilities (Sperflage and Georgakakos,
1996; Refsgaard, 1997; Seo et al., 2003; Zupanski, 2005; Slater and Clark, 2006)
so that hydrologic uncertainty in initial conditions may be reduced beyond what purely
statistical techniques may bear. The second is to assess relative importance among
the major sources of hydrologic error contributing to the total hydrologic uncertainty.
Such assessment is necessary to prioritize improvements in different components of
the forecast system. The third is to whiten the residual hydrologic uncertainty W as
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much as possible so that statistical modeling of the post processor may be made as
simple and parsimonious, and hence as less data-intensive, as possible. The last con-
sideration is of particular importance under climate change conditions. In operational
implementation of the above framework, it is likely that the number of ensemble mem-
bers for initial conditions or model parameters may have to be kept relatively small to
keep computational burden in check, and that the uncertainties not explicitly captured
by the above ensembles may have be to accounted for in the residual uncertainty W
by the post processor. Such a practice, however, is not a departure from the above
framework, but a practical compromise given available human and computational re-
sources, data availability and understanding of the uncertainties involved. It is also
possible that, for now, explicit accounting of parametric uncertainty may be computa-
tionally too expensive to be practical for distributed models (see e.g. Liu et al., 2005). In
such a case, one may deal only with initial condition uncertainty explicitly and account
for parametric uncertainty in the residual hydrologic uncertainty W via a statistical post
processor within the above framework.

Development of the hydrologic uncertainty processors described above requires
probabilistic description of the errors from individual sources, P, / and W. In prac-
tice, such individual modeling of the errors is very difficult because, very often, very
little is known about them a priori (Kuczera and Parent, 1998; Butts et al., 2004; Car-
penter and Georgakakos, 2004; Pappenberger et al., 2005; McMichael et al., 2006). In
the absence of individual hydrologic uncertainty processors in the current short-range
ESP operations in NWS, in this work we aggregate the parametric uncertainty and
the uncertainty in the initial conditions with W/, and model only a single hydrologic un-
certainty processor (see also Krzysztofowicz, 1999; Krzysztofowicz and Maranzano,
2004). Such “error aggregation” amounts to placing all sources of hydrologic uncer-
tainty in W by assuming perfectly known P and /, and approximating the added un-
certainties due to P and / in W. As noted in Sect. 1, it is expected that the above
approximation will ease over time following incremental implementation of the basic
components in the ensemble prediction system (see Fig. 1). Once W is modeled, the
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post-processor generates ensemble traces of forecast streamflow, Q¢, from the model
prediction, s;, the observed flow, g,, and the aggregate hydrologic error, w, via the sta-
tistical prediction model, q;=n(q,. s¢, w), which we describe in Sect. 3 in some detail.
Because the scope of this work is limited to dealing with only the hydrologic uncertainty,
we assume in the development below that no meteorological uncertainties exist; i.e.,
the future boundary conditions of precipitation and temperature are known clairvoyantly
(i.e. f5(bs|i, p, g,) in EQ. (2) is an impulse function). It is therefore to be understood that
we make no distinctions between model simulation and model prediction unless stated
otherwise in this paper.

The above simplified approach of error aggregation in modeling of total hydro-
logic uncertainty is adopted earlier in Perica et al. (1999), Krzysztofowicz (1999)
and Krzysztofowicz and Maranzano, 2004) also. Beyond the notable difference that
Krzysztofowicz and Maranzano (2004) is quasi-analytical and models river stage
whereas the post-processor is numerical and models river flow, an important distinc-
tion between the two is that the former is Bayesian, and hence models the prior and
the likelihood function to obtain the posterior via Bayes’rule, whereas latter is not and
amounts to modeling the posterior directly. Theoretically speaking, the Bayesian ap-
proach is expected to do better than, or at least as well as, the post processor’s ap-
proach. Due to the added complexity of deriving the posterior through Bayes’ rule,
however, the Bayesian approach heavily parameterizes the prior and the likelihood
function (Krzysztofowicz and Maranzano, 2004), the parameters of which are then as-
sumed, implicitly, perfectly known. The post processor, on the other hand, is extremely
parsimonious as shown below and hence may be minimally subject to parametric un-
certainty (i.e. not of the hydrologic model but of the statistical model). In this regard,
comparative evaluation between the two approaches via objective independent valida-
tion is critically needed in order to develop a better sense of balance among complexity
of the statistical model, parsimony of the model parameters, and data requirements
necessary for cost-effective implementation of hydrologic uncertainty processors in the
hydrologic ensemble forecast system depicted in Fig. 1. Such a comparative evalua-
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tion, however, is a major undertaking and well beyond the scope of this work.

