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S U M M A R Y
In a previous paper, Khokhlov et al. introduced a method to test the compatibility of so-called
‘giant Gaussian process’ (GGP) statistical models of the palaeomagnetic field against any
palaeosecular variation database. This method did not take measurement errors into account.
It therefore lacked practical usefulness. In the present paper, we remedy this and generalize
the method to account for measurement errors in a way consistent with both the assumptions
underlying the GGP approach and the nature of those errors. The method is implemented to test
GGP models against any directional data set affected by Fisherian errors. Simulations show
that the method can usefully discriminate which GGP model best explains a given data set.
Applying the method to test six published GGP models against a test Bruhnes stable polarity
data set extracted from the Quidelleur et al. database, it is found that all but one model (that of
Quidelleur & Courtillot) should be rejected. Although this result should be taken with care, and
does not necessarily imply that this model is superior to other models (Quidelleur & Courtillot
precisely used the Quidelleur et al. database to infer their model), it clearly shows that in
practice also, and with the databases currently available, the method can discriminate various
candidate GGP models. It also shows that the statistical behaviour of the geomagnetic field at
times of stable polarity can indeed be described in a consistent way in terms of a GGP model.
This ‘forward’ testing method could ultimately be used to design an ‘inverse’ approach to GGP
modelling of the palaeomagnetic field.

Key words: archaeomagnetism, geomagnetism, palaeomagnetism, potential field, spherical
harmonics, statistical methods.

I N T RO D U C T I O N

Thanks to the large amount of magnetic data provided by satel-

lite missions spherical harmonic models of the main magnetic field

produced within the core can readily be computed, providing high-

resolution pictures of the way this field has been behaving over the

past few decades (Hulot et al. 2002). Additional information can

also be recovered from observations carried out by many genera-

tions of observers, explorers and navigators worldwide to produce

spherical harmonic models describing the main magnetic field over

the past four centuries (Jackson et al. 2000). Reconstructing similar,

albeit much less accurate, spherical harmonic models of the Earth’s

main magnetic field further back in time is also possible (Hongre

et al. 1998; Korte & Constable 2005). This, however, requires that

indirect measurements be used, only available through human arte-

facts, lava flows and sediments that have been magnetized in the

ancient field. It also requires that a good age control of each sample

is available to ensure a satisfying synchronization of the data used in

computing spherical harmonic models for a given epoch. Because

changes in the non-dipole component of the main field occur on

short timescales for small spatial scales (Hulot & Le Mouël 1994),

a poor control indeed limits our ability to produce such spherical

harmonic models back in time (so far, only up to 7000 yr in the past,

Korte & Constable 2005).

To recover information about the Earth’s main magnetic field

further back in time, one must rely on palaeomagnetic data

and acknowledge the impossibility of accurately (within a few

decades at most) synchronizing data acquired at different loca-

tions. This is especially true for the so-called palaeosecular variation

(Quidelleur et al. 1994; Johnson & Constable 1996; McElhinny &

McFadden 1997) and palaeointensity (Tanaka et al. 1995; Perrin &

Schnepp 2004) databases covering the past few million years. Those

databases encompass data recovered from volcanic samples and tes-

tifying for the instantaneous value of the direction and/or intensity of

the field at well-known locations but poorly known times (typically

within much more than a millennium). Fortunately, ages can nev-

ertheless be measured with enough accuracy to identify the chron

during which each of these samples acquired its magnetization. As-

suming that the geodynamo essentially remained in a stationary state

at times of stable polarity, this then opens the possibility, recognized

C© 2006 The Authors 635
Journal compilation C© 2006 RAS



636 A. Khokhlov, G. Hulot and C. Bouligand

long ago (see e.g. Merrill et al. 1996, for an extensive review of ear-

lier work), that at least some statistical properties could be recovered,

characterizing the ancient field at times of stable polarity over the

past millions years.

Several approaches have been used to try and infer such statis-

tical properties (again, see e.g. Merrill et al. 1996). One approach

has drawn particular attention, the so-called giant Gaussian process

(GGP) approach first introduced by Constable & Parker (1988), and

next generalized by Hulot & Le Mouël (1994) and Kono & Tanaka

(1995). In its most general form (see e.g. Hulot & Bouligand 2005),

this approach consists in

(1) using the classical spherical harmonic decomposition of the

Main Field:

B(�, �, �, t) = −∇
[

a
∞∑

l=1

l∑
m=0(

a

�
)l+1(

gm
l (t)cos m� + hm

l (t)sin m�
)
Pm

l (cos �)

]
, (1)

where gm
l (t) and hm

l (t) are the time-varying Gauss coefficients, a
denotes the Earth’s radius and {�, �, �} are the standard spherical

coordinates (i.e. distance from the Earth’s centre, colatitude and

longitude), and

(2) assuming that the gm
l (t) and hm

l (t) are the coordinates of a

vector k(t) in a multidimensional model space, which behaves as a

single realization of a multidimensional stationary random Gaussian

process characterized by a statistical mean (or mean model) E(k(t))
and a covariance matrix Cov(k(t), k(t ′)) (which may very well be

non-diagonal).

In addition to being defined with the help of a fully consistent for-

malism, this GGP approach has the unique advantage of providing

a common tool to analyse just as well the historical (Constable &

Parker 1988; Hulot & Le Mouël 1994), archaeomagnetic (Hongre

et al. 1998) and palaeomagnetic fields (Constable & Parker 1988

and many studies since, see e.g. Kono et al. 2000a; Tauxe & Kent

2004). Even more, it can also be used to carry on similar analysis

of the field produced by dynamo numerical simulations (Kono et al.
2000b; McMillan et al. 2001; Bouligand et al. 2005). In the latter

case, considerable advantage can be taken of the fact that the Gauss

coefficients (and very long time-series) are readily available and

can thus be analysed in much detail without having to worry about

any observational errors. Those studies have shown that under rea-

sonable circumstances, the field produced by a numerical dynamo

is indeed compatible with a GGP description, which can then be

used to detect very interesting statistical properties, most notably,

spontaneous and forced (because of the boundary conditions im-

posed at the core–mantle boundary) symmetry breaking properties

(Bouligand et al. 2005; Hulot & Bouligand 2005). The GGP ap-

proach thus appears to potentially be a tool of choice to characterize

the Earth’s main magnetic field at various epochs (present and past),

detect possible changes in the regime of the geodynamo, some of

which could be due to changes in the boundary conditions, and de-

cide whether a numerical dynamo simulation is ‘Earth-like’ or not.

For this to be possible, we, however, need to have robust and sen-

sitive numerical tools to actually decide which GGP model best fits a

given data set. The issue is unfortunately not so trivial when the data

to be analysed are the palaeomagnetic data from the palaeosecular

variation databases (the largest available palaeomagnetic database

for that type of study). In that case indeed, because the (directional)

data are non-linearly related to the Gauss coefficients of the main

field, no simple method is available to directly produce estimates

of the mean and covariance matrix of the GGP process best de-

scribing the data. Furthermore, using approximate approaches can

easily lead to biased estimates (Khokhlov et al. 2001; Hatakeyama

& Kono 2001). The purpose of the present paper, which expends

on the earlier work of Khokhlov et al. (2001) (hereafter paper I), is

to show that in fact a rigorous method can be implemented which

(1) is fully consistent with all the assumptions involved in the GGP

approach, (2) takes into account the measurement errors provided

with each data point (a major improvement with respect to paper I),

(3) provides a rigorous quantified assessment of the compatibility

of any GGP model with any directional data set and (4) proves very

discriminating.

D E A L I N G W I T H E R RO R - F R E E

PA L A E O D I R E C T I O N A L DATA

In this section, we first recall the approach proposed in paper I to

test any error-free palaeodirectional data set. [Note, however, that

we will make use of slightly different notations to avoid confusion

among the various quantities we need to define. As a general rule,

in the present paper, we will indeed always make use of gothic

letters, namely g, s, k and p (possibly with indexes) for the various

probability density functions (PDFs) we will need to introduce.]

