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Small-angle AVO response of PS-waves in

tilted transversely isotropic media

Jyoti Behura' and llya Tsvankin'

ABSTRACT

Field records for small source-receiver offsets often contain
intensive converted PS-waves that may be caused by the influ-
ence of anisotropy on either side of the reflector. Here, we study
the small-angle reflection coefficients of the split converted PS-
and PS,-waves (R Ps, and R psz) for a horizontal interface separat-
ing two transversely isotropic (TT) media with arbitrary orienta-
tions of the symmetry axis.

The normal-incidence reflection coefficients Rps, (0) and
Rps (0) vanish when both half-spaces have a horizontal symme-
try i)lane, which happens if the symmetry axis is vertical or hori-
zontal (i.e., if the medium is VTI or HTI). For a tilted symmetry
axis in either medium, however, the magnitude of the reflection
coefficients can reach substantial values that exceed 0.1, even if
the anisotropy strength is moderate. To study the influence exert-
ed by the orientation of the symmetry axis and the anisotropy pa-
rameters, we develop concise weak-contrast, weak-anisotropy-
approximations for the PS-wave reflection coefficients and com-

pare them with exact numerical results. In particular, the analytic
solutions show that the contributions made by the Thomsen pa-
rameters € and 6 and the symmetry-axis tilt » to the coefficients
R PSI( 0) and R PSz( 0) can be expressed through the first derivative
of the P-wave phase velocity at normal incidence. If the symme-
try-axis orientation and anisotropy parameters do not change
across the interface, the normal-incidence reflection coefficients
are insignificant, regardless of the strength of the velocity and
density contrast. The AVO (amplitude variation with offset) gra-
dients of the PS-waves are influenced primarily by the anisotropy
of the incidence medium that causes shear-wave splitting and de-
termines the partitioning of energy between the PS; and PS,
modes.

Because of their substantial amplitude, small-angle PS reflec-
tions in TI media contain valuable information for anisotropic
AVO inversion of multicomponent data. Our analytic solutions
provide a foundation for linear AVO-inversion algorithms and
can be used to guide nonlinear inversion that is based on the exact
reflection coefficients.

INTRODUCTION

In many case studies, significant converted PS-wave energy has
been observed at zero and near-zero offsets (e.g., Thomsen, 2002).
In principle, this phenomenon can be explained by such factors as
lateral heterogeneity and nongeometric wave propagation (Tsvan-
kin, 1995). However, neither of those factors can account for nor-
mal-incidence far-field PS reflections in layer-cake subsurface mod-
els. Another possible reason for prominent P-to-S conversion at
small offsets is the presence of velocity anisotropy above or below
the reflector.

In this paper, we study the influence of anisotropy on the small-an-
gle reflected PS-wave that generally splits into two modes traveling

with different velocities — PS; and PS,. The main focus of the paper
is on the normal-incidence PS-wave reflection coefficients that van-
ish only when the reflector coincides with a symmetry plane in both
half-spaces. We restrict ourselves to the most commonly used type
of anisotropy — transverse isotropy (TI) with an arbitrary orienta-
tion of the symmetry axis. If the reflector is horizontal, generation of
converted energy at vertical incidence requires the symmetry axis in
atleast one of the TI half-spaces to deviate from both the vertical and
horizontal directions (i.e., the medium cannot have up-down sym-
metry).

Approximate weak-contrast reflection and transmission coeffi-
cients for isotropic media can be found, for example, in Aki and Ri-
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chards (2002) and Shuey (1985). Banik (1987), Thomsen (1993),
and Riiger (1996, 1998, 2001) developed approximate P-wave re-
flection coefficients for VTTand HTI media. Riiger’s results also can
be applied in the symmetry planes of orthorhombic media. PSenc¢ik
and VavryCuk (1998) and Vavrycuk and PSencik (1998) presented
weak-contrast, weak-anisotropy P-wave reflection and transmission
coefficients for arbitrary anisotropic symmetries.

Closed-form solutions for the reflection coefficients of PS-waves
inisotropic media were given by Donati (1998), Larsen et al. (1999),
Alvarez et al. (1999), and Nefedkina and Buzlukov (1999). Riiger
(1996, 2001) derived approximate PS-wave reflection coefficients
for VTI media and for the symmetry planes of HTI media. However,
as mentioned above, the normal-incidence reflection coefficients of
mode conversions vanish for vertical and horizontal transverse isot-
ropy because both models are characterized by up-down symmetry.

Weak-contrast, weak-anisotropy approximations for PS-wave re-
flection and transmission coefficients were extended to arbitrary an-
isotropy by Vavry¢uk (1999), Jilek (2002a), and Artola et al. (2005).
Jilek (2002b) also developed algorithms for joint inversion of PP-
and PS-wave reflection coefficients in azimuthally anisotropic me-
dia. Vavry€uk (1999) and Jilek (2002b) pointed out that normal-inci-
dence PS-wave reflection coefficients do not vanish if there is a jump
in the stiffnesses ¢34 and/or ¢35 across the reflector. Artola et al.
(2005) discussed the presence of normal-incidence PS-wave energy
in synthetic seismograms computed for azimuthally anisotropic
models.

Here, we show that the tilt of the symmetry axis in TI media can
create fairly strong normal-incidence PS reflections from horizontal
interfaces. (This tilt also makes the time delays of split PS-waves az-
imuthally dependent, and this was exploited by Angerer et al. (2002)
in their characterization of dipping fractures.) Such tilted transverse-
ly isotropic (TTI) models describe dipping shale layers in fold-and-
thrust belts (e.g., the Canadian Foothills) and near salt domes, dip-
ping fracture sets, and progradational sequences. Application of the
weak-contrast, weak-anisotropy approximation helps us to identify
the parameter combinations responsible for the normal-incidence
reflection coefficients and AVO gradients of PS-waves. We also
compute the exact reflection coefficients to assess the accuracy of
the linearized solutions and confirm the substantial magnitude of the
small-angle PS-wave reflectivity for arange of TTI models.

