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Abstract

The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques

for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes of atmospheric

models. The MOPEX science strategy involves three major steps: data preparation, a priori parameter estimation methodology

development, and demonstration of parameter transferability. A comprehensive MOPEX database has been developed that

contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United

States (US) and in other countries. This database is being continuously expanded to include more basins in all parts of the world.

A number of international MOPEX workshops have been convened to bring together interested hydrologists and land surface

modelers from all over world to exchange knowledge and experience in developing a priori parameter estimation techniques.
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This paper describes the results from the second and third MOPEX workshops. The specific objective of these workshops is to

examine the state of a priori parameter estimation techniques and how they can be potentially improved with observations from

well-monitored hydrologic basins. Participants of the second and third MOPEX workshops were provided with data from 12

basins in the southeastern US and were asked to carry out a series of numerical experiments using a priori parameters as well as

calibrated parameters developed for their respective hydrologic models. Different modeling groups carried out all the required

experiments independently using eight different models, and the results from these models have been assembled for analysis in

this paper. This paper presents an overview of the MOPEX experiment and its design. The main experimental results are

analyzed. A key finding is that existing a priori parameter estimation procedures are problematic and need improvement.

Significant improvement of these procedures may be achieved through model calibration of well-monitored hydrologic basins.

This paper concludes with a discussion of the lessons learned, and points out further work and future strategy.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A critical step in applying a hydrologic model to a

watershed or a land surface parameterization scheme

(LSPS) of an atmospheric model to a specific grid

element is to estimate the coefficients or constants in

the model or LSPS known as parameters. These

parameters are inherent in all models. While certain

parameters may take on universally accepted values

(e.g. gas constant, acceleration of gravity), the values

of many parameters are not universally constant and

may be highly uncertain. In general, parameters vary

spatially so they are unique to each watershed or to a

grid point, and some may even vary seasonally.

Moreover, some parameters may be space-time scale

dependent (Koren et al., 1999; Finnerty et al., 1997).

The question of how to estimate model parameters has

been receiving increasing attention from the hydrol-

ogy and land surface modeling community (Franks

and Beven, 1997; Bastidas et al., 1999; Gupta et al.,

1999; Duan et al., 2001; Duan et al., 2003; Jackson

et al., 2003; Wagener et al., 2003).

A common approach within the hydrologic

modeling community to parameter estimation is to

calibrate hydrologic models to historical observations

by tuning model parameters. A plethora of model

calibration techniques have been reported in the

literature. For a detailed review of model calibration

techniques, readers are referred to Duan et al. (2003);

Duan (2003). To conduct model calibration, a

sufficient amount of historical hydrologic data is

typically required. Hydrologists have the advantage of

working with watersheds, many of which are well

monitored with climate stations and stream gauges.
For ungauged basins and for LSPS applications, it is

difficult to obtain adequate data that are needed for

model calibration. A further complication is that

LSPSs are typically applied to large spatial scales and

involve many grid elements. To estimate model

parameters in these cases, it is necessary to assign

model parameter values a priori.

A priori parameter estimation procedures are

available for many hydrologic models and LSPSs.

But these procedures have not been fully validated

through rigorous testing using retrospective hydro-

meteorological data and corresponding land surface

characteristics data. This is partly because the

necessary database for such testing has not been

available until recently. Moreover, there is a gap in

our understanding of the links between model

parameters and the land surface characteristics.

Generally, available information about soils (e.g.

texture) and vegetation (e.g. type or vegetation index)

only indirectly relates to model parameters such as

hydraulic properties of soils and rooting depths of

vegetation. Some models which are built using a top-

down approach are by nature empirical, and no direct

link has yet been established between measurable

watershed characteristics and model parameters. Also

it is not clear how heterogeneity associated with

spatial land surface characteristics data affects those

characteristics at the scale of a basin or a grid cell.

Consequently, there is a considerable degree of

uncertainty associated with the parameters given by

existing a priori procedures.

The Project for Intercomparison of Land-surface

Parameterization Schemes (PILPS) has revealed

widely discrepant simulation results by different
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LSPSs (see Chen et al., 1997; Wood et al., 1998;

Pitman et al., 1999; Schlosser et al., 2000; Slater et al.,

2001). Interestingly, the LSPSs included in the PILPS

experiments were driven by the same meteorological

forcing data and were required to use the same values

for commonly named parameters (such as soil

hydraulic properties and vegetation phenology par-

ameters). The large scattering of model results can be

partially explained by the uncertainty in the values of

the parameters used in each scheme.