When dealing with such data, which consist in instantaneous

values of the palaeodirection recorded at times separated by much

more than the memory of the GGP process, each palaeomagnetic

datum can be viewed as a local (both in time and space) inde-

pendent realization of the GGP process. As a result, the covari-

ance matrix of the process can be assumed to be of the simplified

form Cov(k(t), k(t ′)) = Cov(k, k)δ(t − t ′) and temporal correla-

tions ignored altogether. Rewriting eq. (1) in the simplified form

B(�, �, �, t) = A(�, �, �)k(t), where A(�, �, �) is a ma-

trix projecting the multidimensional vector k(t) into the 3-D vec-

tor B(�, �, �, t), a given instantaneous value B of the field at a

given location (�, �, �) at the Earth’s surface can then itself be

viewed as a random drawing from a 3-D Gaussian distribution of

random vectors V characterized by E(V) = A(�, �, �)E(k) and

Cov(V, V) = A(�, �, �)Cov(k, k)A(�, �, �)T . Denote g, the

corresponding PDF in R3.

Next, introduce the spherical coordinates (u, ρ) of the vector

V (where u = V/|V | ∈ �, the unit sphere in R3, and ρ = |V |
denotes the distance from the origin O of the sphere �). Denote s

the PDF associated with the direction u on �. This so-called angular

Gaussian distribution (Bingham 1983, in paper I, we also referred

to it as the Gaussian Directional distribution) is then defined by:

s(u) =
∫ ∞

0

g(ρu) dρ. (2)

In a local Cartesian coordinate system, we may write E(V) = m =
(m 1, m 2, m 3) and Cov(V , V) = [cov(Vi , V j )]. Then, let Λ = [�i j ]

be the inverse (hence, also symmetric) matrix of Cov(V , V). With

respect to these local Cartesian coordinates, the PDF of V is:

g(x1, x2, x3) =
√

det Λ
(2π )3

exp

[
−1

2

3∑
i, j=1

�i j (xi − mi )(x j − m j )

]
,

(3)

or

g(x) =
√

det Λ
(2π )3

exp

[
−1

2
(�(x − m), x − m)

]
. (4)

Making use of the Λ-inner product (x, y)Λ = (Λx, y) =∑3
i, j=1 �i j xi y j together with the corresponding Λ-norm |x|Λ =
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(x, x)Λ, and turning back to the spherical coordinates (u, ρ) in R3,

we may then write:

g(ρu) =
√

det Λ
(2π )3

e− 1
2 |ρu−m|2Λρ2, (5)

and, after ρ-integration (eq. 2), finally get

s(u) = e
− 1

2 m2

·
√

det Λ
4π |u|3Λ

[
z

√
2

π
+ e

1
2 z2

(1 + z2)

[
1 + Erf

(
z√
2

)]]
,

(6)

where

z = (m, u)Λ
|u|Λ , m = |m|Λ, (7)

correspond to respectively the Λ-projection of m on the direction

u, and the Λ-norm of m. Since Λ is positive −m ≤ z ≤ m.

Eq. (6) makes it possible to predict the PDF of the direction of the

field at any location at the Earth’s surface. Any given GGP model

can then easily be tested against the data set corresponding to such

a location.

Unfortunately, relatively few data are usually available at a given

location. In paper I, we explained how this drawback could be over-

come, and sparse data distributed over various sites combined into

a uniformized data set to globally test the GGP model.

This consists in converting the directional data set {ui} under

consideration (where the ‘i’ index varies between 1 and N , the total

amount of data) into a univariate data set {t i} with the help of:

ti = P{u|si (u) ≥ si (ui )} =
∫

{u|si (u)≥si (ui )}

si (u) dU, (8)

where dU is the elementary surface about u on �, and testing the

distribution of the {t i} against a uniform probability density over

the segment [0, 1].

This uniformization procedure simply amounts, for each data ui ,

to identify on � the isoprobability line of the PDF si (u) on which

the data ui lie (note that this PDF depends on the location the data ui

come from, which is why an ‘i’ index is being added to si (u)), and

to assign to t i the value of the probability that ui could have been

lying on a higher isoprobability line on �. Then, if the GGP model

is compatible with the data set (hence, if the ui are compatible with

the si (u)), the {t i} should be compatible with a uniform distribution

on [0, 1].

Whether this is indeed the case can finally be assessed with the

help of various standard tests, (in paper I we used the Kolmogorov-

Smirnov (KS) and the χ2 tests). Note that this uniformization pro-

cedure is very general and does not rely on any properties of the

angular Gaussian distribution. It can be applied in more general

situations.

TA K I N G M E A S U R E M E N T E R RO R

I N T O A C C O U N T

A main issue that paper I did not address is that of data measurement

errors. The tests we just described are appropriate only in the event

these errors are negligible. Unfortunately this is far from being the

case and we now need to take this into account. In the case of di-

rectional data, these measurement errors are classically described in

terms of a Fisher distribution characterized by a so-called concen-

tration (or precision) parameter K. Within this Fisherian framework,

stating that the observed direction s reflects the actual direction u
on � with an error characterized by a concentration parameter K,

amounts to state that s is the result of a random drawing from a

Fisher distribution centred on u with PDF:

kK (u, s) = K

2π (eK − e−K )
eK ·(u,s). (9)

In spherical coordinates and when centred on u0 = (θ = 0, ϕ = 0),

this takes the more usual form:

kK (u0, s) = K eK cos θ

2π (eK − e−K )
. (10)

This means that in order to test a given GGP model against a

given data set {ui} with associated errors characterized by {K i},

we now need to test whether each ui can be considered the result of

a realization s of the GGP process (distributed over � with the PDF

si ), shifted to ui as a result of an error with a Fisher distribution

kKi (s, u) centred on s and a concentration parameter K i .

The infinitesimal probability that the GGP process first produces a

direction within the elementary surface dS about s, and that the error

next independently shifts this direction to within the elementary

surface dU about ui is:

si (s) d S · kKi (s, u) dU. (11)

Then, integrating over all possible intermediate s directions leads

to the probability pi (u)dU of finding ui within dU about u, where:

pi (u) =
∫
�

si (s)kKi (s, u) d S, (12)

is the new PDF against which ui should be tested. Thus, taking data

errors into account only amounts to use pi (u) in place of si (u) in

eq. (8). Tests can then again be used, either on a site-by-site basis

or, more interestingly, on a regional and global scale after using the

uniformization procedure, which now becomes:

ti = P{u|pi (u) ≥ pi (ui )} =
∫

{u|pi (u)≥pi (ui )}
pi (u) dU. (13)

P R A C T I C A L I M P L E M E N TAT I O N

In practice, testing a given GGP model against a given directional

data set thus involves four successive steps:

(1) for each data ui , to compute the error-free PDF si (u) pre-

dicted by the GGP model at the site where ui was collected (the

analytical form of which is given by eq. 6);

(2) to compute the error-included PDF pi (u) through the con-

volution (12);

(3) to produce the uniformized data t i with the help of eq. (13)

and

(4) to test the uniformized data set {t i} against a uniform dis-

tribution over [0, 1].

Unfortunately, no exact analytical solutions of eqs (12) and (13)

are known to us. In principle, this is not too much of a problem,

since both eqs (12) and (13) can be computed numerically. In prac-

tice however, the numerical implementation of formula (12) requires

quite some computational time. This drawback can be considered

negligible if we simply test a single GGP model against a small
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database, or if all data ui coming from the same site share the same

data error (in which case pi (u) only needs to be computed once

for each of the typically thirty something sites). However, if pi (u)

needs to be computed for each data of the data set (i.e. typically

a thousand times), this computational time can become very long

(on the order of a few days on a current PC). For that kind of more

realistic situations (and for the ‘forward’ testing method we propose

here to possibly become of any use for future much more computer-

intensive ‘inverse’ searches of best models), faster algorithms are

clearly desirable. This prompted us to further look for an approxi-

mate, accurate enough, analytic solution to the convolution (12).

As is described in the appendix, one such approximation can in-

deed be found. For any given data ui , this consists in approximating

pi (u) by the angular Gaussian distribution defined by eqs (6) and (7),

where m is then the mean field value predicted by the GGP model

to be tested at the site associated with the data ui (i.e. predicted by

gi (x) as defined by eq. (4) for the site associated with the data ui ),

and Λ is (Cov(V, V) + |m|2
K I)−1, where Cov(V , V) is the covari-

ance matrix associated with gi (x) and K (=K i ) is the concentration

parameter characterizing the Fisherian error associated with ui .