3 Statistical prediction model

The statistical prediction model, g;=n(q,. sf. w), is based on the following recursive
linear regression in the normal space:

Z2., =(1=-b)Z+bZ; , +E; (4)

where Z; and Z/,, denote the normalized observed flows at time steps k and k+1,
respectively, Z;, , denotes the normalized model-predicted flow at time step k+1, E 4
denotes the random error representing the aggregate hydrologic uncertainty at time
step k+1 in the normal space, and b denotes the weight given to the normalized model
prediction (0<b<1). The choice of the above autoregressive-1 model with a single ex-
ogenous variable, or ARX(1,1) (Box and Jenkins, 1976), is based on the previous work
(Perica et al., 1999) and evaluation of different candidate models (mostly of the ARX
class), via parameter estimation and independent validation similar to those described
in Sect. 4. The choice of ARX(1,1), which results from the instantaneous stochastic de-
pendence (Maranzano and Krzysztofowicz, 2006) and the a posteriori Markov of order
one dependence (Maranzano and Krzysztofowicz, 2006) between the modeled and ob-
served streamflow processes, is also supported by the Bayesian approach (Maranzano
and Krzysztofowicz, 2006) based on stochastic modeling of the river stage processes.
We also note that the ARX(1,1) model has been in use for years as the noise model in
real-time flood forecasting applications, particularly in the form of a Kalman filter (To-
dini, 2005). There are, however, additional considerations that went into the choice as
explained below. It is expected that DA for state updating (see e.g. Seo et al., 2003)
will greatly reduce the need for autoregressive statistical modeling, and that the para-
metric uncertainty processor will further reduce serial correlation of forecast error at
both small and large time lags. Given these prospects, it is very much desirable to
develop and implement (assuming of course that the performance is satisfactory) as
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simple and parsimonious as possible a statistical post processor so that its parameters
may be updated very easily as the forecast system evolves.

With Eq. (4), the ensemble traces of the predictand Q; may be generated recursively
from q;=n(q,, s;, w) via the following sequence of operations: 1) normal quantile-
transform g, and gy, to obtain z; and z; ,, respectively, where g} and g, denote
the observed and model-predicted flows at time steps k and k+1, respectively, 2) sam-
ple a normal random deviate of E, 4 from N(mg, af:), where mg and aé denote the
mean and variance of E,, , respectively, 3) pass the normal random deviate through
Eq. (4) to obtain a realization of z,‘z”, 4) normal quantile inverse-transform z,f+1 to
obtain a realization of 1 day-ahead prediction of q,f+1, 5) treating the 1 day-ahead pre-
diction of q,‘zﬂ as observed, repeat Steps 1 through 5 out to 5 days into the future, 5)
repeat Steps 2 through 5 as many times as the number of ensemble traces desired.
The above process amounts to conditional simulation (Deutsch and Journel, 1992;
Seo et al., 2000) of Z°, making use of the fact that realizations of Z° are simulated out-
comes of observed streamflow. The normal quantile transform (NQT) in Step 1 maps
flow to standard normal deviate by matching the empirical cumulative probability of the
flow with the standard normal cumulative probability:

z; = nat,(qy) (5)
z, = nqts(qy) (6)

where nqt,(-) and nqt,(-) denote the empirical NQT functions for observed and model-
simulated flows, respectively. The procedure thus combines PM (or quantile mapping
in Hashino et al., 2002) with linear regression. If b=1 and E,_ ;=0 (i.e. the hydrologic
model prediction is perfect in the normal space), the procedure is reduced to PM. If
b=0 (i.e. the hydrologic model prediction has no skill), the procedure is reduced to the
(purely statistical) autoregressive-1 model (AR(1)) (Bras and Rodriguez-lturbe, 1985)
in the normal space with variable transformation based on NQT.

Because we are using empirical, rather than theoretically fitted, cumulative probabil-
ity distribution functions (CDF), the normal random deviates from Step 3 may not be
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inverse-transformed if they lie outside of the historically observed range. To extend the
empirical CDF’s (ECDF) beyond the historical maxima, we use the following hyperbolic
approximation for the uppermost-tail of the distribution (Deutsch and Journel, 1992):

1 %
- [=ria<al 7

In the above, Pr[-] denotes the probability of occurrence of the event bracketed,
Pr{Q<q] is given by Pr[Z<z] where z denotes the random deviate from Eq. (4) of
the standard normal variable Z exceeding the historical maximum, A1 is given by
A=Gmax(1 = PIQ<qpmax]) Where g, denotes the historical maximum flow (m“/s), and
® is a parameter that controls the fatness of the tail (the smaller @, the fatter the tail).
Sensitivity analysis indicates that the performance of the post-processor is moderately
sensitive to @, and that @=3.25 is a good choice for all basins studied in this work (see
Table 1).