ANALYTIC BACKGROUND

We start by setting up the system of linear equations that can be
used to compute the exact reflection/transmission coefficients from
the boundary conditions. The approximate (linearized) reflection/
transmission coefficients are then obtained by applying the first-or-
der perturbation theory.

Exact solution of the reflection/transmission problem

The reflection/transmission problem for an incident plane wave is
solved by satisfying the boundary conditions at the reflector. For a
welded contact of the two half-spaces, these boundary conditions are
the continuity of traction and displacement, which can be written in
the following compact form (e.g., VavryCuk and PSencik, 1998):

C-U=B, (1)

where C corresponds to the displacement-stress matrix for the re-
flected and transmitted waves, B is the displacement-stress vector of

the incident wave, and U is the vector of the reflection R and trans-
mission T coefficients of the waves P, S|, and S,:
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U= [RSlv Rgy, Rp, Ts1, Ty, TP]T- (4)

Here, g and X are the polarization and amplitude-normalized trac-
tion vectors, respectively, obtained by solving the Christoffel equa-
tion. The superscript denotes the reflected/transmitted modes, ac-
cording to the following convention: O = incident wave; 1 =
reflected S,-wave; 2 = reflected S,-wave; 3 = reflected P-wave;
4 = transmitted S;-wave; 5 = transmitted S,-wave; and 6 = trans-
mitted P-wave. To compute the reflection/transmission coefficients,
equation 1 can be solved numerically for U.

Weak-contrast, weak-anisotropy approximation

The main goal of using linearized approximations here is to gain
physical insight into the dependence of the reflection coefficients on
the medium’s parameters and incidence angle. Following the ap-
proach of Vavry¢uk and PSencik (1998) and Jilek (2002a, 2002b),
we linearize the boundary conditions by assuming a weak contrast in
the elastic parameters across the interface and weak anisotropy in
both half-spaces (see Appendix A). A homogeneous isotropic full
space divided by a fictitious planar interface is taken as the back-
ground medium. The elastic parameters a}, = c{f),/p” [density-nor-
malized stiffness coefficients of the incidence (I = 1) and reflecting
(I = 2) half-spaces] are expressed as small perturbations 6aff,)€, from
the background values. The exact boundary conditions (equation 1)
are then linearized in the small perturbations to find approximate PS-
wave reflection coefficients.

Consider an incident P-wave traveling in the negative z-direction
in the [x,z]-plane; the reflector coincides with the plane z = 0. The
slowness vectors of the incident, reflected, and transmitted waves in
the background medium can be written as (Figure 1):

po(o)_p © = 1’ 0, _P3]
p‘)-p°(2)= 1. 0, p3’

P’ =[p1, 0, p3"1,

P ‘”=p°(5)=[p?, 0, = p3l. (%)

The P-wave unit polarization vectors in the isotropic background
are given by
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00) = g0(6) — 00

g

g0(3)

= ap”?, (6)

where « is the P-wave background velocity.

Polarization angle

The SV and SH polarization components can be obtained by pro-
jecting the S-wave polarization vector in the background onto the in-
cidence [ x,z] plane and the direction orthogonal to it, respectively.
For the perturbation approach to work in the presence of anisotropy,
the chosen polarization vectors of the reflected shear waves in the
background isotropic medium (g™ and g*?®) should be close to the
actual polarizations (gV and g?) (Jech and PSencik, 1989). Thus, the
SV- and SH-wave polarization vectors (g5¥ and g%%) in the isotropic
background must be rotated by an angle @, called the polarization
angle, which is defined uniquely away from singular directions
(Jech and PSen¢ik, 1989). Because the polarization angle is not a lin-
ear function of the perturbations da;;, nor is it necessarily small, the
contribution of @ complicates the derivation of the analytic expres-
sions for the PS-wave reflection coefficients.

If the polarization angle is known, the polarization vectors of the
background shear waves S{ and S (g and g*®) can be determined
by rotating the SV- and SH-wave polarizations counterclockwise by
the angle @ in the plane perpendicular to the background slowness
vector p*® (Figure 1). Thus, g*» and g'® are given by

g"V = [BpY¥ cos @, sin @, — Bp! cos D],
g"® = [— Bp%¥ sin @, cos @, B! sin D], (7)

where S is the S-wave background velocity. Equation 7 shows that
when the medium is isotropic or VIT and @ = 0 (Jech and PSencik,
1989), S reduces to SV and S9 reduces to SH. Similarly, the polar-
ization vectors of the transmitted S-waves can be written as

g"@ = [~ Bp¥ cos ¥, sin ¥, — Bp! cos V],
g"® = [BpYS sin ¥, cos ¥, BpY sin V], (8)

where W is the corresponding polarization angle. Because we are
concerned with the reflected S-waves only, computation of ¥ is un-
necessary because g’ and g*® are not involved in the linearized re-
flection coefficients (equation A-11).