In what follows, whenever we use this approximation of pi (u) to

implement the tests, we will refer to the ‘approximate’ method, and

whenever a direct numerical implementation of the exact convolu-

tion (12) is used, we will refer to the ‘exact’ method. It turns out

that, as we shall see, the approximate method is most often just as

good as the exact method, and about 100 times faster to run.

M O D E L S , DATA S E T, A N D

S TAT I S T I C A L T O O L S U S E D

I N T H I S S T U DY

To illustrate the power of the method we propose, several published

GGP models have been tested. We will refer to these as:

(i) CP model, which is the preferred model of Constable &

Parker (1988);

(ii) QC model, C1 (preferred) model of Quidelleur & Courtillot

(1996);

(iii) CJ model, which is the CJ98 model proposed by Constable

& Johnson (1999);

(iv) JC model, which is the CJ98.nz model also proposed by

Constable & Johnson (1999);

(v) TK model, which is the TK03.GAD model recently pro-

posed by Tauxe & Kent (2004) and further discussed in Tauxe

(2005);

(vi) HK model, which is the final model for the normal polarity

of Hatakeyama & Kono (2002).

Models CP, QC, CJ, JC and TK share many characteristics. They

are defined by simple axisymmetric mean models for which only

E(g0
1) and E(g0

2) can take non-zero values, and purely diagonal co-

variance matrices with Cov(gm
n , gm

n ) = Cov(hm
n , hm

n ) = (σ m
n )2, except

in the case of model JC, which assumes different values for Cov(g1
2,

g1
2) = (σ (g1

2))2 and Cov(h1
2, h1

2) = (σ (h1
2))2. In all but one case,

for n ≥ 3, the σ m
n are further assumed to be independent of m and

defined by σ m
n = σn where σn = α(c/a)n/((n + 1)(2n + 1))1/2.

The only exception is model TK which distinguishes σ m
n = σn for

(n − m) even from σ m
n = βσn for (n − m) odd. Table 1 gives the

values of the relevant parameters for each of those five models. Fi-

nally, model HK differs from the other models because of a more

elaborate mean field, defined up to degree and order 4. However, its

covariance matrices are otherwise defined in much the same way. A

Table 1. Parameters defining models CP, QC, CJ, JC and TK. Units are in

μT , except for β only defined for model TK and which is dimensionless (see

main text for further details). Parameters defining model HK are to be found

in Table 2 of Hatakeyama & Kono (2002).

CP QC CJ JC TK

E(g0
1) −30.0 −30.0 −30.0 −30.0 −18.0

E(g0
2) −1.8 −1.2 −1.5 −1.5 0.0

σ 0
1 3.0 3.0 11.72 11.72 6.36

σ 1
1 3.0 3.0 1.67 1.67 1.67

σ 0
2 2.14 1.3 1.16 1.16 0.58

σ (g1
2) 2.14 4.3 4.06 1.16 2.20

σ (h1
2) 2.14 4.3 4.06 8.12 2.20

σ 2
2 2.14 1.3 1.16 1.16 0.58

α 27.7 27.7 15.0 15.0 7.5

β 3.8

full description of this model can be found in table 2 of Hatakeyama

& Kono (2002).

All those models have been constructed in the hope that they

would properly describe the statistical properties of the palaeomag-

netic field at times of normal polarity over the past 5 Myr. In particu-

lar, they have been constructed with the help of databases including

a large number (if not a majority) of directional data corresponding

to the current Bruhnes chron (e.g. Quidelleur et al. 1994; Johnson

& Constable 1996). They are, therefore, good candidates for an ex-

ample test against a well-controlled data set covering the Bruhnes

chron and corresponding to volcanic directional data acquired at var-

ious sites distributed worldwide. Ideally, such a test data set would

have to be built by extracting data from the most recent and perma-

nently updated IAGA palaeomagnetic reference database for palae-

ofield direction available at the National Geophysical Data Center

(http://www.ngdc.noaa.gov/seg/geomag/paleo.shtml), and by rely-

ing on a set of fine-tuned criteria agreeable to the community. This,

however, is not a trivial matter since, as noted by one of the review-

ers, there currently is no general agreement among investigators on

what comprises a satisfactory database for this kind of study. Such

a substantial endeavour, which we plan to carry on at a later stage, is

therefore clearly beyond the scope of the present paper, which only

intends to introduce, test, and illustrate a new methodology. For such

a purpose, we felt that a simpler, more readily available data set (and

one that at least already went through some type of selection pro-

cesses relevant to the present study), would be appropriate enough.

We, therefore, decided to use a test data set extracted

from the Quidelleur et al. (1994) database, originally used

by Quidelleur & Courtillot (1996) to build their QC model,

last updated in January 1998, and currently available at

http://www.ipgp.jussieu.fr/rech/paleomag/var-secu/. We note how-

ever, even before proceeding further, that because of this choice,

a close fit of the QC model to our test data set can be anticipated,

so that test results reported here will necessarily not test the QC

model as stringently as the other models. This test data set consists

of a total of 990 independent estimates of the local direction of the

palaeomagnetic field at 36 sites (Fig. 1, Table 2). Each site is located

with the help of its latitude and longitude. At each site, each estimate

is based on the direction of the resultant vector R of n (≥3) volcanic

samples (unit vectors) and is given in the form of a declination D

and an inclination I together with both n and the norm R = |R| of

the resultant vector. Although R is usually not published as such in

the original papers, it can be accurately recomputed from the pub-

lished material. This then makes it possible to present all the data in
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Figure 1. Locations of the 36 sites of the test data set used in the present

study.

a homogeneous and complete form in the database. Indeed, and as

is well known (e.g. McElhinny & McFadden 2000), an estimate of

the local direction of the palaeomagnetic field is completely char-

acterized (with is Fisherian error) as soon as the four parameters D,

I , n and R are given.

For each estimate, the corresponding vector ui could then be lo-

cated on the unit sphere �, and an estimate of the concentration

parameter K i defining the Fisherian error computed [with the help

of K = R (n−1)

(n−R)
; note that this is not the concentration parameter

k = (n−1)

(n−R)
classically published with the data, which characterizes

the dispersion of the n individual samples about their average di-

rection, but the concentration parameter characterizing the error on

ui ]. Starting from ui and K i , and for each GGP model to be tested,

a uniformized value t i could finally be computed with the help of

eq. (13) to produce the final uniformized data set {t i}.

To test this final data set against a uniform distribution over [0,

1], we relied on two different well-known tests: the Kolmogorov-

Smirnov test (KS-test) and the Anderson-Darling test (AD-test).

These two tests rely on the fact that, if a given uniformized data

set {t i} (with i = 1 to N) is indeed compatible with a uniform dis-

tribution over [0, 1], its empirical cumulative distribution function

(CDF)F N (x) should fluctuate within predictable limits about the

theoretical CDF value F(x) = x . The null hypothesis should then

be rejected if the empirical CDF F N (x) either departs too much

from x, or remains to close to it (the latter revealing the presence

of suspicious regularities within the {t i}). The KS-test and AD-test

differ in the measure chosen to assess how distant F N (x) is from x
over [0, 1]:

(i) the KS-test (as defined by e.g. Press et al. 1996) uses the

maximum value M N of |FN (x) − x | over [0, 1] and is, therefore,

most sensitive to departures of the {t i} from a uniform distribution

towards the middle of the segment [0, 1];

(ii) the AD-test (as defined by e.g. Marsaglia & Marsaglia 2004)

uses the integral quantity IN = N
∫ 1

0
(FN (x)−x)2

x(1−x)
dx . Because of the

weight [x(1 − x)]−1, it is much more sensitive to the behaviour of

{t i} at both extremes of the segment [0, 1].

The KS and AD tests are both excellent tests for small sam-

ples and can also be used for large samples. Neither require any

additional parameter and both can, therefore, be considered as com-

pletely objective. Also, they complement each other very well. In

practice, for each of the uniformized data set {t i} we had to test;

we, therefore, computed the values of M N and I N , together with

(from known software, e.g. Press et al. 1996; Marsaglia & Marsaglia

2004) the probabilities P(M N ) and P(I N ) for the null hypothesis

to have possibly produced such large, or even larger, values for re-

Table 2. Site number, latitude, longitude and number of directional esti-

mates available for each of the 36 sites of the test data set used in the present

study.

