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limited-memory quasi-Newton inversion for 1D magnetotellurics
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ABSTRACT

We apply a limited-memory quasi-Newton �QN� method
to the 1D magnetotelluric �MT� inverse problem. Using this
method we invert a realistic synthetic MT impedance data set
calculated for a layered earth model. The calculation of gradi-
ents based on the adjoint method speeds up the inverse prob-
lem solution many times. In addition, regularization stabiliz-
es the QN inversion result and a few correction pairs are suffi-
cient to produce reasonable results. Comparison with the
L-BFGS-B algorithm shows similar convergence rates. This
study is a first step towards the solution of large-scale electro-
magnetic problems, with a full treatment of the 3D conduc-
tivity structure of the earth.

INTRODUCTION

Quasi-Newton �QN� methods have become very popular tools for
he numerical solution of electromagnetic �EM� inverse problems
Newman and Boggs, 2004; Haber, 2005�. The reasoning behind it is
he method requires calculation of gradients only, while at the same
ime avoiding calculations of second-derivative terms. However,
ven with the gradients only, the QN methods may require exces-
ively large computation time if the gradients are calculated straight-
orwardly.An effective way to calculate the gradients is presented in
ppendix A. Also, for large-scale inverse problems, the limited-
emory QN methods must be applied because their requirements

or storage are not as excessive as for other QN methods. In this pa-
er, as a first step to solving the 3D EM case, we have applied a limit-
d-memory QN method for constrained optimization to 1D magne-
otelluric �MT� problems. This optimization method is an extension
f previous work by Ni and Yuan �1997�.As distinct from this earlier
ork, we implement Wolfe conditions to terminate the line search
rocedure, as was recommended by Byrd et al. �1995�.

In the first section, we present our implementation of the limited-
emory QN method for inversion of 1D synthetic MT data. The sec-
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G191
ion includes a simple review of the method, the acceleration of the
nverse problem solution, and our choice of regularization parame-
er. In the second section, we demonstrate the efficiency of our inver-
ion on a synthetic, but realistic, numerical example, along with a
omparison with the limited-memory Broyden-Fletcher-Goldfarb-
hanno algorithm for bound constrained optimization �L-BFGS-B�
y Byrd et al. �1995�. The results presented are encouraging and sug-
est that the method has the potential to handle the more geophysi-
ally realistic 3D inverse problem. Therefore, our future attempts to
olve the 3D MT inverse problem will be founded on the theory we
escribe here.

1D MT INVERSION

In the frame of 1D magnetotelluric �MT� inversion a layered-earth
odel is considered and conductivities of the layers are sought. This

roblem is usually solved by minimization min
m

��m,�� of the fol-
owing objective function �Tikhonov, 1963�:

��m,�� = �d�m� + ��s�m� , �1�

here

�d�m� = 1
2�

j=1

M

� j�Zj − dj�2 �2�

s the data misfit. Here, m = �m1, . . .,mN�T is the vector consisting of
he electrical conductivities of the layers; superscript T means trans-
ose; N is the number of layers; Zj�m� and dj are the complex-val-
ed, modeled, and observed impedances at the jth period � j
1, . . . ,M�, respectively; � j = 1

M
2

� j
2�dj�2

are the positive weights; � j

s the relative error of the impedance Zj�m� and � is the regulariza-
ion parameter. As prescribed by the theory �Tikhonov, 1963�, the
unction of equation 1 has a regularized part �stabilizer� �s�m�. This
tabilizer can be chosen in many ways �see, for example, Farquhar-
on and Oldenburg, 1998, and references therein�, and moreover, the
orrect choice of �s�m� is crucial for a reliable inversion. However,
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his aspect of the problem is outside the scope of this paper. Thus, we
onsider an Occam-type �Constable et al., 1987� stabilizer:

�s�m� = �
i=2

N � mi

mi
0 −

mi−1

mi−1
0 �2

, �3�

here m0 = �m1
0, ..., mN

0 �T is an initial guess model. It is important
ecause the conductivities mi�i = 1, ..., N� must be nonnegative and
easonable, that the optimization problem given in equation 1 is sub-
ect to bounds:

l � m � u , �4�

here l = �l1, ..., lN�T and u = �u1, ..., uN�T are the lower and upper
ounds, respectively, li � 0 �i = 1, ..., N�. An alternative way to
eep the conductivities positive is to define mi as mi = log��i − li�,
r mi = log� �i−li

ui−�i�. After such transformations, the bounds extend to
nfinity, and the constrained problem of equations 1–4 nominally
urns to an easier unconstrained problem of equations 1–3.Although
hese transformations are commonly used, we believe, first, it is not
ractical that a constrained problem can ever be converted into an
nconstrained one in such a simple way; and second, such transfor-
ations may slow down the convergence of the solution if a mini-
um of the objective function of equation 1 is located on or near the

ounds.

limited-memory quasi-Newton method

We notice that the problem posed in equations 1–4 is a typically
onstrained optimization problem with simple bounds. To solve this
roblem, Newton-type iterative methods are commonly applied.
owever, most of these methods are not applicable to large-scale op-

imization problems because the storage and computational require-
ents become excessive. To overcome this, a limited-memory qua-

i-Newton method has been developed �see Nocedal and Wright
1999� for a good introduction�. Let us now describe our implemen-
ation of such a technique.

At each iteration step k, the search direction vector p�k� is calculat-
d as

p�k� = − G�k�g�k�, �5�

here the symmetric matrix G�k� is an approximation to the inverse
essian matrix, H�k�−1, and g�k� is the gradient

g =
� �

� m
= � � �

� m1
, ...,

� �

� mN
�T

, �6�

alculated at m = m�k�. The explicit expression for the matrix G�k� is
iven in Nocedal and Wright �1999, p. 225, formulas �9.5��. It is im-
ortant that the matrix G�k� is stored implicitly using ncp correction
airs �s�i�,y�i�:i = k − ncp, ..., k − 1� previously computed as

s�i� = m�i+1� − m�i�, y�i� = g�i+1� − g�i�. �7�

he main idea behind this approach is to use information from only
he most recent iterations and the information from earlier iterations
s discarded in the interests of saving storage. Nocedal and Wright
1999, p. 225� advocated ncp between three and 20 to produce satis-
actory results. The next iterate m�k+1� is then found as

m�k+1� = m�k� + ��k�p�k�, �8�
here the step length ��k� is computed by a line search procedure.
his procedure finds a step length that delivers an adequate decrease

n the objective function � along the search direction p�k�. When p�k�

s defined by equation 5 and G�k� is positive definite, one has

p�k�Tg�k� = − g�k�TG�k�g�k� 	 0, �9�

nd hence, p�k� is a descent direction.
Let us demonstrate how in our implementation we provide the

ositive definiteness of the matrix G�k�, required to guarantee the de-
cent direction p�k�. When the vectors s�k−1� and y�k−1� satisfy the cur-
ature condition

s�k−1�Ty�k−1� 
 0, �10�

t can be shown that the matrix G�k� is positive definite. However, the
ondition of equation 10 does not always hold, and in such cases one
eeds to enforce this condition explicitly by imposing restrictions on
he line search procedure. The condition of equation 10 is guaranteed
o hold if we impose the following Wolfe conditions on the line
earch:

��k� � ��k−1� + c1��k−1�g�k−1�Tp�k−1�, �11a�

g�k�Tp�k−1� � c2g�k−1�Tp�k−1�, �11b�

ith 0 	 c1 	 c2 	 1, where ��k� = ��m�k�,��. To verify this, we
otice that from equations 7 and 11b it follows that g�k�Ts�k−1�

c2g�k−1�Ts�k−1�, and therefore, y�k−1�Ts�k−1� � �c2 − 1���k−1�g�k−1�T

�k−1�. Because c2 	 1 and p�k−1� is a descent direction, the term on
he right is positive, and the curvature condition of equation 10
olds.