By rewriting Eq. (4) in terms of E,,; and minimizing its variance with respect to b,
we obtain the following least-squares solution for b in the normal space:

b ={1-po(1) - pc(1]) + Po(I0D}/{2(1 = P11} (8)

In the above, p,(|/|) and p,(|/|) denote the serial correlation of Z° and the cross correla-
tion between Z° and Z° at lag /, respectively. Hence, under the least squares criterion
in the normal space, the coefficient b is expressed as a function of the autocorrelation
of Z° and the cross-correlation between Z° and Z°. Thus, the effects of auto- and
cross-correlations in the probabilistic sense in the observed and modeled streamflow
processes are captured in the post processor by the coefficient b through the above
relationship. The least-squares solution of Eq. (8), however, is specific only to the one-
step transition shown in Eq. (4). For the coefficient b to be lead time-invariant so that
Eq. (4) is a theoretically valid recursive model, additional assumptions are necessary
on the correlation structures of Z° and Z° (the details are not central to the develop-
ment of this paper and are not given here). While it may make an interesting exercise to
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hypothesis-test such assumptions, statistical acceptance of the hypotheses in the nor-
mal space may not necessarily mean that the performance of the post processor would
be satisfactory. For example, even if all statistics in Eq. (8) are perfectly estimated, op-
timality (in the minimum error variance sense) in the normal space of the estimate of
b as obtained from Eq. (8) does not necessarily imply satisfactory performance of the
post processor in the original space. Our experience strongly indicates that an optimal
(in the minimum error variance sense) estimate of b in the normal space produces
good performance in the original space in the unconditional mean sense, but rather
poor performance in the conditional mean sense, particularly for all-important large
streamflows (this tendency, however, is expected to be less pronounced for river stage,
owing to smaller skewness in distribution than streamflow). As such, the approach
taken in this work is to perform nonlinear optimization of the parameter b numerically
in the original space under a multi-objective criterion as described in Sect. 4. In this
way, one may ensure satisfactory performance of the post processor not only in the
unconditional mean sense but also in the conditional mean sense.

Because the correlation structure depends greatly on the magnitude of the stream-
flow, so does the coefficient b (in the normal as well as in the original space). As such,
we stratify the parameter b (and hence mg and oé) according to the magnitude of the
model-simulated flow as follows:

_ blow /fQ/iH 2 dc
b= {bhigh otherwise ©)

where the cutoff flow g, (m3/s) is chosen to be the median of the historically observed
flow based on sensitivity analysis. It is noted here that we tried other, seemingly more
sophisticated, models for the dependence of b on g, ,, but could not realize notice-
able, if at all, improvement in independent validation. The above conditioning of b
on the flow regime is a practical but empirical attempt to reflect the observation that
disparate stochastic processes are at work in low- and high-flow situations in model-
ing of hydrologic uncertainty. Further research is needed for flow regime-dependent
modeling of residual hydrologic error that draws from understanding of the underlying
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physical processes. To account for the seasonality of streamflow (see Fig. 2), the sta-
tistical parameters for W and the NQT functions in Egs. (5) and (6) should preferably
be stratified at the monthly or seasonal scale. Sensitivity analysis, however, indicates
that such stratification does not yield reliable CDF’s from a 20-yr record of daily stream-
flow data. As such, we choose a semi-annual stratification to increase the sample size
and estimate the parameters for wet (December through May) and dry (June through
November) seasons. Additional research is needed to identify and account for possible
nonstationarities due to factors other than seasonality, such as changes in the rating
curve and climate change, from analysis of residuals.

In place of Eq. (4), one may consider other formulations for the statistical prediction
model, the bivariate AR(1) model (Bras and Rodriguez-Iturbe, 1985; Seo et al., 2000)
being an obvious candidate. Our experience, however, indicates that the use of a
multivariate time series model with NQT is rather tricky because, whereas the model
parameters estimated in the normal space may be optimal with respect to the normal
quantile-transformed flow (i.e. in the minimum error variance sense), they are generally
very poor estimates with respect to large flows in the original space.

4 Parameter estimation and validation

The post-processor described above has only one free parameter, the coefficient b
in Eq. (4), as stratified according to Eq. (9). To estimate, we minimize the following
objective function:

o 1 < pe . 1< d Pyordq2
Minimize J = a— > [q; - q;F + ~ 21 [(@)° - (@)™ ] (10)

i=1

where q,‘(’ denotes the observed flow at the k-th time step, qf denotes the
conditional mean of the observed flow at the k-th time step given the ob-
served and model-simulated flows at the (k-1)st and k-th time steps, respectively,
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i.e. g, =E[Q}|Qy_1=q,_,.Q;=q;] (see Eq. 10), n denotes the total number of data

points, a denotes the weight given to the first term, and (-)Ord denotes that the variable
superscripted is sorted in the ascending order of magnitude. The first term in Eq. (10)
is the mean square error of the ensemble mean prediction from the post-processor.
The second term in Eq. (10) is the mean square deviation from the 45° line in the
quantile-quantile plot between the observed and the ensemble mean-predicted flows.
The purpose of the second term is to render the marginal PDF of the predictand close
to that of the observed (cf PM). With the second term in the objective function, the
role of the first term is primarily that of maximizing the cross correlation between the
predictand and the observed flow. Eq. (10) thus forces the bivariate distribution of the
post-processed ensemble mean and the observed flows to tighten symmetrically along
the 45° line. In this work, the weight a in Eq. (9) is specified empirically based on sensi-
tivity analysis. Our experience suggests that a~0.1 is a reasonable choice for all cases
studied in this work. Because a balances the two, often competing, objectives of mini-
mizing unconditional error variance and reducing conditional bias, some trial and error
may usually be necessary. To that end, further research is needed to determine the
weight objectively and to provide the user with objective guidance for its specification.
The predictand, g}, in Eq. (10) is evaluated by:

(o o]
El@IQ,_, =q;_,.Q; =q;] =/ nat, " (29)f(20)2°_,., z5)d 22 (11)
— 00
where nqt;1(-) denotes the normal quantile inverse-transformation of observed flow,
and the conditional PDF of Z, (1), is given by N((1-b)-z0_, +b-z;+mg, 02). Because
we are using empirical functions for nqt,(-), closed-form evaluation of the theoretical
ensemble statistics, such as the right-hand side of Eq. (10), is not possible. In this work,
we evaluate them quasi-analytically via piecewise approximation of nqt;1 (-). Being able
to evaluate the theoretical ensemble statistics a priori is an extremely important feature
of the post-processor developed in this work as it allows optimal, in the ensemble
mean sense, estimation of the parameter b (and hence mgand aé), without having
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to generate a large number of ensemble traces to obtain reliable sample statistics.
To test empirically the lead time-invariance of b put forth in Sect. 3, we also carried
out nonlinear optimization of b for 2- to 5-step transitions based on the recursion in
Eq. (4) and validated the post processor results against observed streamflow both
dependently and independently using 5 different estimates of b as optimized using
1- to 5-step transitions via recursion. The results indicate that the dependence of b
on lead time is rather small, and that the difference in the performance of the post
processor is only minor among the different estimates of b. In the following, all results
presented are based on estimates of b from 1 step-ahead transition, regardless of lead
time.

The basins used in this work for evaluation of the post-processor are SPKP1,
HUNP1, SAXP1, MPLP1 and NPTP1 of the Juniata River in the NWS Middle Atlantic
River Forecast Center's (MARFC) service area (see Fig. 3 and Table 1). They are
chosen from all of the Juniata River basins mainly for the availability of lengthy (47
years, covering 1951 through 1997) observations of daily streamflow so that indepen-
dent validation and sensitivity analysis may be carried out under various scenarios.
The hydrologic models used are the Antecedent Precipitation Index (API, Anderson,
1993) and SNOW-17 (Anderson 1973) models for the rainfall-runoff and snowmelt pro-
cesses, respectively. The hydrologic models were calibrated at MARFC using 11 or
13 years of data (David Zanzalari, personal communication). The model calibration
is generally of very high quality, particularly for high flows, with the Nash-Sutcliffe and
cross-correlation coefficients ranging from 0.79 to 0.87 and from 0.89 to 0.94, respec-
tively, for daily simulation in the validation periods (see also Fig. 6). The flow at RTDP1
is regulated by the Raystown Dam, which also influences the basins downstream. This
regulation, which is not modeled in this work, presents a significant source of additional
uncertainty in model simulations at MPLP1 and NPTP1 (see Fig. 3), and hence offers
a particularly challenging test for the post-processor.

To evaluate the post-processor, we carried out independent validation as follows: 1)
divide the 47-yr record of the observed and simulated daily streamflow into two, 2)
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estimate the post-processor parameters (including the NQT functions in Egs. 5 and
6) using the first half of the data, 3) run the post-processor through the second half
at lead times of 1 through 5 days, and 4) repeat the above steps with the two halves
of the data interchanged. In an operational setting, estimation of the post-processor
parameters should be a part or an extension of hydrologic model calibration. Given
that 11- to 13-yr data were used to calibrate the hydrologic models for these basins, it
is of particular interest to estimate the post-processor parameters using data sets of
comparable length (e.g., by dividing the 47-yr data into four periods). It is noted here
that we carried out such an experiment as a part of a larger sensitivity study. The
results indicate that the ECDF’s (and subsequently the NQT functions) obtained from
11-yr records are subject to rather large sampling uncertainties, which significantly
compromises the post-processor’s performance (these points will be made clearer in
the next section). As such, we focus on parameter estimation and validation based on
23-yr records, the results of which are summarized below.