Site Lat (deg) Lon (deg) N

1 19.50 205.00 112

2 39.00 29.00 16

3 −35.50 173.60 21

4 43.40 2.80 31

5 38.70 332.80 21

6 4.50 9.50 14

7 3.50 9.00 37

8 −38.80 77.50 14

9 −21.10 55.50 17

10 −46.50 52.20 40

11 −46.50 51.70 34

12 −46.90 37.80 16

13 19.00 −99.00 36

14 −27.10 250.80 53

15 35.10 139.00 8

16 46.00 3.00 38

17 50.00 7.00 44

18 50.00 7.00 44

19 19.00 261.00 39

20 37.70 241.00 33

21 35.00 139.00 35

22 35.00 139.00 23

23 −1.00 271.00 16

24 −38.00 77.00 25

25 −21.00 55.00 27

26 −36.90 174.80 17

27 71.10 8.20 10

28 38.20 140.50 11

29 38.50 14.90 33

30 41.70 238.50 19

31 57.20 189.70 8

32 60.00 194.00 13

33 19.30 −101.00 9

34 20.10 −155.50 10

35 38.20 15.30 45

36 28.80 342.30 21

spectively M N and I N . Whenever P(M N ) and P(I N ) were found to

take values very close to 0 (typically 0.05 or less) or to 1 (typically

0.95 or above), the null hypothesis had to be rejected and the GGP

model under consideration had to be considered incompatible with

the data-set at this level of confidence.

VA L I DAT I O N A N D D I S C R I M I N AT I N G

P O W E R O F T H E M E T H O D

Before actually implementing the testing method we propose, we

ran a number of instructive validating tests. For that purpose, var-

ious artificial data sets have been produced in the following way.

Starting from a given GGP model, we first produced random error-

free directional data values. Exactly the same number of data values

were produced for each of the 36 sites, as available in the (real)

test data set (thus amounting to a total of 990 independent artificial

values). This could easily be done by just randomly drawing 990
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independent sets of Gauss coefficients (gm
l , hm

l ) from a multidimen-

sional Gaussian generator with mean values and covariances matri-

ces chosen as specified by the GGP model under consideration, and

computing the predicted values at each site. A random directional

error was next added to each of those 990 error-free directional data

values. Because, as shown in the appendix, a Fisher distribution is

extremely close to an angular Gaussian distribution (for realistic

Fisherian errors such as those we deal with here), this was actually

done by introducing a random angular Gaussian error (an easier pro-

cedure to control than that involved in producing random Fisherian

errors). Using this procedure and starting from various specified

GGP models, a number of artificial directional data sets affected by

specified errors could be produced, which we used to validate our

method.

We first validated the ‘exact’ method and checked that for arti-

ficial data produced from any GGP models and perturbed by some

known error, this method would always conclude to the compatibil-

ity of the data set with the starting GGP model, provided the data

are assumed to be affected by the correct amount of error. This first

series of tests not only allowed us to validate the method. It also al-

lowed us to check our software and the level of numerical accuracy

needed to produce accurate results. It turns out that from a numeri-

cal point of view, the most sensitive step of the entire method is the

numerical implementation of the uniformization procedure (i.e. the

computation of eq. 13). This indeed requires the numerical compu-

tation of pi (u) on a grid over the unit sphere �. The most demanding

computations, in terms of grid size, happen to be those correspond-

ing to pi (u) predicting the largest dispersions of the ui on the unit

sphere �. In that case, when the grid is not tight enough, numerical

errors happen to mainly affect the computation of the t i lying close

to 0 or 1. This in turn mainly affects the results of the AD-test which

produces too large values of I N and, therefore, too small values

of P(I N ). As a result, the AD-test tends to more easily produce

negative results than it should.

For the purpose of the present paper, we used a grid corresponding

to a decent compromise, tight enough for the KS-test to always lead

to an accurate result, but not too tight to make it possible to run all

tests in a reasonable amount of time. This had the drawback that, for

the reasons just outlined, the AD-test produced slightly erroneous

results when testing the CJ and JC models. For those two models,

we therefore concluded that only the KS-test could be considered

reliable. For all other models (CP, QC, TK and HK), both the KS-

test and the AD-test were otherwise found to be reliable. Those

conclusions have been reached when testing artificial data affected

by errors characterized by α95 of up to 12.5◦. (Note also that to

produce those artificial data sets and run all the tests reported in this

study, all GGP models have been used only up to degree and order

7, since, as we shall later see, higher degrees contribute negligibly

to the final results for all the GGP models we tested).

We next proceeded to compare the results of the ‘approximate’

method to those of the ‘exact’ method, using exactly the same artifi-

cial data sets in both cases. Again and as anticipated (see appendix),

significant disagreements between the two methods were found to

arise only when pi (u) predicts large dispersions of the ui on the unit

sphere �. In practice, the approximate method was found to lead to

accurate enough results for all the models we tested (testing artificial

data with all levels of errors up to α95 = 12.5◦), except when testing

models CJ and JC against data affected by errors with α95 greater

than 7.5◦. Table 3 summarizes the domain of validity of each type

of test as established from all those preliminary tests.

We then went on to test the ability of the method to properly

discriminate the source GGP model and the level of error affecting

Table 3. Domain of validity of the tests used in the present study. The test

can be considered reliable if the error affecting the data is less than the α95

value shown in the table (units in degrees).

CP QC CJ JC TK HK

KS-test with exact method 12.5 12.5 12.5 12.5 12.5 12.5

KS-test with app. method 12.5 12.5 7.5 7.5 12.5 12.5

AD-test with exact method 12.5 12.5 N.A. N.A. 12.5 12.5

AD-test with app. method 12.5 12.5 N.A. N.A. 12.5 12.5

the data. Because, as we shall soon see, the real data turn out to be

compatible only with model QC (from the point of view of the tests

described in the present paper), and since the average α95 for the

990 data in the real database is of 4.7◦, this test was carried out on an

artificial data set produced from model QC and affected by errors of

α95 = 4.7◦. This artificial data set was used to test all GGP models,

assuming various possible levels of errors (0◦, 2.5◦, 5◦, 7.5◦, 10◦,

12.5◦). An additional test was also run to check that the method

would properly conclude that this data set is compatible with the

starting model QC when assuming an error of α95 = 4.7◦. Since

both the exact and approximate methods provide reliable results for

errors of that magnitude, both methods have been used with the KS-

test and AD-test (except for the the CJ and JC models for which only

the KS test was used, for the reasons outlined above). Table 4 reports

the results of those tests. (Note that Table 4 also provides a good

illustration of the accuracy of the results of the approximate method,

when compared to the results of the exact method).

This table shows that, as expected, the artificial data set is com-

patible with the starting model (QC model) provided the correct

level of error affecting the data is being assumed (α95 = 4.7◦). It

also shows that by contrast, making a wrong a priori assumption

with respect to the errors affecting the data can lead to a negative

result. A minimum error of α95 = 2.5◦ and a maximum error of

α95 = 7.5◦ is indeed required for the test with model QC to produce

positive results (with no rejection at a 95 per cent level of confi-

dence by either of the KS or AD tests). Finally, Table 4 shows that

the method also appears to be able to discriminate the various GGP

models. The data set produced by QC with α95 = 4.7◦ cannot be

attributed to a CP model, unless (but marginally so) one wrongly

assumes α95 = 10◦. It can no more be attributed to a CJ, JC or HK

model, unless one again wrongly assumes α95 = 12.5◦. And it can

hardly be attributed to a TK model, whatever the value assumed for

α95. Altogether those results thus show that the tests we introduced

are sensitive to both the choice of the model to be tested and the

level of error assumed to affect the data. In particular they show that

if we have a reasonable knowledge of the error affecting the data,

the method applied to the type of data set we deal with here (i.e.

990 data distributed over the 36 sites of Fig. 1) makes it possible to

fully discriminate the models. Indeed Table 4 shows that if we know

a priori that the error affecting the data is somewhere between 2.5◦

and 7.5◦, the method can detect that all of the CP, CJ, JC, HK and

TK models are incompatible with the data set produced from QC

model with α95 = 4.7◦, at more than a 95 per cent level of confi-

dence. Those encouraging results show that the method proposed in

the present paper has enough discriminating power to decide which,

if any, of the six GGP models can best explain the test data set we

have assembled.