Let us now recall that our problem is subject to the simple bounds
efined by equation 4. As it was shown above, the Wolfe condition
f equation 11b guarantees that the matrix G�k� is positive definite
nd hence, p�k� = −G�k�g�k� is a descent direction. But, the condition
f equation 11b may not be reached inside the feasible region defined
ithin the bounds set by equation 4. In this case one should modify

�k−1� of equation 7 as follows

� · s�k−1� + �1 − ��G�k−1�y�k−1� → s�k−1�, �12�

here

� = 	1, if a � 0.2b

0.8b/�b − a� otherwise
,

= s�k−1�Ty�k−1�, b = y�k−1�TG�k−1�y�k−1�. Ni and Yuan �1997� have
roved that transformation of equation 12 guarantees that matrix
�k� is positive definite.
Additionally, the gradient projection method is used to determine

set of active constraints. Alternative ways to deal with the bound
onstrained QN optimization can be found in Byrd et al. �1995� and
elley �1999�.
The QN method described above does not depend on the dimen-

ionality of the inverse problem. It can be applied equally to 1D, 2D,
r 3D cases. For the 1D case, mi is the electrical conductivity of the
th layer. For 2D and 3D cases, it is the electrical conductivity of the
th cell.

hoice of parameter �

We know that the choice of parameter � of equation 1 is crucial for
nding a reliable solution to underdetermined �M � N� inverse
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roblems �see Farquharson and Oldenburg, 1998�. Too large a value
f � may lead to a model that is too smooth, whereas a value of � that
s too small may deliver a nonphysical model with unwanted arti-
acts. In this study, we applied a simple cooling-type approach that
omprises two stages. First, we find two values �low and �high such
hat �d�m�low� 	 1, and �d�m�high� 
 1, where m� delivers the solu-
ion of min

m
��m,�� with the parameter �. To do this we solve the in-

erse problem posed in equations 1–4 for different values of �. As
rescribed by the cooling approach, we start this process with a large
alue of �. Note that weight coefficients � j� j = 1,. . .,M� of the mis-
t �d are chosen so that the value �d = 1 exactly corresponds to the
oise floor. In the second stage, we find the biggest possible �opt such
hat �d�m�opt� � 1, where m�opt is a solution of min

m
��m,�opt�. To find

uch a value �, we iteratively apply the linear interpolation of ����
�d�m�� at the segment 
�low,�high�. This approach is a simple vari-

nt of an algorithm by Haber and Oldenburg �1997�.
In numerical examples we present later, we demonstrate that such

procedure works successfully.

peeding up the solution

As presented above, at each iteration step k the inverse problem
olution requires calculating the gradient g�k� = 
���/�m1�, ...,
��/�mN��T. Straightforward numerical calculation of the gradient
�k� involves �N + 1� solutions of the forward problem: m → ��m�.
owever, for large-scale problems �when N is large� such a straight-

orward calculation may be prohibitive in terms of computation
ime. One can significantly speed up the inverse problem solution by
voiding this straightforward calculation. InAppendix A we present
uch an approach for the 1D MT case, which exploits the Green’s
unction technique. Numerically, calculation of the gradient with the
se of this approach requires solving a single forward and adjoint
roblem, rather than N + 1 forward problems. Our approach resem-
les an implementation of the well-known adjoint method �see, for
xample, Rodi and Mackie, 2001; Chen et al., 2005� to the 1D MT
nverse problem. It is important, however, to stress that our approach

ay be extended with some effort to the 3D case. It is also notewor-
hy that, for the 1D MT case, the gradient can also be calculated us-
ng the chain-rule �Constable et al., 1987�.

Therefore, we have implemented the limited-memory QN meth-
d with simple bounds �hereinafter, referred to as LMQNB�, which
s described above. It should be noted here that our implementation
iffers from that of Ni and Yuan �1997� in that the LMQNB uses the
olfe conditions of equations 11 to terminate the line search.