The improper choice of model parameters results

in poor model performance (Liston et al., 1994; Duan

et al., 1995). It is necessary to develop enhanced a

priori parameter estimation methodologies for hydro-

logic models and LSPSs. Toward this goal, a project

known as the Model Parameter Estimation Exper-

iment (MOPEX) was initiated in 1996. The MOPEX

project has been an international collaborative

endeavor, with the involvement of international

scientists and hydrologic data assembled from

different countries. MOPEX has the endorsement of

several international organizations and projects

including: the World Meteorological Organization

(WMO) Commission on Hydrology, International

Association of Hydrological Sciences (IAHS) Predic-

tion for Ungauged Basins (PUB) Initiative (Sivapalan,

2003) and the Global Energy and Water Cycle

Experiment (GEWEX). The Office of Global Pro-

grams in the National Oceanic and Atmospheric

Administration (NOAA) and funding agencies in

different countries have all provided financial support

for scientists to participate in MOPEX activities. A

series of international workshops on MOPEX have

been convened over the last few years. The first one

was held in July 1999, as a part of International Union

of Geodesy and Geophysics (IUGG) 21st General

Assembly in Birmingham, England. The second

MOPEX workshop, co-sponsored by the National

Weather Service Hydrology Laboratory (NWS/HL)

and National Science Foundation Center for Sustain-

ability of semi-Arid Hydrology and Riparian Areas

(SAHRA) at the University of Arizona, was held in

Tucson, Arizona, in April 2002. The third MOPEX

workshop was held in Sapporo, Japan, in July 2003 as

a part of the 22nd IUGG General Assembly. The

fourth MOPEX workshop was held in Paris, France

in July 2004, co-sponsored by Cemagref of France
and the NWS/HL. The fifth MOPEX workshop was

held in Foz do Iguaçu, Brazil, in April 2005.

The MOPEX workshops were designed to bring

together interested international hydrologists and land

surface modelers to share experience in estimation of

hydrologic model parameters. Each workshop has a

special focus, either in terms of hydroclimatology (i.e.

humid or semi-arid) or in terms of special applications

(i.e. flood forecasting).

This paper presents an overview of the results from

the second and third MOPEX workshops. For these

workshops, a set of numerical experiments was

constructed. The MOPEX participants were given

data for 12 basins located in the southeastern quadrant

of the US. Numerical test results from different

modeling groups were assembled for the workshops.

The paper is organized as follows. First the MOPEX

rationale and science strategy are presented. Then a

discussion of the objectives and numerical experiment

design is given. The data sets assembled for the

workshop are described, and a comprehensive

analysis of the results is conducted to understand the

differences in the results from the different models.

Finally, further work and future strategy are

discussed.
2. Model Parameter Estimation Experiment
strategy

The MOPEX science strategy involves three major

steps (Fig. 1). The first step is to develop the necessary

data sets. The second step is to use these data to

develop a priori parameter estimation methodology.

The third step is to demonstrate that new a priori

techniques produce better model results than existing

a priori techniques for basins which were not used to

develop the new a priori techniques.

Step two is accomplished using a three-path

strategy illustrated in Fig. 1. The first path makes

reference model runs with parameters estimated using

existing a priori parameter estimation procedures. The

second path makes model runs using calibrated values

of selected model parameters. Within the second path,

the calibrated parameters are analyzed to improve

relations between model parameters and basin

characteristics (i.e. climate, soils, vegetation and

topographic features). These improved relations are



Fig. 1. MOPEX implementation strategy.

Q. Duan et al. / Journal of Hydrology 320 (2006) 3–176
used to estimate new a priori parameters which are

then used to make model runs in the third path. The

success of step two is measured by how much

improvement in model performance is achieved in

the third path compared with results from the

reference runs in the first path.

The MOPEX Project has assembled hydrometeor-

ological data as well as land surface characteristics

data that are needed to implement its parameter

estimation strategy. Data from many basins in the US

and other parts of the world are being assembled

which cover a wide variety of climates. In Sections

3.2 and 3.3, the MOPEX data requirements and the

data set used for the second and third MOPEX

workshops are described in details.