T E S T I N G T H E R E A L DATA

Having validated the method, and assessed its limits and discrim-

inating power, we then went on to test the various GGP models

against the real test data set.
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Table 4. Testing all models against an artificial data set produced from model QC and affected by errors of α95 = 4.7◦. Results are

shown for all models (first column), assuming various possible levels of errors (second column). For each of the KS and AD tests, both

the approximate and exact methods have been used. Results are reported in the form of the M N and P(M N ) values for the KS test, and

the I N and P(I N ) values for the AD test. Non-zero values of the P(M N ) and P(I N ) have been highlighted in bold. The AD test for

the CJ and JC models being unreliable, their results have not been reported. Note also that when no error is being assumed (i.e. for a 0◦
error), the approximate method is not relevant and the calculation is directly carried out with the help of eq. (8) in place of eq. (13).

KS AD

model error approx. exact approx. exact

M N P(M N ) M N P(M N ) I N P(I N ) I N P(I N )

0.0 0.0855 0.00 22.3 0.00

2.5 0.0804 0.00 0.0807 0.00 19.5 0.00 19.7 0.00

4.7 0.0692 0.00 0.0705 0.00 13.7 0.00 14.3 0.00

CP 5.0 0.0666 0.00 0.0687 0.00 12.8 0.00 13.5 0.00

7.5 0.0521 0.01 0.0539 0.01 5.88 0.00 6.90 0.00

10.0 0.0374 0.12 0.0371 0.13 2.88 0.03 3.73 0.01
12.5 0.0747 0.00 0.0728 0.00 6.73 0.00 6.76 0.00

0.0 0.0415 0.06 2.57 0.05
2.5 0.0360 0.15 0.0358 0.15 1.90 0.10 1.87 0.11
4.7 0.0243 0.60 0.0247 0.58 0.766 0.51 0.734 0.53

QC 5.0 0.0230 0.67 0.0221 0.71 0.636 0.61 0.616 0.63
7.5 0.0231 0.66 0.0274 0.44 0.590 0.66 0.869 0.43

10.0 0.0467 0.03 0.0547 0.01 12.4 0.00 13.8 0.00

12.5 0.0658 0.00 0.0779 0.00 25.2 0.00 27.5 0.00

0.0 0.169 0.00

2.5 0.163 0.00 0.161 0.00

4.7 0.149 0.00 0.143 0.00

CJ 5.0 0.146 0.00 0.139 0.00

7.5 0.121 0.00 0.108 0.00

10.0 0.0892 0.00 0.0709 0.00

12.5 0.0593 0.00 0.0371 0.13

0.0 0.203 0.00

2.5 0.193 0.00 0.190 0.00

4.7 0.171 0.00 0.163 0.00

JC 5.0 0.167 0.00 0.157 0.00

7.5 0.128 0.00 0.115 0.00

10.0 0.0893 0.00 0.0657 0.00

12.5 0.0455 0.03 0.0259 0.51

0.0 0.0709 0.00 9.12 0.00

2.5 0.0673 0.00 0.0650 0.00 8.27 0.00 7.93 0.00

4.7 0.0586 0.00 0.0532 0.01 6.62 0.00 5.62 0.00

TK 5.0 0.0568 0.00 0.0508 0.01 6.39 0.00 5.30 0.00

7.5 0.0525 0.01 0.0464 0.03 5.11 0.00 3.49 0.02
10.0 0.0560 0.00 0.0441 0.04 6.42 0.00 5.28 0.00

12.5 0.0683 0.00 0.0761 0.00 12.2 0.00 12.8 0.00

0.0 0.156 0.00 68.8 0.00

2.5 0.148 0.00 0.149 0.00 62.8 0.00 62.5 0.00

4.7 0.133 0.00 0.131 0.00 49.3 0.00 48.8 0.00

HK 5.0 0.130 0.00 0.129 0.00 47.1 0.00 46.6 0.00

7.5 0.102 0.00 0.0980 0.00 27.8 0.00 27.6 0.00

10.0 0.0646 0.00 0.0638 0.00 11.3 0.00 11.6 0.00

12.5 0.0365 0.14 0.0404 0.08 2.22 0.07 2.88 0.03

Global tests

In a first series of tests, we did not rely on the actual errors pro-

vided with the data. Rather, for each model tested, we successively

assumed values of α95 = 0◦, 5◦, 7.5◦, 10◦, and 12.5◦. This made it

possible to again run both the ‘exact’ and ‘approximate’ methods in

parallel for further validation of the ‘approximate’ method. It also

provided us with a quick way of assessing which GGP model could

possibly be considered compatible with the test data set. Table 5

shows the results of those tests.

Interestingly, we first note some common features with the results

of the previous test (recall Table 4). Model QC is rejected at more

than a 95 per cent confidence level for α95 = 0◦, 10◦, and 12.5◦,

but not for α95 = 5◦ and 7.5◦. Again we see that model CP shows a

tendency to be compatible with the data if one assumes α95 = 10◦,

though this possibility is now clearly less likely. Finally we see that

only by assuming α95 = 12.5◦ can models CJ, JC, HK possibly be

consistent with the data, while model TK is always rejected at a 99

per cent confidence level. Based on these tests, we therefore reach

the conclusion that if we were to ignore the actual level of error
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Table 5. Testing all models against the real test data set, assuming various error levels (this error being assumed to be the same for each

data of the test data set). Results are presented as in Table 4.

KS AD

model error approx. exact approx. exact

M N P(M N ) M N P(M N ) I N P(I N ) I N P(I N )

0.0 0.0978 0.00 22.3 0.00

5.0 0.0780 0.00 0.0787 0.00 13.2 0.00 13.9 0.00

CP 7.5 0.0574 0.00 0.0605 0.00 6.83 0.00 7.90 0.00

10.0 0.0406 0.07 0.0430 0.05 4.49 0.01 5.83 0.00

12.5 0.0757 0.00 0.0752 0.00 9.16 0.00 10.5 0.00

0.0 0.0481 0.02 4.41 0.01
5.0 0.0365 0.14 0.0382 0.11 1.60 0.16 1.48 0.18

QC 7.5 0.0247 0.58 0.0289 0.37 0.648 0.60 1.11 0.30
10.0 0.0435 0.05 0.0555 0.00 2.97 0.03 5.00 0.00

12.5 0.0715 0.00 0.0861 0.00 10.5 0.00 15.1 0.00

0.0 0.154 0.00

5.0 0.131 0.00 0.124 0.00

CJ 7.5 0.107 0.00 0.0957 0.00

10.0 0.0749 0.00 0.0574 0.00

12.5 0.0601 0.00 0.0419 0.06

0.0 0.168 0.00

5.0 0.136 0.00 0.129 0.00

JC 7.5 0.105 0.00 0.0898 0.00

10.0 0.0737 0.00 0.0470 0.02
12.5 0.0530 0.01 0.0225 0.69

0.0 0.0642 0.00 8.53 0.00

5.0 0.0566 0.00 0.0529 0.01 6.34 0.00 5.17 0.00

TK 7.5 0.0630 0.00 0.0567 0.00 5.64 0.00 3.98 0.01
10.0 0.0706 0.00 0.0602 0.00 7.65 0.00 6.56 0.00

12.5 0.0844 0.00 0.0701 0.00 14.0 0.00 15.0 0.00

0.0 0.156 0.00 82.3 0.00

5.0 0.134 0.00 0.133 0.00 56.5 0.00 54.4 0.00

HK 7.5 0.107 0.00 0.103 0.00 34.2 0.00 31.8 0.00

10.0 0.0689 0.00 0.0703 0.00 14.7 0.00 13.1 0.00

12.5 0.0409 0.07 0.0442 0.04 2.89 0.03 2.95 0.03

affecting the data in the test data set, all models would be rejected

at more than a 95 per cent confidence level except model QC when

assuming α95 = 5◦ or 7.5◦, or model CJ and JC when assuming

α95 = 12.5◦.