MODEL EXAMPLES

Let us demonstrate on a synthetic 1D MT example the extent to
hich the calculation of the gradient given by equation 6 presented

n Appendix A accelerates the solution of the 1D MT inverse prob-
em.Aseven-layered earth model is given in Table 1. This model was
ompiled from the models �see Avdeev et al., 2004� derived from a
eafloor MT and a global GDS long-period data set collected in the
orth Pacific Ocean. To complicate the inversion process, we subdi-
ided the three upper layers in this model �to a depth of 394 km� into
97 sublayers of equal thickness. For this 201-layered �N = 201�
odel, we inverted the impedance dj = Zj�m�, calculated at M = 30

eriods, from 10 s to 10,800 s. In addition, we added 0.5% ran-
om noise to the impedance data. The relative error � j 
� j =

1 �2/�2�d �2�� of the impedance was taken as 0.01. A 10-ohm-m uni-
M j j
orm half-space was used as an initial guess m = m0. In Figure 1a,
e compare the convergence rates of two solutions obtained with

traightforward calculation of the gradients and using the method
resented in Appendix A, respectively. The curves are shown as a
unction of the number of evaluations of ��m,�� for two cases, �

0 and � = �opt. From Figure 1a, it is seen that the calculation of the
radients given inAppendix A accelerates the solution by 130 times.
he results of QN inversion are presented in Figure 1b. As might be

able 1. A seven-layered earth model.

Conductivity
�S/m�

Thickness
�km�

0.01 64

0.05 180

0.1 150

0.12 126

0.28 130

1.1 150

1.5

igure 1. �a� Comparison of convergence rates: The curves present
he misfit of equation 2 obtained using QN inversion with the
traightforward calculation of the gradient of equation 6, shown for
= 0 �thin grey line� and �opt = 320 �thin black line�. The thin dot-

ed line presents the objective function of equation 1 for �opt = 320.
he same is shown with the calculation of the gradient that is pre-
ented in Appendix A, again for � = 0 �thick grey line� and �opt

320 �thick solid and dotted lines�. �b� The conductivity models ob-
ained from the QN inversion with the calculation of the gradients
rom Appendix A, again for � = 0 �grey line� and �opt = 320 �black
ine�. The thin solid and dashed lines show the true and initial guess

odels, respectively.
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xpected, the conductivity models recovered do not fit well for
epths greater than 400 km because the responses at the periods con-
idered are almost insensitive to these depths.

Let us again consider the 201-layered model and the data set, de-
cribed in the previous example. In our next example �Figure 2�, we
tudy the convergence rate of the LMQNB solution for a various
umber ncp of correction pairs. The curves in Figure 2 are shown as a
unction of the number nfg of evaluations of ��m,�� and g =
��/�m��m,�� for � = �opt. It is surprising that so small a number of
he pairs �ncp = 5� can be sufficient to get a relatively reasonable re-
ult.

In Figure 3, we present the third example — a comparison of two
olutions of the 1D MT inverse problem. The first solution is based
n the optimization method offered in this paper, and the second one
ses the L-BFGS-B optimization code by Byrd et al. �1995�. The
omparison is presented for ncp = 5 correction pairs and �opt = 320.
hese solutions converge in a similar way and produce similar mod-
ls. In the same figure, we show the curves produced using the con-
entional QN algorithm of Gill et al. �1981�, subject to simple
ounds. To find the search direction p�k�, this algorithm solves the
ewton system H�k�p�k� = −g�k�, rather than making use of equation
, and it is valid for small-scale problems.