5 Results
5.1 Deterministic results

In the deterministic sense, the primary purpose of the post-processor is to remove or
reduce systematic biases in the model-predicted flow. As such, a viable post-processor
should produce a prediction that is in general better than or at least as good as the
model prediction in the deterministic sense. To verify this, we evaluate the quality
of the ensemble mean prediction from the post-processor as obtained from Eq. (10).
Figures 4 and 5 show the ratio of the sum of the observed flow to that of the post-
processor (PP)-predicted flow (denoted as RATIO) and the percent reduction in the
root mean square error (RMSE) by the PP-predicted flow over the model-predicted,
respectively. All results shown in Figs. 4 and 5 are from the parameter estimation pe-
riods (see Sect. 4). Hence, they represent the upper bound of the post-processor’s
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performance under the assumption that the parameters are known very accurately.
The closer the RATIO is to unity in Fig. 4 and the larger the reduction in RMSE is in
Fig. 5, the better the performance is. A negative reduction in RMSE, however, does not
necessarily mean that the performance of the post-processor is poor because certain
model biases may only be corrected at the expense of an increased RMSE. Note in
the figures that the post-processor renders RATIO close to unity at all lead times and
significantly reduces RMSE. That the post-processor produces RATIO’s that are con-
sistently, albeit slightly, less than unity (see Fig. 4) is an indication that it has a small
bias of its own. The source of this bias is not clear, and further investigation is needed
for its identification and correction. That the reduction in RMSE levels off rather quickly
(see Fig. 5) indicates that the inclusion of observed flow in the post-processor adds
significant skill (i.e. beyond that owing to bias removal) to 1 day-ahead prediction only.
This is in agreement with state updating or DA results for basins of comparable size
(see e.g. Refsgaard, 1997; Seo et al., 2003) and indicates that, for fast-responding
runoff processes in these basins, the memory of the initial conditions lasts a day or so.
Similarly, examination of the cross correlation between the observed and the model-
predicted flows and between the observed and the PP-predicted flows (not shown)
indicates that the post-processor may provide significant additional predictive skill for
the first day.

Figure 6 shows an example of the scatter and quantile-quantile plots of daily flow
between the observed and the model-predicted flows (upper panels) and between the
observed and the PP-predicted flows (lower panels). All results shown therein are for 1
day-ahead prediction from a parameter estimation period. The scatter plots are shown
in both linear (right panels) and log (middle panels) scales so that the performance in
the low-flow ranges may also be scrutinized. A desirable post-processor would produce
ensemble mean prediction that is conditionally unbiased at all ranges of flow and has
the same marginal probability distribution as the observed flow. Such a processor
would place the scatter and quantile-quantile plots on the 45° line in the lower panels
of Fig. 6. Though difficult to see in the linear plot (upper-left panel), it is evident in
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the log-log plot (upper-middle panel) that the model prediction is significantly biased in
the low-flow ranges. Note that the post-processor removes this conditional bias all but
completely and tightens the scatter considerably (lower-left and -middle panels).
Figures 7 and 8 are the same as Figs. 4 and 5, respectively, but for the two valida-
tion periods (see Sect. 4). It is important to note that all validation results presented in
this paper represent the post-processor’s performance under very stringent conditions
where, once the parameters are estimated from a daily streamflow record of about 20
years, the post-processor is run continuously for about 20 years thereafter, without ever
updating the parameters. With parameter updating in the real world, it is likely that the
performance would be significantly better than seen in these two figures. Compared
to the results from the parameter estimation periods (Figs. 4 and 5), significant deteri-
oration in the post-processor’s performance is seen in the validation periods. Figure 7
shows that, though the RATIO of the PP-predicted flow does spread around the line
of unity, the volume bias in the PP-predicted flow can exceed 10 percent in the worst
case (HUNP1). Figure 8 indicates that, while the pattern of reduction in RMSE in the
validation periods is similar to that in the parameter estimation (see Fig. 5), the mag-
nitude of reduction is significantly smaller (due in large part to the increased bias). In
Fig. 7, by far the largest departure in RATIO from the line of unity is at HUNP1. Given
that the deterioration of the performance in the validation periods must come from the
uncertainty in the post-processor parameters, it is suspected that the ECDF’s used in
NQT (see Egs. 5 and 6) are the primary source of that uncertainty. Figure 9 shows
the ECDF’s of observed and model-simulated flows for the wet season (December
through May) at HUNP1. In the figure, there are two ECDF’s each for observed and
simulated flows corresponding to the two parameter estimation periods (see Sect. 4).
Also shown in the lower-right corner of the figure is a magnification of the upper-tail
portion of the ECDF’s. If the two ECDF’s differ significantly, it is likely that the normal
quantile back-transformation in Eq. (10) results in significant errors. Examination of
the ECDF’s of observed and simulated flows for all basins (not shown) indicates that
HUNP1, which has the largest error in RATIO of the PP-predicted flow (see Fig. 7), has
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the largest difference in the ECDF’s between the two parameter estimation periods
(see Fig. 9). SAXP1, on the other hand, has the smallest difference (not shown), and
yields the smallest error in RATIO of the PP-predicted flow (see Fig. 7). The above ob-
servation suggests that the magnitude of long-term variability in the ECDF’s is a very
good indicator of the parametric uncertainty in the post-processor, and hence of the
post-processor’s performance.