The key point, now, is that we do have some knowledge of the

errors affecting the data in the test data set. We already noted that on

average, this error is of α95 = 4.7◦. This value is clearly incompatible

with the α95 = 12.5◦ value needed for models CJ and JC to possibly

be compatible with the test data set. However, it seems compatible

with the results for model QC.

To finally assess the issue, we eventually ran the test for all six

models, no longer assuming the same a priori error for all the data

of the test data set, but the true error associated (i.e. published) with

each of the 990 data. Since, as already noted, this requires consid-

erably more computational time, only the approximate method was

used for this comparative assessment. (Note that all previous tests

have anyway shown that for errors of the order of 5◦, the approxi-

mate method always leads to accurate enough results.) Table 6 gives

the results of this final test, and Fig. 2 shows the CDFs of the cor-

responding uniformized data. Those results clearly show that only

model QC is not rejected by the test data set. All other models can

be rejected at more than a 99 per cent confidence level, TK being

the second, CP the third, HK the fourth, CJ the fifth and JC the sixth

best models in terms of both the M N and I N measures (note that

Table 6. Testing all models against the real test data set, using the

true (published) error for each data. Those tests have been run only

using the ‘approximate’ method except in the case of model QC for

which the ‘exact’ method was also used (last line).

model KS AD

M N P(M N ) I N P(I N )

‘Approximate’ method

CP 0.0773 0.00 13.1 0.00

QC 0.0319 0.26 1.48 0.18
CJ 0.131 0.00

JC 0.138 0.00

TK 0.0552 0.00 6.38 0.00

HK 0.125 0.00 54.3 0.00

‘Exact’ method

QC 0.0322 0.25 1.46 0.19

when both quantities are available in Table 6, M N and I N lead to

the same relative ranking).

As an ultimate check and only for model QC, we finally du-

plicated this last test using the ‘exact’ method. The result of

this test (also shown in Table 6) confirms the previous results.

Moreover, the difference found between those two results for
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CP

QC

CJ

JC

TK

HK

Figure 2. Cumulative distribution functions (CDFs) of the N = 990 uni-

formized data {t i} for each of the six models, when testing them against

the real test data set, assuming the true errors and using the ‘approxi-

mate’ method. Those CDFs lead to the M N , P(M N ), I N , P(I N ) shown in

Table 6. In the case of model QC, the CDF obtained when using the ‘exact’

method leads to a CDF almost indistinguishable from the one shown here.

Color code: CP(red), QC(green), CJ(dark blue), JC(pink), TK(light blue),

HK(black).

model QC clearly appears to be much smaller than the differ-

ences among the results of the approximate method for all mod-

els. We, therefore, feel quite confident that these results can be

trusted.

It is interesting to take advantage of model QC, the only model not

rejected by the test data set so far, to also quickly address the issue of

the number of Gauss coefficients that should be taken into account to

carry on the tests. As stated earlier, we used all Gauss coefficients up

to degree and order 7. However, all models, including QC, assume

non-zero variances for all degrees up to infinity. However, the higher

the degree n, the weaker the contribution of the coefficients to the

local PDFs pi (u), and thus to the final result. Table 7 illustrates this

point and shows that the calculation is indeed already converged

when taking into account all degrees up to 7. Note that this also

shows that the test (applied to the test data set used in the present

study) is, therefore, hardly sensitive to Gauss coefficients of the

GGP models with degrees above 7.

Local tests

It is also important to keep in mind that whereas the results presented

so far show that models CP, CJ, JC TK and HK should be rejected,

they do not imply that model QC is fully compatible with the data.

Those results only correspond to a global test, for which all the 990

data ui have been uniformized into a single global distribution of

{t i} over [0, 1], and it may be that model QC, not rejected by this

global test, could be rejected by a more local test. Table 8 shows

results of such tests. The same testing procedure has been used as

before (with both the exact and approximate method, using both the

KS and AD tests and assuming the true error), except for the fact

Table 7. Convergence test. Model QC is tested here against the real

test data set, using the true errors and the ‘approximate’ method. The

test is repeated eight times, taking into account more and more of

the Gauss coefficients, up to successively degree 1, 2, 3, 4, 5, 6, 7,

and finally 8.

degree KS AD

M N P(M N ) I N P(I N )

1 0.362 0.00 645. 0.00

2 0.0808 0.00 21.3 0.00

3 0.0467 0.03 4.36 0.01
4 0.0356 0.16 2.13 0.08
5 0.0330 0.23 1.64 0.15
6 0.0323 0.25 1.52 0.17
7 0.0319 0.26 1.48 0.18
8 0.0319 0.26 1.47 0.18

that for each test, only the data from one of the 36 sites of the test

data set have been used at a time, to produce the (then much less

numerous) uniformized {t i}.

Those results show that the KS-test reveals four sites (sites 17,

18, 30 and 35) rejecting model QC at a 99 per cent confidence

level because of too low values of P(M N ). This amounts to about

10 per cent of the sites, an uncomfortably high number. By contrast,

the AD-test only reveals two such sites (sites 3 and 18). However,

it confirms the strong level of disagreement of site 18 with model

QC. This site clearly needs to be double-checked. Indeed, a closer

look at sites 17 and 18, reveals some interesting features. Those

sites are geographically very close to one another, at latitude 50.0◦

and longitude 7.0◦. Site 17 (data selected from Böhnel et al. 1987),

is in the quaternary East-Eifel volcanic field, whereas site 18 (data

selected from Böhnel et al. 1982), is in the quaternary West-Eifel

volcanic field. For those two sites, we show in Fig. 3 how the selected

data ui plot on the unit sphere �. On the same plots, we also show the

isovalues of the pi (u), which have been computed assuming α95 =
2.76◦ for site 17 and α95 = 4.68◦ for site 18. Those values correspond

to the average errors for all data from respectively sites 17 and 18.

(Using such averages is done here mainly for illustrative purpose, the

plotted isovalues being then simultaneously meaningful for all the

data shown on the same plot). Also shown in Fig. 3 are the CDFs

for the {t i} corresponding to this calculation, and the analogous

CDFs corresponding to the exact calculation (i.e. when the true,

rather than the average, error is being used for each individual data).

The reasons sites 17 and 18 reject model QC are clear: for site

17, the data tend to display too little dispersion compared to the

expected distribution (producing too many low values for the {t i}),

whereas for site 18, the data show a strong tendency to lie East

of the expected distribution (producing too many high values for

the {t i}).

The interesting observation here is that beyond the disagreement

of each site with model QC, we see that both sites also disagree

with each other. Since they share virtually the same location, this

would suggest that two different stable polarity data sets acquired at

the same location but at different times during the Bruhnes chron,

could disagree. This is quite an embarrassing finding in view of the

stationarity assumption underlying the GGP modelling approach.

Fortunately, a closer look at the Böhnel et al. (1982, 1987) papers

provides us with an explanation for this disagreement. As far as

site 17 is concerned, it simply appears that the 44 data selected in

the Quidelleur et al. (1994) database are not fully independent. In

seven instances, several data points appear to have basically recorded
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Table 8. Testing model QC against the real test data set on a site by site basis. The true errors and both the ‘approximate’ and ‘exact’

methods are being used. For each site, results are provided for both the KS and AD tests.