A key in implementing the MOPEX strategy is to

develop systematic procedures for calibration of

selected model parameters and to apply these

procedures to a large number of basins in different

hydroclimatic regimes. Then, empirical relations will

be sought between the parameters and various

characteristics of soils, vegetation and climate.

Much progress has been made in the area of model

calibration (Duan et al., 2003). Duan et al. (1992,

1994) developed a robust optimization method known

as Shuffled Complex Evolution (SCE-UA) method for

optimal estimation of model parameters. Yapo et al.

(1998); Gupta et al. (1999) have extended Duan’s

approach in the context of multi-objective theory.
Recently, there is a surge of interest toward producing

multiple sets of model parameters, as a means to

account for uncertainty related to model structure,

calibration data and model parameters. These

methods use Monte Carlo sampling techniques to

produce a set of solutions, all of which are regarded as

‘equifinal’ (i.e. all of the solutions are equally valid).

Examples include the Generalized Likelihood Uncer-

tainty Estimation (GLUE) by Beven and Binley

(1992), the Markov Chain Monte Carlo (MCMC)

Metropolis scheme by Kuczera and Parent (1998) and

the Shuffled Complex Evolution Method Metropolis

(SCEM) scheme by Vrugt et al. (2003). For more on

the state-of-the-art on model calibration methods,

readers are referred to Duan et al. (2003).

Numerous studies have been directed at develop-

ing improved a priori parameter estimation pro-

cedures for hydrologic models and LSPSs. Earlier

examples of a priori parameter estimation procedures

are from the field of soil physics, in which soil

hydraulic properties (as appear in many hydrologic

models and LSPSs) are related to soil texture classes

in a tabular format (see e.g. Clapp and Hornberger,

1978; Cosby et al., 1984; Rawls et al., 1991; Carsel

and Parrish, 1988). Many land surface modelers have

directly adopted the a priori parameter estimation

schemes developed by soil physicists to assign values

to parameters in LSPSs (Dickinson et al., 1986;

Sellers et al., 1986). Duan et al. (2001) pointed out

that this practice is questionable because the tabular

relations between soil hydraulic properties and soil

texture classes are based on analysis of soil samples

tested at laboratories. These relations may not hold up

in the real world, especially over grid elements of

several hundred to several thousand square kilo-

metres. For typical hydrologic models and LSPSs, it is

often the case that the relations between many of the

model parameters and land surface characteristics are

not obvious. One approach to solving this dilemma is

to develop a priori relations between land surface

characteristics and model parameters for basins where

the model is appropriately calibrated (Abdulla et al.,

1996; Duan et al., 1996; Merz and Bloschl, 2004;

Lamb and Kay, 2004; McIntyre et al., 2004; Wagener

et al., 2004). With the advent of Geographic

Information Systems (GIS), many more a priori

parameter estimation procedures have appeared.

These schemes are model specific and are still being
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evolved. A number of these GIS-based schemes are

being tested in the second and third MOPEX

workshops and are part of the analysis presented in

this paper.
3. Design and database of the second and third

MOPEX workshops

3.1. Workshop objectives

The second and third MOPEX workshops focused

on the second step of the MOPEX strategy: data

preparation and development of parameter estimation

procedures. The emphasis of the workshops was on

validating existing a priori procedures and on

evaluating potential improvement from model cali-

bration. Because all hydrologic models are formulated

differently, parameter estimation procedures are

model-specific. A challenge facing hydrologic mode-

lers is how the knowledge gained from one model can

be transferred to another model. This is also the

principal reason to convene these MOPEX work-

shops. A specific objective of these workshops is to

examine the state of a priori parameter estimation

techniques and how they can be potentially improved

with observations from well-monitored hydrologic

basins. Particularly, we seek to answer the following

questions:

(1) How do we define the relations between model

parameters and basin characteristics?

(2) How can model calibration be used to refine the a

priori parameters?

(3) How do we evaluate the uncertainty due to model

structure, calibration data and model parameters?
3.2. Design of MOPEX numerical experiment

To answer the above questions, a set of numerical

experiments was designed. Data for 12 basins located

in the southeastern quadrant of the United States were

prepared. The data sets include hydrometeorological

data as well as basin land surface characteristics data.