If the medium is TTI, the polarization vector of the PS;-wave lies
in the plane formed by the symmetry axis and the PS; slowness vec-
tor (i.e., it is the PSV-wave in the coordinate system in which the
symmetry axis is taken as vertical), whereas the PS,-wave would be
polarized orthogonal to that plane. (Note that PS; is not necessarily
the fast PS mode.) Thus, in this case @ is the angle between the back-
ground SV-wave polarization vector and the plane formed by p*®
and the symmetry axis of the incident TTI half-space. Using simple
vector algebra and dropping the cubic and higher-order terms in
sin 6, we find

cos P~ — (2g® cos ¢, sin v; + 2g cos v, sin @
2g°A
+ oS s¢h; sin v, sin” 6), 9)
where
. cos ¢ sin 2v; sin 6
A= |sin®y +
8
(cos® vy — sin’ vy cos? ¢)sin® @ |2
3 .
8

Here, v, and ¢, are the tilt (i.e., the angle with the vertical) and the
azimuth, respectively, of the symmetry axis of the incidence TI half-
space, and g = /. Although @ can be computed from equation 9,
its presence causes difficulties in deriving the approximate PS-wave
reflection coefficients because @ depends on the incidence angle fin
arather complicated way. For an incident TT half-space, @ = 0 only
when the symmetry axis is vertical (»; = 0°) or when the incidence
plane coincides with the vertical-symmetry-axis plane (i.e., with the
vertical plane that contains the symmetry axis). Note that the orien-

a)  |ncidence £ o= poi@
half-space -
n
g0 gt
0, gsv
p2© X
gSH
Reflecting gsv
half-space po¥)= po®)
b) Az
Plane of
0(1) — ~0(2) )
p=r=pT rotation
90(2)
as q) gSH
4

Figure 1. (a) Conventions used in solving the reflection-over-trans-
mission problem. The incidence [ x,z]-plane contains the interface
normal n and the background slowness vector p®® of the incident P-
wave. The background S-wave slowness vectors are denoted by
p’® = p*?@ (reflected) and p*™® = p*® (transmitted); Hand 6, are the
phase angles of the incident P-wave and reflected S-wave. The vec-
tor g denotes the background polarizations. (b) Also here, gV and
g"@ are the chosen polarization vectors of the reflected S;- and
S,-waves, respectively, in the background medium. These vectors
are obtained by rotating the background SV- and SH-wave polariza-
tions (g%Y and gS") by the polarization angle @ in the plane orthogo-
nal to the slowness vector p®@. If the incidence half-space is isotro-
picor VTI, @ = 0 (after Jilek, 2002b).
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tation of the symmetry axis of the reflecting TI half-space does not
influence the angle ®.

To express the PS-wave reflection coefficient as a simple trigono-
metric function of 6, cos @ must be obtained as a polynomial of
sin @. This cannot be done, however, without assuming that sin” v, is
sufficiently large, except for the special cases of normal incidence
(6 = 0) when @ (equation 9) reduces to ¢, and of the incidence HTT
half-space (v, = 90°) when

cos PN = %?(Zgz —sin® ¢ sin> 6).  (10)
8

Because of this problem, the linearized PS-wave reflection coeffi-
cients for oblique incidence angles are given here only if the inci-
dence half-space is isotropic, VTL, HTI, or TTI with the symmetry
axis confined to the incidence plane. For all other cases of oblique in-
cidence of P-waves, we analyze only the exact reflection coeffi-

cients.

z
PS(0)
| gPs
8#0° | gsH ISO
L
b 2|ve ; ™I
X T : f Symmetry
axis

Figure 2. For an isotropic incidence half-space overlying a TTI re-
flecting half-space, the PS-wave at normal incidence is polarized
[vector gPS(0)] in the symmetry-axis plane of the reflecting half-
space. For oblique incidence, we analyze the two components of the
PS-wave (PSV and PSH) separately.
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Figure 3. Accuracy of the approximate solutions for the normal-inci-
dence PS-wave reflection coefficient at an isotropic-over-TTI inter-
face. The solid black line is the exact coefficient, the dash-dotted
gray line is computed from equation 13 with the exact first derivative
of the P-wave phase velocity, and the dashed black line is the fully
linearized approximation 12. The tilt v, of the symmetry axis varies
from 0° (VTI) to 90° (HTI). The other model parameters are listed in
Table 1 [the value of ¢, does notinfluence R p5(0)].

NORMAL-INCIDENCE
REFLECTION COEFFICIENT

The normal-incidence reflection coefficient is also called the in-
tercept in AVO analysis. The general linearized equation for small-
angle PS-wave reflection coefficients can be written as (Jilek,
2002b; Thomsen, 2002)

RPS:RPS(O) + Gsin 6, (11)

where Rp4(0) is the normal-incidence reflection coefficient and G is
the AVO gradient. In this section, we discuss the dependence of
Rps(0) on the parameters of TTI media.

Isotropic-over-TTI interface

First, consider an incidence isotropic half-space overlying a re-
flecting TTT half-space. The normal-incidence PS-wave in this case
is polarized in the symmetry-axis plane of the reflecting half-space
(Figure 2). In general, the reflected PS-wave can be represented as
the vector sum of the PSV- and PSH-waves. For normal incidence,
however, the incidence plane is undefined, and the PS-wave can be
studied as a whole. We describe transverse isotropy by the tilt » and
azimuth ¢ of the symmetry axis, the symmetry-direction velocities
of the P- and S-waves (Vp, and V), and the Thomsen anisotropy pa-
rameters €, &, and 7y defined with respect to the symmetry axis (Ts-
vankin, 2005).