KS AD

Site Approx. Exact Approx. Exact

M N P(M N ) M N P(M N ) I N P(I N ) I N P(I N )

1 0.106 0.15 0.105 0.16 1.81 0.12 1.73 0.13

2 0.149 0.84 0.163 0.75 0.626 0.62 0.598 0.65

3 0.284 0.05 0.286 0.05 3.63 0.01 3.63 0.01

4 0.106 0.86 0.105 0.86 0.485 0.76 0.478 0.77

5 0.122 0.90 0.115 0.93 0.576 0.67 0.542 0.70

6 0.162 0.82 0.162 0.82 1.01 0.35 0.991 0.36

7 0.0745 0.98 0.0762 0.98 0.401 0.85 0.413 0.83

8 0.288 0.16 0.287 0.16 2.96 0.03 2.92 0.03

9 0.265 0.15 0.264 0.16 1.28 0.24 1.27 0.24

10 0.208 0.05 0.211 0.05 3.46 0.02 3.33 0.02

11 0.167 0.27 0.165 0.29 1.46 0.19 1.46 0.19

12 0.199 0.50 0.198 0.51 0.469 0.78 0.458 0.79

13 0.156 0.32 0.158 0.30 2.08 0.08 2.23 0.07

14 0.0867 0.80 0.0878 0.79 0.686 0.57 0.625 0.62

15 0.304 0.38 0.325 0.30 2.71 0.04 2.88 0.03

16 0.116 0.66 0.108 0.74 0.876 0.43 0.789 0.49

17 0.234 0.01 0.233 0.01 2.81 0.03 2.83 0.03

18 0.287 0.00 0.288 0.00 8.67 0.00 8.76 0.00

19 0.185 0.12 0.195 0.09 2.31 0.06 2.49 0.05

20 0.136 0.55 0.136 0.54 0.618 0.63 0.614 0.63

21 0.212 0.07 0.201 0.10 1.88 0.11 1.67 0.14

22 0.200 0.28 0.198 0.30 1.77 0.12 1.85 0.11

23 0.199 0.51 0.199 0.50 1.08 0.32 1.08 0.32

24 0.147 0.62 0.158 0.52 1.79 0.12 1.91 0.10

25 0.198 0.21 0.199 0.21 2.41 0.06 2.48 0.05

26 0.0941 1.00 0.0916 1.00 0.301 0.94 0.315 0.93

27 0.222 0.65 0.239 0.56 0.796 0.48 0.846 0.45

28 0.368 0.08 0.373 0.07 2.64 0.04 2.79 0.04

29 0.140 0.50 0.141 0.50 0.908 0.41 0.994 0.36

30 0.364 0.01 0.357 0.01 2.52 0.05 2.43 0.05

31 0.327 0.30 0.321 0.32 1.64 0.15 1.64 0.15

32 0.179 0.76 0.179 0.76 1.45 0.19 1.40 0.20

33 0.209 0.78 0.210 0.77 0.925 0.40 0.927 0.40

34 0.273 0.38 0.274 0.38 1.47 0.19 1.45 0.19

35 0.248 0.01 0.240 0.01 3.42 0.02 3.23 0.02

36 0.119 0.91 0.112 0.94 0.480 0.77 0.455 0.79

the same field (each time reflecting a single volcanic event). Those

events correspond to low values of t i and bias the distribution of

the {t i} towards low values. Site 18 is a slightly different story. In

that case, Böhnel et al. (1987) make a good case that a subset of

the data they published must have recorded a relatively short-lived

excursion or event during the Bruhnes chron, biasing the data set

towards the East. Although Quidelleur et al. (1994) rejected most

of those transitional data (based on the selection criteria that the

data must correspond to a period of stable polarity) some of the data

biased towards that transitional direction have clearly been included

within the database. Thus the issue with sites 17 and 18 appears to

be more one of ill sampling than one of overall disagreement with

model QC. Interestingly, we further note that if we actually bin the

two sites into a single one, as is also shown in Fig. 3, the local test no

longer rejects model QC. This then leaves only two sites (30 and 35)

out of 36 truly rejecting model QC at a 99 per cent confidence level

because of too low values of P(M N ), and only one site (site 3) reject-

ing QC because of a too low value of P(I N ). These are no longer

unexpected proportions and model QC thus indeed appears to be

compatible with the Quidelleur et al. (1994) Bruhnes stable polarity

data set.

C O N C L U S I O N

In the present paper we introduced the first quantitative method

capable of assessing the compatibility of a GGP model with a

given palaeodirectional database in a way consistent with both the
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MN=2.87E-01 P(MN)=0.00 IN=8.67E+00 P(IN)=0.00

Test with averaged error of 4.68°:

MN=2.82E-01 P(MN)=0.00 IN=8.56E+00 P(IN)=0.00

Test with averaged error of 3.72°:

MN=1.15E-01 P(MN)=0.18 IN=3.36E+00 P(IN)=0.02

Test with true errors:

MN=1.16E-01 P(MN)=0.17 IN=3.20E+00 P(IN)=0.02

(a)

(b)

(c)

Figure 3. Local tests for model QC at sites 17 (a), 18 (b), and both sites combined (c). Left column shows the way the directional data plots on the unit sphere

� which is Lambert-projected, the centre point (pointing downwards through the page) corresponding to the direction produced by a pure axial dipole at the

site; north is towards the top of the page, East towards the right. Angular distances with respect to the centre of the plot are shown every 5◦ (green circles).

Isovalues of the pi (u) (computed with α95 = 2.76◦ for site 17 (a), α95 = 4.68◦ for site 18 (b), and α95 = 3.72◦ for both sites combined (c)) are also shown as

red ellipses. Those correspond to the bounds within which, respectively, 10 per cent, 30 per cent, 50 per cent, 70 per cent, 90 per cent of the data points should

plot. Central column shows the CDF of the corresponding uniformized data {t i}. Right column shows the analogous CDF when the true errors are used.

statistical assumptions underlying the GGP approach, and the nature

of the measurement error affecting palaeodirectional data.

The method was successfully implemented and tested, in its exact

form, but also in an approximate form, relying on some useful ap-

proximations which we introduced to significantly reduce the com-

putational burden of the tests. The limits of the approximate method

have been assessed. Those limits are reached when both the GGP

model and the measurement errors introduce strong dispersions of

the directional data on the unit sphere. For realistic measurement

errors, this approximate method, however, turns out to be just as

good as the exact method. This brought many encouraging results.

First, it was shown that the method is usefully discriminating. A

GGP model is compatible with an artificial data set affected by a

given (known) level of measurement error only if the model tested

is the same as the model used to produce the artificial data and if the

correct level of error affecting the data is assumed when carrying the

test. However, if one assumes either too small or too large an error

affecting the data, or tests a GGP model different from the starting

model, this conclusion may no longer be reached. The method we

propose thus appears to be relevant for deciding which GGP model,

if any, best describes the statistical behaviour of the past geomagnetic

field.

We applied the method to test six published GGP models against

palaeodirectional Bruhnes stable polarity data from the Quidelleur

et al. (1994) database. All but one model (model QC) had to be re-

jected. This shows that in practice also, our method can successfully

discriminate GGP models attempting to describe a given palaeomag-

netic data set.

The method we propose further offers the possibility of assessing

a GGP model at any scale, local, regional or global. This makes it
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possible to better scrutinize a GGP model which first passed tests at

a global scale. Any disagreement between the prediction of the GGP

model and the data set at a local level can then be used to double-

check not only the GGP model, but also the data set itself. Applying

this checking procedure to model QC allowed us to identify such

problems with two sites of the Quidelleur et al. (1994) database and

to confirm the compatibility of this model with the rest of the test

data set.

This success of at least one GGP model is motivating. It shows, for

the first time, that the statistical behaviour of the geomagnetic field

at times of stable polarity can indeed be described in a consistent

way in terms of a GGP model. However, the specific success of

model QC should not be overemphasized. This model was inferred

in an empirical way by Quidelleur & Courtillot (1996) from the

Quidelleur et al. (1994) database from which our test data set was

also extracted. All other models were inferred (also in empirical

ways) from different databases, and even though all those databases

share many common data, they may very well not be fully compatible

with each other and with our own data set. Part of the failure of

those GGP models at being compatible with our test data set might

originate from this. With this respect, it is quite clear that finally

confirming the success of the QC model (and the failure of other

models) would still require a more thorough study, involving a more

recent, extensive and independently assessed data set, extracted from

databases such as the IAGA palaeomagnetic reference database we

mentioned early on.