More discussion on these data sets is given in Section

3.3. The data were distributed to MOPEX participants

via ftp and CD-ROMs. The MOPEX participants were
asked to make two sets of model runs. In the first set of

model runs, the participating modelers were asked to

run their respective models on all 12 basins using

existing a priori parameters developed for their

models. The second set of model runs involved

model calibration for pre-selected common data

periods. After model calibration, the participants

were asked to run their models using calibrated

parameters for the calibration and verification data

periods. All results were collected for analysis by the

MOPEX workshop organizers.
3.3. Description of the data set
3.3.1. MOPEX data requirements

The initial step in the MOPEX strategy is to

assemble a large number of high quality data sets for a

wide range of Intermediate Scale Area (ISA) river

basins (500–10,000 km2) throughout the world. There

are strict requirements for MOPEX data sets in terms

of data type, quantity and quality. The two basic data

types gathered for MOPEX basins are hydrometeor-

ological data and land surface characteristics data.

The MOPEX basins should be unregulated basins and

cover a variety of climate regimes. The basic

hydrometeorological data required for MOPEX

include daily precipitation, daily maximum and

minimum temperature, daily streamflow data and

climatic potential evaporation data. More desirable

hydrometeorological data include hourly surface

meteorological data, including precipitation, incom-

ing long-wave and short-wave radiation, air tempera-

ture, air humidity, atmospheric pressure, and wind

speed, etc. The quality of precipitation data is

critically important to parameter estimation.

MOPEX has established a minimum density require-

ment for raingauges based on basin size (Schaake

et al., 2000). To ensure various hydrologic events are

represented in the hydrometeorological data, MOPEX

requires that the data length exceed 10 years. A

desirable data length is 20 years or more.

The basic land surface characteristics data include

basin boundary, soil texture and vegetation type data.

More desirable land surface data sets include high

resolution (1 km or finer) Digital Elevation Model

(DEM) data, seasonal land cover/land use data such as

Normalized Deviation of Vegetation Index (NDVI),



Fig. 2. Location of 12 basins for second MOPEX workshop in

Tucson.
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greenness fraction, snow cover and soil moisture

climatology, etc.
3.3.2. MOPEX data for the second and third

MOPEX workshops

For the second and third international MOPEX

workshops, hydrometeorological data as well as basin

land surface characteristics data for 12 basins in the

Southeastern quadrant of the United States were

assembled. Fig. 2 shows the location of the 12 basins.

These basins represent a wide range of different

climate, as indicated by the ratios of annual

precipitation (P) and potential evapotranspiration

(PE) in Fig. 3. A high value for P/PE indicates wet

climate and a low value indicates dry climate (Dooge,

1997). The climatic seasonal precipitation and stream-

flow distributions are shown in Fig. 4.

The hydrometeorological data sets prepared for the

workshops included hourly mean areal precipitation,

daily streamflow, and climatic daily potential
Fig. 3. Ratios of average annua
evapotranspiration. The hourly precipitation data

sets were developed by the NWS Hydrology

Laboratory (HL) based on hourly and daily raingauge

data from the National Climate Data Center (NCDC).

The daily streamflow data were obtained from the US

Geological Survey (USGS). The climatic potential

evaporation data was derived from the NOAA

Freewater Evaporation Atlas (Farnsworth and Peck,

1982). Also included are basin averaged hourly

meteorolological forcing data, including precipi-

tation, air temperature, wind speed, surface pressure,

short-wave and long-wave radiation and specific

humidity. All meteorological forcing data except

precipitation were processed from the 1/88 meteor-

ological forcing data for the conterminous US

developed by the University of Washington (UW)

(Maurer et al., 2001). The UW hourly meteorological

data set is derived from NCDC daily precipitation,

daily minimum and maximum temperature and wind

speed data obtained from National Center for

Environmental Predictions/National Center for

Atmospheric Research (NCEP/NCAR) Global Rea-

nalysis data (Kistler et al., 2001). The historical data

from different sources span over different data

periods. For this study, a common period, 1960–

1998, is chosen so data from all sources are available.