The linearized PS-wave normal-incidence reflection coefficient is
given by

2 .

g7 sin 2vy[cos 215(5, — €) + 6]
Rps(0) = 12
s(0) o (12

_ 82 1 dVP,z(f)
41 +8) Ve dE g,

where the subscript 2 corresponds to the reflecting half-space and
Vp,(€) is the P-wave phase velocity in the reflecting half-space as a
function of the phase angle £ with the symmetry axis. Itis interesting
that the normal-incidence PS-wave reflection coefficient is propor-
tional to the first derivative of the P-wave phase velocity computed
atnormal incidence (£ = 1,). Although this derivative is supposed to
be linearized to make equation 13 equivalent to equation 12, the ac-
curacy of the weak-contrast, weak-anisotropy approximation can be
increased by using the exact value of this derivative in equation 13
(Figure 3). The model parameters used in Figure 3 and the following
figures are given in Table 1.

As expected, equation 12 deteriorates with increasing absolute
values of the anisotropy parameters (Figure 4a). The linearized
Rps(0) is close to the exact value for models approaching VTT and
HTI that have weak PS reflectivity, but the accuracy of the approxi-
mations decreases for models with intermediate tilts v (Figures 3 and
4a). Numerical testing also shows that equations 12 and 13 deviate
from the exact solution with the increasing P-to-S velocity ratio in
the background g = o/ and may become inadequate for soft rocks,
such as underwater sediments. On the whole, however, the linear-
ized expressions correctly reproduce the behavior of the normal-in-
cidence reflection coefficient for typical moderately anisotropic TTI
models.

The very existence of the normal-incidence PS reflection is
caused by the tilt of the symmetry axis away from the vertical and

; (13)
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horizontal directions. Therefore, Rpg(0) goes to zero for both a VTI
(v, = 0°) medium and an HTI (v, = 90°) medium; the dependence
on v, may have minima and maxima at intermediate tilts (Figure 4).
For the model in Figure 4a, Rpg(0) attains values as high as 0.1 for
€, = 0.3;in general, the magnitude of R 4(0) increases with e,.

The dependence of the reflection coefficient on the parameter 6, is
more complicated (Figure 4b). Apart from the anisotropy parame-
ters, the normal-incidence reflection coefficient also increases with
the velocity ratio g.

The coefficient Rpg(0) is independent of the parameter 7y, because
the P-wave at normal incidence does not excite SH-waves (governed
by v,) in the reflecting medium. The variation of R 4(0) with the pa-
rameters €,, 6, and v, in Figure 4 can be explained using approxima-
tion 12. The influence of €, and &, on Rp5(0) depends strongly on the
tilt v, of the symmetry axis (Figure 5). If the function of v, multiplied
with €, and &, becomes zero, the corresponding anisotropy parame-
ter makes no contribution to Rpg(0). For example, according to ap-
proximation 12, 8, should have no influence on Rps(0) at v, = 45°.
This result is generally supported by the computations of the exact
reflection coefficient in Figure 4b, although the curves correspond-
ing to different &, values do not intersect at exactly the same point.

For small tilts v,, &, has a greater influence on R »5(0) than does e,
whereas for larger v, values, the opposite is true. This dependence of
Rps(0) on the anisotropy parameters is explained by the behavior of
the P-wave phase-velocity function in TI media. At small angles
with the symmetry axis, the P-wave velocity in equation 13 is con-
trolled by &,, whereas the contribution of €, increases toward the
isotropy plane (Thomsen, 1986; Tsvankin, 2005).

TTI-over-TTI interface

Next, we consider the normal-incidence PS reflection for a model
in which the incidence half-space also is tilted TI. When the inci-
dence medium is anisotropic, the PS reflection splits into the PS; and
PS, modes, which have different normal-incidence reflection coeffi-
cients [R rs,(0) and R pSZ(O)] and AVO gradients. According to our
convention, the polarization vector of the PS;-wave lies in the plane

formed by the slowness vector and the symmetry axis (i.e., it would
be the SV mode if the symmetry axis were vertical). The polarization
vector of the PS,-wave is perpendicular to that plane (i.e., itis the SH
mode) (Figure 6). Note that generally the PS,-wave is not polarized
in the horizontal plane, so itis not a “pure” shear mode in terms of its
polarization. To explain the influence of the parameters of both half-
spaces on the reflection coefficients, we study the linearized approx-
imations for R,,SI(O) and R,,SZ(O).

Another complication caused by tilted transverse isotropy in the
incidence medium is that the waves PS, and PS, with vertical slow-
ness vectors (the normal-incidence reflections) are no longer record-
ed at zero offset. As follows from the results of Tsvankin and Grech-
ka (2002) and Tsvankin (2005), the normal-incidence PS-wave re-
flection coefficient corresponds to the offset of the PS traveltime
minimum in common-midpoint (CMP) geometry. Consequently, the
slowness vectors of the zero-offset PS reflections are not vertical. Al-
though the analysis below focuses primarily on the normal-inci-
dence reflections corresponding to the vertical slowness vector, we
also give a comparison of the two reflection coefficients for a typical
TTImedium.

Model with aligned symmetry planes

If the azimuth of the symmetry axis is the same above and below
the reflector (i.e., if ¢, = ¢»), the vertical plane that contains both
symmetry axes represents a plane of symmetry for the whole model.
In this case, the P-wave at normal incidence (i.e., with a vertical
slowness vector) excites only one (PS,) wave polarized in the sym-
metry-axis plane:

2
g .
Rps,(0) = —4(1 N g){— sin 2v[cos 2v,(8) — €) + €]
+ 5in 21,[cos 215(8, — €) + 6} (14)

Table 1. Medium parameters used in the numerical tests. For all models, the symmetry-direction velocities and densities in the
incidence half-space are Vp; = 2.9 km/s, Vg, = 1.5 km/s, and p, = 2.0 g/cm’; in the reflecting half-space, Vpy, = 3.3 km/s, Vy,
= 1.8 km/s, and p, = 2.2 g/cm?. For isotropic half-spaces, the P- and S-wave velocities are defined by Vjy and Vg, respectively.