5.2 Probabilistic results

In the probabilistic sense, the primary purpose of the post-processor is to render the
predicted probability unbiased (i.e. assuming that the meteorological input is unbiased).
As such, by far the most important performance measure is reliability, which measures
unbiasedness of the predicted probability against the observed frequency of the pre-
diction (Wilks, 1995; Jolliffe and Stephenson, 2003). Figures 10 through 12 show
the reliability diagrams (Wilks, 1995) for NPTP1 at the thresholds of 50th-, 85th- and
97.5th-percentile flows, or 19, 53 and 132 (m3/s), respectively, in the parameter esti-
mation periods. All reliability diagrams shown in this paper are based on 99 ensemble
traces. In each figure, the thick solid and dashed lines represent the reliability dia-
grams of 1 and 5 day-ahead probabilistic predictions, respectively. Note that there
are two lines each for each forecast lead time corresponding to the two parameter
estimation periods (see Sect. 4). Each point in the reliability diagram represents the
frequency of observed flow exceeding the threshold (i.e. the observed frequency on the
y-axis) given the probability that observed flow will exceed the threshold as predicted
by the post-processed ensemble traces (i.e. the predicted probability on the x-axis). A
perfectly reliable probabilistic prediction would place the points exactly on the 45° line,
shown as the thin solid line along the diagonal. In each figure, the thin dotted horizontal
and vertical lines, referred to as the “no-resolution” lines (Wilks, 1995), correspond to
the climatological probability that the observed flow exceeds the threshold. Resolution
measures the sensitivity of the observed frequency of the prediction to the predicted
probability, or that of the predicted probability to the observed frequency of the predic-
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tion. Note that, on the horizontal line of no resolution, different predicted probabilities
lead to the same observed probability and, on the vertical line of no resolution, the
same predicted probabilities lead to different observed probabilities. The thin dotted
line between the 45° and the horizontal no-resolution line represents the “no-skill” line.
Points on this line do not contribute to the Brier score whereas those below it con-
tribute negatively to the score (Wilks, 1995). At high thresholds, reliability diagrams
are subject to significant sampling errors due to small sample size. Such diagrams are
characterized by jagged or saw tooth-like lines (cf. Fig. 12) and must be interpreted
with caution.

Figures 10 through 12 indicate that, if the parameters are known accurately, the
post-processed ensemble traces are extremely reliable at all thresholds and at all lead
times. Also shown in the lower-right corner of the reliability diagram are the histograms
of the predicted probability, where the solid and dotted lines denote the day-1 and -5
predictions, respectively. A “U”-shaped histogram indicates high sharpness in the prob-
abilistic prediction (Wilks, 1995). That is, the prediction is able to “stick its neck out”
and differ from climatology (Jolliffe and Stephenson 2002). A flat histogram, on the
other hand, indicates little sharpness in that the prediction differs little from climatol-
ogy. Note in Fig. 10 that the histogram of the 1 day-ahead PP-prediction at the median
flow is characterized by a deeper “U” than that of the 5-day ahead prediction, an in-
dication that the 1 day-head prediction is significantly sharper at this threshold. The
histograms at higher thresholds (see Figs. 11 and 12), on the other hand, do not differ
very much between 1 and 5 day-ahead predictions. The above observations indicate
that the improvement in skill of the PP-prediction comes largely from low-flow ranges,
in agreement with the observations made from the scatter-plots in Fig. 6.

Figures 13 through 15 are the same as Figs. 10 through 12 but for the two validation
periods. Note that, in general, the reliability diagrams depart significantly from the 45°
line. At the thresholds of 50th- 85th- and 97.5th-percentile flows, the reliability diagrams
have maximum errors (in probability) of over 0.3, under 0.1 and over 0.2, respectively.
These error bounds represent the largest among the five basins and hence represent
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the worst case results. The reliability diagrams for other basins (not shown) are quali-
tatively similar, and the magnitude of departure varies significantly from basin to basin
(smaller for SPKP1, SAXP1 and MPLP1, and approximately the same for HUNP1).
As with the departure of RATIO from the line of unity in Fig. 7, the departure of the
reliability diagrams from the 45° line is attributable primarily to the uncertainty in the
ECDF’s of observed and simulated flows. If the ECDF’s from the two parameter esti-
mation periods do not differ very much, the departure is significantly smaller. As seen
in Figs. 13 through 15, the magnitude of the error in the reliability diagram depends
also on the threshold, which is attributable again to the differences in the ECDF’s be-
tween the two periods. Note in Fig. 9 that, at the exceedance probability levels of 0.5
and 0.975, the two ECDF’s of observed flow differ significantly, resulting in large de-
partures in the reliability diagrams at these thresholds. At the exceedance probability
level of 0.85, on the other hand, the ECDF’s are close to each other, resulting in only a
small departure. Thus, as in the deterministic case (see Subsect. 5.1), the magnitude
of long-term variability in the ECDF’s of observed flow at various ranges is seen as
a good indicator of the accuracy of the PP-predicted probability at the corresponding
thresholds. Figures 13 through 15 indicate that, even with a 20-yr record (but with no
parameter updating), the ECDF of observed flow is subject to significant uncertain-
ties due to natural variability of streamflow, and that these uncertainties may result in
significant errors in the PP-predicted probability.