The land surface characteristics data sets

assembled for this study include 1 km soil type data

from the STATSGO data set (Miller and White,

1999), the 1 km vegetation type, and 5-min greenness

fraction data (Loveland et al., 2000; Hansen and Reed,

2000; Gutman and Ignatov, 1998). Table 1 lists the

major land surface properties of each basin including

the area, elevation, and dominant soil and vegetation
l hydrological variables.



Table 1

The basin land surface properties and average annual hydrologic variables

USGS ID Lat. Lon. Area (km2) Elev. (m) Soil type Veg. type

01608500 39.4469 K78.6544 3810 171 Loam Dec. broad leaf

01643000 39.3880 K77.3800 2116 71 Silt loam Dec. broad leaf

01668000 38.3222 K77.5181 4134 17 Clay loam Mixed forest

03054000 39.1500 K80.0400 2372 390 Loam Dec. broad leaf

03179000 37.5439 K81.0106 1020 465 Si cl loam/loam Dec. broad leaf

03364000 39.2000 K85.9256 4421 184 Si loam/cl loam Croplands

03451500 35.6092 K82.5786 2448 594 Loam Mixed forest

05455500 41.4664 K91.7156 1484 193 Clay loam Cropland

07186000 37.2456 K94.5661 3015 254 Si loam/cl loam Dec. broad leaf

07378500 30.4639 K90.9903 3315 0 Silt loam Ever. Needleaf

08167500 29.8606 K98.3828 3406 289 Clay Crop/nat. veg.

08172000 29.6650 K97.6497 2170 98 Clay Crop/nat. veg.

Fig. 4. Climatic monthly precipitation and streamflow.
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type. Other land surface data made available to

MOPEX participants include basin boundary,

elevation, monthly surface albedo and roughness

length. Basin climatologic data such as monthly

long-term average precipitation, streamflow and

potential evapotranspiration have also been made

available.
4. Results and analysis

Eight hydrologic models and LSPSs have com-

pleted all of the required numerical experiments as

described in Section 3.2. A few additional groups

submitted incomplete numerical experiment results

which have not been included in the analysis. Table 2

lists the eight participating models. Of the eights

models, the first four models (SWB, SAC, GR4J
and PRMS) are watershed rainfall–runoff models,

while the last three (ISBA, SWAP, and Noah models)

are LSPSs. The VIC model has been used both as a

watershed model and a LSPS in atmospheric models.

The analysis presented below is based on the

comparison of the simulated streamflow from the

eight models and the corresponding observations at

daily or monthly time steps. It should be emphasized

that the purpose of the intercomparison study is not

intended to rank the models as being ‘better’ or

‘worse’ with respect to each other. Instead, the

intercomparison study was conducted to understand

the differences between approaches and use this

knowledge to develop new a priori parameter

estimation procedures. For this reason, this paper

lists all participating models in Table 2, but the

analysis does not refer to individual model names

directly in all subsequent text or figures.



Table 2

Participating models and modeling agencies

Model names Model agencies

Simple Water

Balance (SWB)

NWS, USA

Sacramento (SAC) NWS, USA

GR4J Cemagref, France

PRMS USGS, USA

VIC-3L University of California at Berkeley/

Princeton University, USA

ISBA Météo France, France

SWAP Russian Academy of Sciences, Russia

Noah LSM NWS, USA
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4.1. Simulation results using existing a priori

parameters

The purpose of simulations using existing a priori

parameters is to establish benchmarks for the current a

priori parameter estimation procedures used by the

participating models. Any new a priori parameter

procedures developed in the future for these models

should at least perform better than the benchmarks. It

should be noted that among the eight models under

study, some models already have established a priori

parameter estimation procedures, while others have

no such systematic procedures. This discrepancy is

reflected in the results discussed below. Fig. 5

displays the comparison of the simulated average

annual streamflow totals from the a priori runs and the
Fig. 5. Comparison of simulated and observed streamflow when a

priori parameters are used.
corresponding observed values. The spread of

simulated streamflow annual totals is quite large

between the models. None of the models were able to

generate simulated streamflow values that match the

observed values for all basins. The maximum over-

bias exceeds 400 mm/year and the maximum under-

bias is about 340 mm/year.