The parameters not listed in the table are specified on the plots.

Figure
number Interface type Incidence half-space Reflecting half-space

€ 2 " Vi ol € 12 Y2 Y b,
3 ISO/TTI 0 0 0 - - 04 02 011
7 TTI/VTI 0.3 0.1 0.1 03 015 011 0° -
8 TTUTTI 0.2 -0.1 0.1  60° 0.2 6 | 0.1 60°
9 ISO/TTI 0 0 0 - - 03 015 011 60°
10a TTI/TTI 60° 60° 03 0.15 0.11 30° 30°
10b TTI/TTI 0.2 0.1 0.1 60° 60° 30° 30°
1la and b TTU/TTI Same as in Figure 10a and b
12 TTI/TTI 0.2 0.1 0.1 60° 03 0.15 0.11 30° 30°
13 TTU/TTI Except for ¢,, same as in Figure 12
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Figure 4. Dependence of the normal-incidence PS-wave reflection
coefficient for an isotropic-over-TTI interface on the parameters (a)
6 and (b) &. The solid lines mark the exact Rpg(0), and the dashed
lines on plot (a) represent the linearized approximation 12. The den-
sities and symmetry-direction velocities are listed in the title for Ta-
ble 1.

15 -
sin2v2(1—cos?v2)/_\

‘ /

4

o A\ sin2

-05
0 20 40 60

VQ(O)

Figure 5. Functions of v, multiplied with €, (black line) and &, (gray
line) in equation 12. These curves help to explain the influence of e,
and &, on R5(0) for different tilts v, in Figures 4a and b.

Az
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p%M = p%@ § rotation
: g0(2)
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Figure 6. For an incidence TI half-space, the polarization vector g’
of the PS,-wave lies in the plane formed by the slowness vector and
the symmetry axis (i.e., it would correspond to the SV-wave, if the
symmetry axis were vertical). The vector g*® of the PS,-wave is per-
pendicular to that plane (SH-wave).

In keeping with the symmetry of the problem, the coefficient
RPSI(O) vanishes when both half-spaces are either VTI or HTI, and
sin 2v; = sin 2w, = 0. Rps (0) is a function of both tilts (v, and v,)
and all anisotropy parameters except for y, and y, — the parameters
responsible for SH-wave propagation in TI media.

The term involving v, €;, and &, in equation 14 has the same form
(but the opposite sign) as that involving v, €, and &. Thus the con-
clusions drawn above for the influence of v,, €,, and &, (Figure 5) ap-
ply to v, €;, and &, as well. If both TT half-spaces have the same ori-
entation of symmetry axes and the same parameters € and &, R PS](O)
vanishes, even though there may be a jump in the other parameters
across the interface. Although this result is strictly valid only in the
weak-contrast, weak-anisotropy limit, the exact coefficient Rps,(())
for models with v, = v,, ¢, = ¢, €, = €, and 6, = 6, is quite small
(see below).

As mentioned above, if the incidence half-space is anisotropic,
the normal-incidence PS-wave reflection coefficient discussed here
may be different from the reflection coefficient at zero offset (Figure
7). However, when the incidence medium is VTTI or HTI, these two
coefficients are identical. For a tilt of v, = 50° in Figure 7, the zero-
offset reflection coefficient of the PS;-wave is almost 40% larger by
absolute value than the normal-incidence coefficient that determines
the reflection amplitude at the traveltime minimum in a CMP gather.

General TTI-over-TTI model

If the symmetry axis has different azimuths above and below the
reflector, then a P-wave at normal incidence excites both PS modes.
The approximate solutions for the reflection coefficients R Ps, (0) and
R ,,52(0) are

2
Rps,(0) = 4(1g—+g){— sin 2v[cos 2v,(8; — €) + €]
+ COS(¢2 - ¢1)Sil’1 2V2[COS 21/2(52 - 62) + 62]}
(17)
_ g 1 dVp,(§)
41+g)| Ve dé§ |,
1 advps()
+ cos(¢, — &) Vs | dt g:,,z]’ (18)
&
Rpg,(0) = m{Sin(¢2 = ¢y)sin 2v,[cos 21(5; — €)
+ 6l} (19)
_ g . 1 dVpa(d)
S 41+ g) in(¢2 - ¢])VP0,2 dé g,
(20)

Itis clear from the symmetry of the model (TTI-over-TTI) that the
normal-incidence reflection coefficients should depend just on the
difference ¢, — ¢, which is confirmed by equations 17-20. Indeed,
a simultaneous azimuthal rotation of both symmetry axes can
change only the azimuthal direction of the polarization vectors of the
PS-waves. When the vertical-symmetry planes of the two TI half-
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spaces coincide (when ¢; = ¢,), equations 17 and 18 reduce to
equations 14 and 15, respectively, and Rps (0) = 0.

Despite the relative azimuthal rotation of the symmetry axes, the
terms involving the tilt of the symmetry axis and the anisotropy pa-
rameters in equations 17 and 19 keep the same form as the corre-
sponding terms for the simpler isotropic-over-TTI model examined
above. Both linearized reflection coefficients are governed just by
the velocity ratio g, the azimuthal angle between the symmetry axes,
and the derivatives of the P-wave phase velocity. This result is par-
ticularly surprising for the PS,-wave (the SH-wave) whose velocity
after the reflection is controlled by the parameter v;, which does not
contribute at all to the coefficient R,,SZ(O). The absence of the y pa-
rameters in equations 17 and 19 can be explained by the indepen-
dence of the stiffness coefficients c3, and ¢35 [which are responsible
for Rpg(0)] from both vy, and 7. It also is noteworthy that the param-
eters of the reflecting half-space do not contribute to RPSI(O) when
the symmetry axes lie in orthogonal planes (i.e.,

b - ¢2| =90°).