5.3 Value of probabilistic prediction

While the magnitude of the errors in the predicted probability may be assessed through
the reliability diagrams as described above, it is difficult to gauge the impact of such
errors on the value of probabilistic prediction for decision making. For that purpose,
we examine below the Relative Operating Characteristic (ROC, Jolliffe and Stephen-
son, 2003) of the post-processed ensemble traces. The ROC plots the hit rate (HT)
against the false alarm rate (FAR) at various levels of predicted probability. The ROC
curve of a perfect probabilistic prediction connects the points, (0,0), (0,1) and (1,1),
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on the (HT,FAR) plane, and that of a worthless prediction connects (0,0) and (1,1). It
is important to point out that the ROC measures only of discrimination ability of the
set of forecasts, i.e. the degree to which the forecasts differ for a specific observation
(Bradley et al., 2004), and does not rely on the forecasts being well calibrated (i.e.,
reliable) (Glahn, 2004). As such, the ROC curve measures performance only in dis-
crimination, and not in reliability, in the post-processed ensemble traces.

Figures 16 through 18 show the ROC curves for the probabilistic prediction based
on the post-processed ensemble traces at HUNP1 at the thresholds of 50th-, 85th-
and 97.5th-percentile flows, respectively. The results for other basins are qualitatively
similar and are not shown. In each figure, the thick and thin solid lines denote the
ROC curves of the post-processed ensemble traces in the validation and parameter
estimation periods, respectively. The area enclosed by the ROC curve and the diagonal
line is referred to as the ROC area, which is considered a proxy for the economic
value of the prediction (Zhu et al., 2002). Also shown in the figure are the (HT,FAR)
positions of the deterministic, or single-value, model prediction (denoted by squares)
and the ensemble mean prediction from the post-processor (denoted by triangles) in
the validation (denoted by solid markers) and in the parameter estimation (denoted
by empty markers) periods. For deterministic prediction, the ROC area is defined by
the triangle connecting (0,0), (1,1) and the (HT,FAR) positions of the prediction. In
calculating the hit and false alarm rates in these figures, the hit, miss, false-alarm and
correct-rejection counts were conditioned on the event that the daily observed flow
exceeds the two-thirds of the threshold flow. In other words, we excluded the paired
data points in the observed and predicted flow time series if the observed flow is below
the two-thirds of the threshold flow. This conditioning pulls the ROC curves toward
the diagonal line, and hence amplifies the differences in the ROC’s among different
predictions. Figures 16 through 18 may be summarized as follows.

Though the uncertainties in the ECDF’s may introduce significant errors in the PP-
predicted probabilities at the low and high thresholds of 50th- and 97.5th-percentile
flows, their impact on the discrimination ability and value of probabilistic prediction for
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decision making, as measured by the ROC, is only modest at all thresholds. Com-
pared to the deterministic predictions, the probabilistic prediction based on the post-
processed ensemble traces significantly increases the value of prediction at all thresh-
olds. In the deterministic sense, the ensemble mean prediction from the post-processor
is significantly better than the (raw) model prediction at the low threshold of median
flow. At the medium and high thresholds of 85th- and 97.5th-percentile flows, the en-
semble mean prediction is comparable to the model prediction. Lastly, it is worth noting
that the ROC at the high threshold of 97.5th-percentile flow (Fig. 18) is very similar, both
qualitatively and quantitatively, to the ROC of the multi-model ensemble at the flood-
flow threshold (see Fig. 15 of Georgakakos et al., 2003) from the Distributed Model
Intercomparison Project (DMIP, Smith et al., 2004). The similarity between the two
hints that post-processed ensemble traces from a single “high-quality” model may be
of comparable value for decision making to a multi-model ensemble of varying quality.