The Nash-Sutcliffe (NS) efficiency is a commonly

used goodness-of-fit measure between the simulated

time series and observed time series. It is expressed

as:

NS Z 1K

Pn

iZ1

ðQiKQ�
i Þ

2

Pn

iZ1

ðQiK �QiÞ
2

(1)

where Qi* and Qi are the simulated and observed

values at time i, and n is the number of data points. �Q
is the average of observed values. A value of 1

indicates perfect fit between Q*i and Qi, while a value

of !0 implies that simulated value is (on average) a

poorer predictor than the long-term mean of the

observations. Fig. 6 shows the NS efficiency of the

daily streamflow simulations by the eight models. The

NS values have been sorted from the lowest to the

highest for each model. Fig. 7a and b shows the means

and the standard deviations of the NS values,

respectively. These figures reveal some interesting

findings. Even though some models have some of the

higher ranked NS values for most basins, they do not

rank high for all basins. On the other hand, some

models are shown to be consistent in all basins. This

consistency is reflected in the low standard deviations

for those models. (e.g. Models C,E,F and H). It should
Fig. 6. Daily Nash-Sutcliffe efficiency of each model, sorted in

increasing order, from a priori results.



Fig. 7. Average daily Nash-Sutcliffe efficiency of each model and the standard deviations from a priori results.
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also be noted that some models perform worse than

long-term average for some basins, indicating a

definitive need to improve a priori parameter

estimates under those circumstances.

Figs. 8 and 9 show the same information for all

models as in Figs. 6 and 7, but are evaluated on a

monthly time step. The NS statistics for watershed

models on a monthly time step generally show an

improvement over those on a daily time step, while

three LSPSs display a degraded average performance.

For some models, the model simulations produce

worse statistics than the long-term average of

observations for some basins. Model G has good NS

statistics for most basins compared to other models.

But the large negative NS statistics for two basins

have dragged down the average NS statistic to 0. The

fact that a model does well for most basins, but poorly

for only a few, tells us that the modeler should

probably focus attention on the basins with poor

results when looking for enhanced a priori parameter

estimates.
Fig. 8. Monthly Nash-Sutcliffe efficiency of each model, sorted in

increasing order, from a priori results.
4.2. Simulation results using calibrated parameters

There are several objectives in this exercise. First,

we hope to quantify the potential improvement in

model performance when the models are calibrated

using observations, as compared to those using a

priori parameters. Second, we want to make sure that

there is consistency in streamflow simulations

between calibration and validation data periods

when the calibrated parameters are used. The ultimate

objective of this exercise is to use the calibrated
parameters to establish new a priori parameter

estimates.

All model groups were asked to calibrate and

validate their models for all 12 basins using historical

hydrologic data. Originally, a split sample approach

was to be used. Years 1980–1990 were to be used for

calibration, while the first 19 years (1960–1979) were

to be used for validation. Because different groups

used different 19-year periods for calibration, it is not

possible to make a direct comparison of all eight

models using the split-sample approach. However,

since the differences in the calibrated model perform-

ance between the different 19-year periods were much

smaller than the differences in model performance

between the a priori and calibrated runs, it seemed the

best way to achieve the study objectives was to use the

entire 1960–1998 period to evaluate model results for

both the a priori and calibrated runs.

Fig. 10 shows the simulated average annual

streamflow totals using calibrated parameters versus

the observed average annual streamflow totals.



Fig. 9. Average monthly Nash-Sutcliffe efficiency and the standard deviation of each model from a priori simulation results for the entire data

period 1960–1998.
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Compared to Fig. 5, the scatter around the diagonal

line is much smaller, indicating the agreement

between observed and simulated streamflow is better

when using calibrated parameters versus a priori

parameters. Fig. 11 displays the sorted NS values for

all models for the calibration period 1980–1998, while

Fig. 12 shows the average NS values and standard

deviations at the daily time step. All of these figures

confirm that the NS values have been improved

compared to the results. All NS values are now

positive when calibrated parameters are used.

Figs. 13 and 14 show the same information as in

Figs. 10 and 11 for all models, but the NS values are

computed using monthly aggregated values.
Fig. 10. Comparison of simulated and observed streamflow when

calibrated parameters are used.
4.3. Calibration versus a priori results

Fig. 15a and b compares the daily and monthly NS

values, respectively, for the entire data period where a

priori and calibrated parameters are used. Both figures

show that almost all of the points are on the left side of

the diagonal line, indicating improvement resulting

from the calibration exercise. The improvement is

more apparent when examining monthly NS statistics.