CONCLUSION

We have described a limited-memory QN method applied to solve
he 1D MT inverse problem. We believe that the method may be ap-
lied equally for large-scale 1D, 2D, or 3D MT cases. In the numeri-
al examples presented, we have demonstrated that the calculation
f gradients with the use of the adjoint method dramatically acceler-
tes 1D MT inversion. The nontrivial problem of such a calculation
f gradients in the 3D MT case is the subject of ongoing research.
nother finding of our numerical experiments is that the LMQNB

olution converges similarly to the solution based on the L-BFGS-B
ethod.
Further work will be concentrated on extension of this LMQNB
ethod to the 3D MT case. The implementation of the method to the

D case, if successful, may be a useful inversion tool in understand-
ng a wide variety of electromagnetic earth phenomena.
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APPENDIX A

CALCULATION OF GRADIENT

To derive derivatives ��d/��k, we apply a popular adjoint method
cf., Rodi and Mackie, 2001�. To do this, let us first rewrite equation
as
igure 2. Comparison of the LMQNB inversions with different
umbers of correction pairs �ncp�. �a� The convergence rate for ncp

2 �dotted line�, ncp = 5 �solid black line�, ncp = 20 �dashed line�,
nd ncp = 25 �grey line�. �b� The corresponding conductivity mod-
ls, which are plotted mostly on top of each other. The thin solid and
igure 3. Comparison of three different QN inversions. �a� The con-
ergence rate for LMQNB �solid line�, L-BFGS-B �dashed line�, and
ill et al.’s �1981� QN algorithms �dotted line�. �b� The correspond-

ng conductivity models, which are plotted on top of each other. The
hin solid and dashed lines show the true and initial guess models, re-
pectively.
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�d��� = 1
2 �d − Z,d − Z2, �A-1�

here we introduce the vectors � = ��1, ..., �N�T, d = �d1, ..., dM�T,
nd Z = �Z1, ..., ZM�T, and an inner product � · , · 2 of vectors u and v
s

�u,v2 = �
j=1

M

� jujv j . �A-2�

rom equations A-1 andA-2, it follows that

� �d

� �k
= Re�Z − d,

� Z

� �k
�

2
. �A-3�

n equation A-2 the over bar indicates complex conjugate, and in
quation A-3 Re is the real part of a value.

The main problem now is how to calculate derivatives �Zj/��k.
rom Maxwell’s equations written for a layered earth, it follows that
t any depth z impedance can be derived as

Zj�z� =
i j�0v j

�zv j
, �A-4�

here the potential v j�z� satisfies the Helmholtz equation

�z
2v j + i j�0��z�v j = 0, �A-5�

nd the boundary condition v j →z→�
0. Here, z is the depth,  j = 2�/Tj

s the jth angular frequency, and �0 is the magnetic permeability of
ree space. Further, for a layered earth we easily may decompose
�z� as

��z� = �
k=1

N

�k�k�z� , �A-6�

here �k is the conductivity of the kth layer confined between
oundaries zk and zk+1, and �k�z� = ��z − zk� − ��z − zk+1�, where
�z� is the Heaviside function. Note that in equation A-6 we assume
hat zN+1 = �. From equations A-5 andA-6 it follows that

�z
2 � v j

� �k
+ i j�0��z�

� v j

� �k
= − i j�0�k�z�v j . �A-7�

rom equation A-7, it follows that the derivative �v j/��k is ex-
ressed as

� v j

� �k
�z� = − � Gj�z,���k���v j���d�

= − �
zk

zk+1

Gj�z,��v j���d� , �A-8�

here the Green’s function Gj�z,�� is a solution to the following
quation:

�z
2Gj�z,�� + i j�0��z�Gj�z,�� = i j�0��z − �� , �A-9�

nd where ��z� is the delta-function. From equation A-4 it follows
hat

� Zj

� �
�z� = Zj� 1

v

� v j

� �
−

1

� v
�z

� v j

� �
� . �A-10�
k j k z j k
ubstituting equation A-8 into equation A-10 �and assuming z = 0�
ields