As we discussed above, if both TI half-spaces have the same
P-wave phase-velocity functions (i.e., the same parameters ¢, v, €,
and 9), the linearized RPSI(O) and RPSZ(O) (equations 17-20) go to
zero. Figure 8 confirms that the exact coefficient RPSZ(O) in this case
(&1 = ¢») isindeed insignificant (although not exactly zero). On the
other hand, if the symmetry axes are tilted in opposite directions
from the vertical (i.e., if v, = v,, but ¢, — ¢, = 180°), the normal-
incidence reflection coefficient may exceed 0.1 even for moderately
anisotropic models (Figure 8).

AVO GRADIENTS

The AVO gradients of the split PS-waves can be computed numer-
ically by estimating the best-fit initial slope of the exact reflection
coefficient expressed as a function of sin . In the linearized weak-
anisotropy, weak-contrast approximation, the gradient G is obtained
explicitly as the multiplier of sin 6 (equation 11). The approximate
AVO gradients of the waves PS; and PS, are given in Appendix B.

Isotropic-over-TTI interface

If the incidence medium is isotropic, wave PS; becomes an SV
mode polarized in the incidence plane, and wave PS, represents an
SH-wave. Because there is no P-to-SH conversion in isotropic me-
dia, the gradient Grs, = Gpn is purely anisotropic, although Grs, =
Gpgy contains both isotropic and anisotropic terms (equations B-1
and B-2).

In the linearized approximation, the reflection coefficients for iso-
tropic media coincide with the isotropic terms in the coefficients for
the isotropic-over-TTI interface (Appendix B). For example, the ex-
pression for Gpgy reduces to the familiar gradient for isotropic media
(e.g., Nefedkina and Buzlukov, 1999), if €, = &, = y, = 0. Numeri-
cal testing shows that for common values of the velocity ratio g, the
AVO gradients are not distorted significantly by the anisotropy (Fig-
ure 9). The influence of the anisotropy in the reflecting half-space
primarily changes the normal-incidence coefficient Rpg(0), which
goes to zero in the isotropic model. Although the AVO gradients of
both PS-waves vary with azimuth, their average values are close to
those for isotropic media, and the magnitude of the azimuthal varia-
tions is relatively insignificant. In particular, gradient Gpgy is small,
and the reflection coefficient of the PSH-wave is almost constant
(Figure 9).

Because the dependence of the AVO gradients on the Thomsen
parameters of the reflecting medium is rather complicated, in partic-
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Figure 7. Comparison of the exact normal-incidence (black curve)
and the zero-offset (gray curve) PS,-wave reflection coefficients for
aTTI-over-VTl interface. The normal-incidence coefficient is com-
puted for a vertical slowness vector of the incident wave and would
be recorded at nonzero offset. The model parameters are listed in Ta-
ble 1 (the value of ¢, does not influence the results).
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Figure 8. Exact Rps, (0) for a TTT-over-TTI interface as a function of
the difference between the azimuths of the symmetry axes. The tilt v
and anisotropy parameters €, &, and y (listed in Table 1) are the same
in both half-spaces. Note that the tilt is measured from the vertical to-
ward the radius vector oriented at an azimuth ¢.
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Figure 9. Exact PS-wave reflection coefficients (top row) and AVO
gradients (bottom row) for isotropic-over-isotropic and isotropic-
over-TTTinterfaces (Table 1).
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Figure 10. Exact AVO gradient of the PS;-wave for a TTI-over-TTI
interface (Table 1), as a function of the anisotropy parameters in the
(a) incidence and (b) reflecting half-spaces.
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Figure 11. Exact AVO gradient of the PS,-wave for a TTI-over-TTI
interface as a function of the anisotropy parameters in the (a) inci-
dence and (b) reflecting half-spaces. The model parameters are the
same as in Figure 10.

Anisotropy parameters

a) 04 b) 04
0.2 ITl-over-TTI 0.2 TTl-over-TTI
- o . :
a 0 O 0 fomemeimely i -
© ®
-0.2 ISO-over-ISO -0.2
-0.4 -0.4 .
100 200 300 0 100 200 300
9,0 )

Figure 12. Exact AVO gradients of the (a) PS;-waves and (b) the
PS,-waves as functions of the azimuth ¢, for TTI-over-TTI (solid
line) and isotropic-over-isotropic (dashed) interfaces. The parame-
ters of the TTI-over-TTI model are listed in Table 1. As before, the
isotropic model is defined by the symmetry-direction velocities and
densities used for the TTI-over-TTI interface.
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Figure 13. Exact PS,-wave AVO gradient as a function of the azi-
muth ¢, for a TTI-over-TTI interface. The black line corresponds to
¢, = 30° and the gray line to ¢, — ¢, = 30°. The other model pa-
rameters are the same as those for the TTI-over-TTI model in Figure
12.

ular for the PSV-wave (equation B-1), we studied the behavior of the
exact gradients using numerical modeling. As was the case for
Rps(0), the influence of €, on both Gpgy and Gpgy increases with the
tilt »,, whereas the influence of &, on those parameters decreases
with the tilt. In contrast to the normal-incidence reflection coeffi-
cients, both AVO gradients depend on parameter y,, and the contri-
bution of vy, grows with v,.