As a matter of fact, it is interesting to note that such a data set

could also include palaeointensity data extracted from databases

such as the IAGA palaeointensity reference database (PINT, Perrin

& Schnepp (2004)). Indeed, although the present paper mainly de-

scribed the way to deal with palaeodirectional data, palaeointensity

data could easily be taken into account [if such data provide the

full 3-D palaeofield at a given location, the way those data plot in

3-D can be compared with the local 3-D Gaussian statistics pre-

dicted by the GGP model (i.e. g) by using just the same kind of

uniformization procedure as the one we described, see paper I; and

taking measurement error into account would just consist in making

use of a modified, but still Gaussian, 3-D statistics of the type ga as

defined in the appendix, where ge is then directly the Gaussian error

assumed to affect the data]. In fact such tests might eventually show

that model QC also is incompatible with such a more complete data

set. However, if such is the case, the method we propose here could

be used to seek yet another model. Several strategies could then be

pursued. One could involve using the same kind of empirical proce-

dure as those used by Quidelleur & Courtillot (1996) to first guess

which parameter of the GGP model should be changed, and using

our method to assess the improvement brought. Another strategy,

more advanced and much more far fetched at this point, could in-

volve designing a more systematic ‘inverse’ approach based on the

present ‘forward’ testing method. In either case, however, several

issues would still have to be faced. In particular, we mentioned the

fact that the method is not sensitive to parameters corresponding

to degrees above 7, which reflects the weak contribution of those

high degrees to the geomagnetic field observed at the Earth’s sur-

face. However, we did not investigate in detail the sensitivity of

our test to the various parameters defining the mean field (E(k))

and the covariance matrix (Cov(k, k)) of a GGP model. Assessing

this would help us better understand how complex a GGP model,

and in particular its mean field, really needs to be to explain the

data. For the time being, and as far as the present test study can

suggest, the Bruhnes stable polarity data does not seem to call for

more complex a model than model QC: a mean field with only

a g0
1 and a weak g0

2 contribution, and a simple diagonal covari-

ance matrix only involving an enhanced σ 1
2 contribution along the

lines first suggested by Kono & Tanaka (1995) and Hulot & Gallet

(1996).

We plan to make our software available upon request (please be

in touch with the corresponding author: gh@ipgp.jussieu.fr) .
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A P P E N D I X : I N T RO D U C I N G U S E F U L

A N A LY T I C A P P RO X I M AT I O N S

Fisher and Angular Gaussian distributions

Let us first note that a Fisher distribution kK (u, s) centred on u ∈
� with concentration parameter K is very close (when K is large

enough) to the angular Gaussian distribution derived from a 3-D

Gaussian distribution characterized by m and�i j =σ−2 δi
j , provided

u = m/|m| and σ = |m|K − 1
2 . This fairly intuitive result (see also

Love & Constable 2003), is in the same line as the better known

result that a Fisher distribution is very close to a 2-D Gaussian

distribution within the plane tangent to � at u (see e.g. Merrill et al.
1996).

In spherical coordinates, and when assuming the Fisher distribu-

tion centred on u0 = (θ = 0, ϕ = 0), from eq. (7) we infer z =

Table A1. Departure ε(P) (as defined by A5) of the probability P predicted by the angular Gaussian distribution from that of the Fisher

distribution it approximates, for various values of P and of the concentration parameter K (and corresponding α95 values).

K α {0.95} ε(0.1) ε(0.2) ε(0.3) ε(0.4) ε(0.5) ε(0.6) ε(0.7) ε(0.8) ε(0.9)

25 28.3◦ 0.004 0.006 0.009 0.009 0.009 0.009 0.006 0.003 0.000

100 14◦ 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.000 0.000

225 9.4◦ 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000

400 7.0◦ 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

625 5.6◦ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2500 2.8◦ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m cos θ and m = K
1
2 . Then, the (axisymmetric) angular Gaussian

distribution (with θ as natural argument) takes the form:

s(θ ) = K
1
2 e− K

2 cos θ

2
√

2π3/2

+ 1

4π
e− 1

2 K (sin θ )2
(1 + K cos2 θ )

[
1 + Erf

(
K

1
2 cos θ√

2

)]
(A1)

To leading order when K becomes large, this becomes:

s(θ ) ≈ K (cos θ )2

2π
e− 1

2 K (sin θ )2
, (A2)

which, to leading order when θ is small enough, further becomes:

s(θ ) ≈ K

2π
e− 1

2 K θ2
. (A3)

This indeed is the approximate form kK (u0, s) (as defined by 10)

takes when K is large enough, and θ small enough.

To numerically show that for useful values of the concentration

parameter K , s(θ ) is indeed very close to the kK (u0, s) Fisher distri-

bution, we computed the P-probability angles α(P) (defined as the

maximum angle the direction may depart from the mean direction

u0 with probability P) predicted by kK (u0, s):

α{P} = arccos

[
1

K
log(eK + Pe−K − PeK )

]
, (A4)

and checked that for those angles, the angular Gaussian distribution

s(θ ) given by eq. (A1) , leads to a correct prediction of P. For

various relevant values of K and P, Table A1 shows values of the

departure ε(P) of the probability predicted by the angular Gaussian

distribution from the expected probability P:

ε(P) = 2π

∫
{θ≤α{P}}

s(θ ) sin θ dθ − P. (A5)

As can be seen, ε(P) never exceeds 0.01 and gets all the smaller that

K increases.

This then suggests that for our purposes, data error could

be taken into account with the help of an equivalent angular

Gaussian distribution in place of the more conventional Fisher

distribution.

Expanding the directional error into a 3-D error

The near-equivalence we just established between the Fisher dis-

tribution and an angular Gaussian distribution shows that a good

approximation of the convolution (12) defining pi (u), could be ob-

tained by computing the convolution between two angular Gaussian

distributions. Unfortunately there is again no simple analytic form

C© 2006 The Authors, GJI, 167, 635–648

Journal compilation C© 2006 RAS



648 A. Khokhlov, G. Hulot and C. Bouligand

for the result of such a convolution. However, this result suggests

that yet another approximation could usefully be made (in this ap-

pendix, we will drop the ‘i’ indexes for simplicity, since only a single

data ui is to be considered at a time).

To see this, first recall that s(u) is in fact the projection on � of

the 3-D Gaussian distribution g(x) predicted by the GGP process at

the site associated with the data to be tested. This then suggests that

we:

(i) seek a 3-D Gaussian distribution ge(x) expending in 3-D the

directional error,

(ii) compute the convolution of g(x) with ge(x) in R3, which

would then analytically lead to yet another 3-D Gaussian distribution

ga(x) and,

(iii) analytically compute the angular Gaussian distribution

sa(u) associated with this new 3-D Gaussian distribution (thanks

to eq. (6)).

Provided ge(x) is properly chosen, we may then hope that the final

angular Gaussian distribution sa(u) provides an accurate enough

approximation of p(u) as defined by the convolution (12).

In the limit case the GGP process predicts a g(x) distribution

characterized by E(V) = m and Cov(V , V) = 0, while the directional

error is characterized by the concentration parameter K, we already

know that choosing E(V e) = 0 and Cov(V e, V e) = |m|2
K I for ge(x)

would do the trick. In that case indeed, se(u) reduces to the single

direction m/|m| so that p(u) given by eq. (12) reduces to a Fisher

distribution centred on m/|m| with a concentration parameter K.

In the same time, ga(x) would be characterized by E(V a) = m and

Cov(Va, Va) = |m|2
K I which leads to sa(u). This, we just saw, is very

close to a Fisher distribution centred on m/|m| with a concentration

parameter K.

In the more general case when, for g(x), Cov(V, V) is non-zero

but remains small enough, we can next anticipate that sticking

to the same 3-D expansion ge(x) would also do the trick. Then

ga(x) would be characterized by E(V a) = m and Cov(Va, Va) =
Cov(V, V)+ |m|2

K I, and hopefully, sa(u) would again be close enough

to p(u).

O Σ

V1

V2

Figure A1. Applying the same 3-D Gaussian error ge(x) (as symbolized

by the two small-dash circles) to two different realizations V 1 and V 2 of a

general 3-D Gaussian distribution g(x) (symbolized by the dashed ellipses),

leads to different angular Gaussian errors on the unit sphere � if |V1| is

larger than |V2| (as symbolized by the thick arcs on �).

Note that this again can only be an approximation, and that in fact,

sa(u) is not even be the exact result of the convolution of s(u) with

se(u) (the near-Fisherian angular Gaussian distribution associated

with ge(x)). This is qualitatively illustrated in Fig. A1, which shows

that the same 3-D Gaussian error ge(x) applied to two different

realizations V 1 and V 2 of g(x) with |V1| larger than |V2|, would

lead to an angular Gaussian error on � smaller for u1 = V1/|V1|
than for u2 = V2/|V2|. Fig. A1, however, also shows that provided

|m| is large enough compared to the dispersion implied by g(x) and

ge(x), the distortion introduced should remain small. For the GGP

models we have tested, this fortunately happens to be the case most

of the time.
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