� Zj

� �k
�0� = Zj�0��−

1

v j
�

zk

zk+1

Gj�0,��v j���d�

+
1

�zv j
�

zk

zk+1

�zGj�z,���z=0v j���d�� . �A-11�

sing the following properties of Gj�z,�� �at z 	 �� �cf. Avdeev et
l., 1997�:

�zGj�z,�� = − i j�0
1

Zj
*�z�

Gj�z,�� , �A-12�

Gj�z,�� =
1

Zj
−1�z� − Zj

*−1�z�
� j�z,�� , �A-13�

� j�z,�� = exp�i j�0�
z

�

Zj
−1���d�� , �A-14�

rom equation A-11 we derive that

� Zj

� �k
�0� = − Zj

2�0� · �
zk

zk+1

� j
2�0,��d� . �A-15�

In equations A-12 andA-13, Z j
*�z� is the impedance of the layered

arth model above the depth z. Substituting equation A-15 in equa-
ion A-3 yields the sought-for derivatives

� �d

� �k
= − Re��

j=1

M

� j�kj�Zj − dj�Zj
2� , �A-16�

here for simplicity we denoted Zj = Zj�0�, and

�kj = �
zk

zk+1

� j
2�0,��d� �k = 1, ..., N� . �A-17�

An explicit expression for the coefficients �kj is given in Appen-
ix B.

APPENDIX B

CALCULATION OF �KJ

By definition �see equation A-17�

�kj = �
zk

zk+1

� j
2�0,��d� �k = 1, ..., N� , �B-1�

here

� j�z,�� = exp�i j�0�
z

�

Zj
−1���d�� . �B-2�

rom equations B-1 and B-2 it follows that
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�kj = �
l=1

k−1

� j
2�zl,zl+1� · �kj , �B-3�

here

�kj = �
zk

zk+1

� j
2�zk,��d� . �B-4�

n the above expressions, we assumed that z1 = 0 and zN+1 = �. From
quation B-3 it follows that the coefficients �kj can be calculated re-
ursively as

�k+1j = � j
2�zk,zk+1�

�k+1j

�kj
�kj , �B-5�

here �1j = �1j as can be seen from equations B-1 and B-4.
From equations A-4 and A-5 and the definition given by equation

-2, it follows that

� j�zk,�� = ch��kj�� − zk�� + �kjsh��kj�� − zk��

�zk � � � zk+1� , �B-6�

here �kj = �−i j�0�k and

�kj =
i j�0

�kj
Zj

−1�zk� . �B-7�

rom equations A-4 and A-5 and the definition given by equation
-7, the following recursive formula follows

�kj = �− sh��k�kj� + ch��k�kj�
�k+1j

�kj
�k+1j

ch��k�kj� − sh��k�kj�
�k+1j

�kj
�k+1j

, k = N − 1, ..., 1

− 1, k = N

.

�B-8�

rom equation B-6 it also follows that

� j�zk,zk+1� = ch��k�kj� + �kjsh��k�kj� . �B-9�

inally, substituting equation B-6 into equation B-4 and after some
anipulations one obtains
�kj = ��k�1 − �kj
2

2
+

sh��k�kj�

�k�kj
� �1 + �kj�2

2
ch��k�kj� + �kjsh��k�kj��� , k = N − 1, . . .,1

1

2�kj

, k = N � .

�B-10�
xpressions presented in equations B-9 and B-10 permit the recur-
ive calculation of the coefficients �kj using equation B-5.

Comparing equations B-8–B-10, one can see that the coefficients
kj, �kj, and � j�zk,zk+1� are calculated simultaneously while moving
rom the bottom of the model to the surface. Such a calculation is
omewhat equivalent to the forward problem solution. Once the co-
fficients �kj and � j�zk,zk+1� are found, the �kj required by the deriva-
ives defined in equation A-16 are calculated recursively from the
urface to the bottom using equation B-5. Thus, as is predicted by the
heory of the adjoint method, the time to calculate the derivatives of
quation A-16 is not more than twice that required for the forward
roblem solution �calculating �kj alone�.
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