The gradient Gpgy goes to zero when the symmetry axis lies in the
incidence plane and there is no P-to-SH conversion (Figure 9, ¢,
= 0°) or when the symmetry axis lies in the plane orthogonal to the
acquisition line (¢, = 90°). Because the PSH-wave vanishes for a
reflecting VTI half-space, the gradient G gy increases with v, as the
symmetry axis deviates from the vertical direction.

TTI-over-TTI interface

Because of the limitations related to the contribution of the polar-
ization angle @ (see above), the AVO gradients of the PS;- and
PS,-waves for a TTI-over-TTI interface were derived only for two
special cases (see Appendix B). The symmetry axis of the incidence
half-space was assumed to be confined either to the incidence plane
(equations B-3 and B-4) or to the horizontal plane (HTI medium;
equations B-5 and B-6). We also present numerical results for an ar-
bitrary orientation of the symmetry axis of the incidence medium.

As Figures 10 and 11 illustrate, the two AVO gradients are sensi-
tive to different anisotropy parameters of the incidence medium.
Whereas the gradient G, is controlled by €, and &, (Figure 10), G ps,
depends only on 7, (Figure 11). To explain this result for an arbitrary
orientation of the symmetry axis of the incidence half-space, note
that the velocity of the S,-wave is a function of €, and &, (S; would
become SV in VTI media). In contrast, the only anisotropy parame-
ter responsible for the velocity of the S,-wave is 7y, (S, would be-
come SHin VTI media).

If the incidence half-space is TTI and the symmetry axis is not
confined to the incidence plane, there are no purely isotropic terms in
either gradient, as equations B-5 and B-6 demonstrate for the special
case of the HTT incidence medium. The influence of the anisotropy
in the upper half-space causes the gradients computed for a TTI-
over-TTI interface to deviate substantially from those for the corre-
sponding isotropic model (compare Figures 12 and 9). The azimuth-
al variation of both gradients also is much more pronounced than
that for the isotropic-over-TTI interface. The relatively small contri-
bution that the anisotropy of the reflecting half-space makes to the
AVO gradients is evident in Figure 13, where G, is weakly depen-
dent on the symmetry-axis azimuth ¢,.

CONCLUSIONS

In the absence of lateral heterogeneity, anisotropy is the most like-
ly reason for significant PS-wave energy at small offsets observed in
many multicomponent data sets. Here, we analyze the small-angle
PS-wave AVO response for transverse isotropy with a tilted symme-
try axis (i.e., fora TTI medium). Unless the reflector coincides with a
symmetry plane in both half-spaces, a P-wave at normal incidence
always generates reflected PS-waves. To examine the influence of
the anisotropy parameters on the normal-incidence PS-wave reflec-
tion coefficient and AVO gradient, we employ linearized solutions
(weak-contrast, weak-anisotropy approximations) supported by nu-
merical modeling of the exact reflection coefficient.

If the incidence half-space is isotropic, the PS reflection from a
horizontal interface is polarized in the symmetry-axis plane of the
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reflecting TTI medium. The normal-incidence reflection coefficient
Rpg(0) vanishes when the reflecting TT half-space is VTI or HTI, be-
cause in that case the model as a whole has a horizontal symmetry
plane. The coefficient R »5(0) increases rapidly as the symmetry axis
deviates from both the vertical and horizontal directions. Closed-
form approximations and numerical modeling show that Rp4(0) can
be as large as 0.1, even for moderate values of the anisotropy param-
eters such as those typical for shale formations. When the tilt v, of
the symmetry axis is relatively small, the coefficient Rps(0) is con-
trolled mostly by the parameter &, (the Thomsen parameter &§in the
reflecting half-space), the contribution of €, becoming dominant for
larger values of v,.

When both half-spaces are anisotropic (TTI), a P-wave at normal
incidence excites two split PS-waves (PS; and PS,) with polariza-
tions governed by the orientation of the symmetry axis in the inci-
dence medium. The normal-incidence reflection coefficients of both
PS-waves [Rps (0) and Rps,(0)] are functions of the difference be-
tween the azimuths of the symmetry axes (¢, — ¢;) and do not de-
pend on either azimuth individually. Interestingly, the Thomsen pa-
rameters and the tilt of the symmetry axis in both half-spaces con-
tribute to the linearized coefficients Rps (0) and R (0), but that con-
tribution is completely absorbed by the first derivative of the P-wave
phase-velocity function. The coefficients R ,,5](0) and R PSZ(O) are in-
significant when the two half-spaces have the same symmetry-axis
orientation and the same parameters € and &, even though there may
be a jump in the velocities and densities across the interface.

We also discussed the azimuthally varying AVO gradients of PS-
waves at small incidence angles. The gradients are influenced prima-
rily by the incidence medium’s anisotropy, which causes shear-wave
splitting and pronounced azimuthal variation of the reflection coeffi-
cients of both PS modes. For an arbitrary symmetry-axis orientation,
neither linearized AVO gradient contains purely isotropic terms be-
cause the contributions of the velocity and density contrasts are mul-
tiplied with functions of the symmetry-axis azimuth ¢;.