6 Summary, conclusions and future research recommendations

A statistical post-processing procedure has been developed to account for hydrologic
uncertainty in short-range (1- to 5-days ahead) ensemble streamflow prediction (ESP).
The procedure, referred to as the ESP post-processor, combines probability match-
ing and recursive linear regression to generate ensemble traces of daily streamflow
that reflect both the meteorological and hydrologic uncertainties from those that reflect
only the meteorological uncertainty. The hydrologic uncertainties considered are para-
metric and structural uncertainties in the hydrologic models and the uncertainty in the
model initial conditions. The procedure has only one free parameter that needs to be
estimated via optimization. All other parameters, including the empirical cumulative
distribution functions (ECDF) of observed and simulated flows, are estimated directly
from the data. For a critical evaluation of the post-processor, independent validation
was carried out under very stringent conditions for five basins of the Juniata River in
Pennsylvania, USA.
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The results indicate that the post-processor is fully capable of producing ensemble
traces that are unbiased in the mean and in the probabilistic sense. Due primarily to
the uncertainties in the cumulative probability distributions functions (CDF) of observed
and simulated flows, however, the unbiasedness may be compromised to a varying de-
gree in real world situations. It is shown that, with the parameters estimated from a
20-yr record, the post-processor generally improves the accuracy of the model pre-
diction in the mean sense, the improvement being most significant for low flows. The
worst case results based on the parameters estimated from a 20-yr record indicate
that the ensemble mean prediction from the post-processor may be in error by up to
10 percent, and that the post-processor-predicted probabilities may be in error by up
to 30, 10 and 20 percent for median, 85th- and 97.5th-percentile flows, respectively. It
is also shown, however, that the uncertainties in the CDF’s do not significantly diminish
the value of post-processed ensemble traces for decision making, and that probabilistic
prediction based on post-processed ensemble traces significantly improves the value
of deterministic model prediction at all ranges of flow. In real world situations where
the parameters may be updated as necessary (e.g. annually), it is expected that the
performance of the post processor would be significantly better than the independent
validation results seen in this paper.

The evaluation of probabilistic prediction carried out in this work is limited to dealing
with hydrologic uncertainty only. To assess the integrated effects of combined uncer-
tainty, it is necessary to extend the scope of evaluation to include both meteorological
and hydrologic uncertainties. In this work, the uncertainty in the initial conditions of the
hydrologic models is reduced implicitly by the inclusion of observed flow in the statisti-
cal prediction model (see Eq. 4). Being purely statistical, such an approach is of limited
effectiveness. State updating or DA that explicitly addresses uncertainty in the model
initial conditions (see e.g. Refsgaard, 1998; Sperflage and Georgakakos, 1996; Seo et
al., 2003) should be incorporated to reduce the aggregate hydrologic uncertainty and
to simplify statistical modeling. Finally, the significant sensitivity seen in this work of
the post-processor’s performance to long-term variability in the probability distribution
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of observed flow suggests that the distributional parameters used in probability match-
ing need to be updated frequently to minimize the effects of sampling errors due to
natural variability of streamflow, and that further work is needed to assess such effects
under climate change.
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Table 1. Juniata River basins used in the study.
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Basin ID Gauging Station USGSID Drainage Area (km2) Mean Elevation (m)
SPKP1 Spruce Creek 01558000 754 471
HUNP1  Huntingdon 01559000 2113 447
SAXP1 Saxton 01562000 1958 463
MPLP1  Mapleton Depot 01563500 5258 353
NPTP1 Newport 01567000 8687 258
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Fig. 1. Schematic of the ensemble streamflow prediction (ESP) process.
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Fig. 2. Monthly mean (left panel) and coefficient of variation (CV, right panel) of daily flow at
the five study basins (see Table 1) of the Juniata River, PA, USA.
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Fig. 3. Map of the Juniata River basin, PA, USA. The state of Pennsylvania is depicted in the

lower-right corner.
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Fig. 4. Ratio of the sum of the observed flow to that of the model-predicted (in solid line) or the
post-processed (in dotted line) in the parameter estimation period versus lead time (days).
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Fig. 5. Percent reduction in root mean square error (RMSE) by the post-processed flow over
the model-predicted in the parameter estimation periods versus lead time (days).
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Fig. 6. Scatter-plots in linear scale (left panels) and in log scale (middle panels), and quantile-
quantile plots (right panels) of daily flow between the observed and the model-simulated flows
(upper panels) and between the observed and the post-processed flows (lower panels) at

HUNP1 for a parameter estimation period. The lead time is 1 day.
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Fig. 11. Same as Fig. 10, but for the threshold of 85th-percentile flow.
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Fig. 12. Same as Fig. 11, but for the threshold of 97.5th-percentile flow.
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Fig. 13. Same as Fig. 10, but in the validation periods.
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Fig. 14. Same as Fig. 13, but for the threshold of 85th-percentile flow.
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Fig. 15. Same as Fig. 13, but for the threshold of 97.5th-percentile flow.
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Fig. 16. Relative Operating Characteristic (ROC) curves of the post-processed ensemble
traces at HUNP1 in the parameter estimation (thin solid line) and validation (thick solid line)
periods. The threshold is the median flow. The lead time is 1 day. The squares and triangles
denote the (hit rate, false alarm rate) positions of the (raw) model prediction and ensemble
mean prediction from the post-processor, respectively. The solid and empty markers denote
the positions in the validation and parameter estimation periods, respectively.
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Fig. 17. Same as Fig. 16, but for the threshold of 85.0th-percentile flow.
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