The linearized approximations we developed here not only pro-
vide physical insight into the behavior of the PS-wave reflection co-
efficients but also can be used to quickly evaluate PS-wave ampli-
tudes for a wide range of TTI models. Potentially, these analytic ex-
pressions can help in the AVO inversion of PP and PS data for TTI
media.
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APPENDIX A

PERTURBATION APPROACH FOR THE
REFLECTION/TRANSMISSION PROBLEM

The approximate linearized reflection and transmission coeffi-
cients are derived by using an isotropic full space as the reference

medium. A horizontal planar interface (reflector) divides the full
space into two half-spaces, which are perturbed to obtain two weak-
ly anisotropic media:

az(‘jl'/)cz = a?jkl + 561511'111» (A-1)
p" = p"+ 5p", (A-2)
|5az(']1'1)d| < ”a?jkl , (A-3)

|5p®] < p°. (A-4)

In equation A-4, the index 7 (I = 1,2) stands for the incidence and
reflecting half-spaces, respectively, and af, and p° are the density-
normalized stiftness coefficients and density of the background iso-
tropic medium. Because the perturbations from the isotropic back-
ground in both half-spaces are small, the approximation involves
both weak anisotropy and weak elastic contrast between the half-
spaces. Using these approximations, the polarization vector (p™)
and the slowness vector (g™) can be linearized as.

g™ = 0N 4 560N
p(N) ~ pO(N) + 5p(N), (A-5)

where p™ and g™ are the polarization vector and the slowness
vector, respectively, of waves propagating in the background isotro-
pic medium, and 5g™ and Sp™ are their linear perturbations. Ana-
lytic expressions for the perturbations §g™ and Sp™ in terms of
dall), are given in Vavrycuk and PSencik (1998) and Jilek (2002b).
Substituting these linearized expressions into equation 1 of the main
text yields

(C* + 6C)(U° + 8U) = B” + 6B. (A-6)

Here, C" is the stiffness matrix of the background medium and &U is
the perturbation of the reflection and transmission coefficients in the
background isotropic medium (U®). Because the background is ho-
mogeneous, U is given by

Uv’=1[0, 0,0, 0,0, 1]". (A-7)

Expanding equation A-6 and retaining only the leading terms in
small quantities results in the equation

sU = (C")'(6B - 6C - U"), (A-8)
where
gt ae? agt - gl - ogt” - g
gy 6 ogy - aet) - ogy - agY
s | % o s - oe - g - ogd”

axiV oax®P osxt) - axiP - axP - ax
ax) ax® sx® - ext - ax - sxt
axyoax? axy - ax{ - Xy - axi

(A-9)

oB = —[58\", 657, 850, sx\7, sx), sxPT. (A-10)



Downloaded 06/24/16 to 178.250.250.21. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

C78 Behura and Tsvankin

Therefore, the perturbed vector of the reflection-over-transmission
coefficients is obtained as

SU = (€)' ag)" - og\”, 5" — gy, ogy
- 80, ax\® — sx\0, sx© - sx, sx© - sx(?].
(A-11)

APPENDIX B

APPROXIMATE PS-WAVE AVO
GRADIENTS IN TI MEDIA

Here, we present linearized expressions for the AVO gradients of
the PS;- and PS,-waves (G,,S1 and GPSZ) obtained in the weak-con-
trast, weak-anisotropy limit. If the incidence half-space is isotropic,
the PS;-wave becomes a PSV mode with in-plane polarization, and
PS, becomes a transversely polarized PSH-wave. The gradients for
these waves have the form

ZAVSO (2 + g)Ap

Gpsy = Gps, =~

8B 2¢p"
2 .2 )
_ 2y sin” vy sin b g (G +29)8
g 16(1 + g)

+ (3 -2¢)(8 - &)cosdr, — (1 +29)e
+2cos2v[8 +2(- 1 +2g)(5 — &)

X cos 2¢h, sin® v, + 26,] + 4(2g5, — €, — 2g€)
X cos 2¢, sin’ v}, (B-1)

¥, sin? v, sin 2¢,
Gpsu = Gps, =

8
. 2 .
g sin” v, sin 2¢h,
oo P TPINS —
g le-e
X [2g + (= 1 + 2g)cos 21, ]| — €}. (B-2)

The AVO gradients for a TTI-over-TTlinterface are given here for
only two special cases. If the incidence plane contains the symmetry
axis of the incidence TTI half-space ( ¢, = 0°), the gradients are giv-
enby

_ 24Vs (2+9)Ap 2y, sin’ wysin® ¢,

a gB 2gp0 2
+ ﬁm{— 41+g)(8, —€)+4(-1+g)

X (8, — €)cos 4v, — 8¢, cos2v, + 365, — €
+2g(5, — &) + 2(5 + 2€)cos 2v,

+ 4 cos 2¢, sin® 1{(6, — &)[2g + (- 1

+ 2g)cos 21| — &}

+ (3 =2g)(8, — &)cos 4v,}, (B-3)

Goe = ¥, sin® vy sin 2¢p, g sin® v, sin 2¢,
e g 4(1+g)
X [2g + (= 1 + 2g)cos 2v,] — €}. (B-4)

{(6 - e)

If the symmetry axis of the upper half-space deviates from the inci-
dence plane, fully linearized AVO gradients still can be derived for
the special case of the incidence HTI medium:

2AVgycos ¢ (2 + g)Apcos ¢,

GHTl
o B 2gp°
2, sin” v, sin(¢h, — ¢))sin ¢,
8
+ m{“ sin’ v, cos(2¢, — ¢ {(6; — &)

X [2g + (=1 +2g)cos 2v,]| — &}

+ cos ¢p[— 85, + 16€; + 365, — €, + 2g(5, — &)
+ 2(65, + 2€)cos 2v, — (— 3 + 2g)

X (8, — &)cos 41}, (B-5)

GHT — 2AVy sin ¢, N (2 +g)Apsing; 2y sin ¢,
PS, B 220" .
N 2, sin” v, cos(¢h, — ¢y)sin ¢,
8

+ #—i—g){él sin? v, sin(2¢h, — PS5, — &)

X [2g + (= 1 +2g)cos2v,]| — &}
— sin ¢1[352 — € + 2g(52 - 62) + 2(62 + 262)
X cos2vy — (= 3 +22)(5, — &)cos 41y}, (B-6)
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