There are certain cases when the NS values from the

calibration runs do not improve over those from the a

priori runs. This is due to the fact that different

modeling groups performed model calibration using

different approaches. Particularly for one model

(Model F), the modeler did not calibrate its model

parameters to fit observed streamflow data during

calibration. For another model (Model G), the

modeler manually calibrated only one parameter

(soil hydraulic conductivity at saturation) to get a
Fig. 11. Daily Nash-Sutcliffe efficiency of each model, sorted in

increasing order, from calibrated results.



Fig. 12. Average daily Nash-Sutcliffe efficiency of each model and the standard deviations from calibrated results.
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good agreement between observed and simulated

annual streamflow.
Fig. 13. Monthly Nash-Sutcliffe efficiency of each model, sorted in

increasing order, from calibrated results.
4.4. Joint correlation between simulated streamflow

from multiple models and observations

It is recognized that each of the models participat-

ing in this study is an imperfect representation of the

hydrologic process that occur in the real world. It

seemed interesting to ask how much total information

about each basin is contained in the set of all models.

Accordingly, the simulated streamflow time series

from all eight models are used together as independent

variables to construct a multiple regression model to

predict the observed streamflow. The joint correlation

coefficient from this regression analysis is a measure

of the total information content of all of the models,

jointly. By comparing the joint correlation coefficient

from the regression analysis with the simple corre-

lation coefficients for each model we can get an idea

not only of the total information content but also

which models contribute most of the information.

Fig. 16 shows the scatter plot of the joint correlation

coefficients and individual correlation coefficients at

the daily time step. All of the points lie to the left of

the diagonal line, which delineates the limiting value

of the regression coefficient for any individual model.

The relative position of points along the abscissa

indicates the contribution of individual models to the

joint correlation. In Fig. 16a, it is clear that Model B

contributes most to the joint correlation because most

of the points associated with this model are closest to

the diagonal line. In Fig. 16b, a number of models

make significant contribution to the joint correlation.
These figures point to the potential that the multi-

model approach (e.g. Georgakakos et al., 2004) is a

plausible approach to obtain improved prediction.
5. Lessons, conclusions and future directions

A summary and analysis of the numerical

experiment results of eight different models submitted

to the second and third MOPEX workshops was

presented. A number of lessons can be drawn from

these results. First, the results confirm earlier

statements that the existing a priori parameter

estimation procedures are problematic and need

improvement.

Second, calibration results clearly demonstrate the

huge potential for improvement in a priori parameter

estimation. Third, different models seem to represent

hydrologic processes differently and all of them are

imperfect. This suggests it may be possible to improve

some of the models. It also suggests that improved



Fig. 14. Average monthly Nash-Sutcliffe efficiency and the standard deviation of each model from calibrated results for the calibration data

period 1980–1998.

Fig. 15. Comparison of the NS values when calibrated and a priori parameters are used. (a) Evaluated at daily time step; (b) evaluated at monthly

time step.

Fig. 16. Comparison of joint correlation coefficients and individual correlation coefficients.
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prediction may be possible through an ensemble of

different models or, possibly, an ensemble of a given

model using different parameter sets.

Much research needs to be done to understand how

model parameters are related to basin characteristics,

especially considering that modelers are not sure that

the presently available observable characteristics

(mostly land surface characteristics) are the most

relevant descriptors of the factors that control basin

hydrological behavior. Further, how to use the

calibrated results for improving a priori parameters

is still not clear and this issue also needs addressing.

Different modeling groups can learn from each other

because many model parameters have similar physical

interpretations and should have similarity in space-

time patterns.

One issue that has not been examined in the

workshops is the parameter transferability issue. This

issue is very important for Predictions for Ungaged

Basins (PUBs) and for application in land surface

parameterization schemes. To study the transferability

issue, data from a wide range of climatic conditions

should be used. The MOPEX project is continuing to

assemble data from many different countries. These

data should be used to test enhanced a priori

parameters.

One of the driving forces behind the progress in

parameter estimation research is the increasing array

of data sources, including satellite and other advanced

observational technologies. With the wealth of new

data sources, it is important to investigate the ways to

maximize the use of high-resolution spatio-temporal

information. Meanwhile, the issue of uncertainty

attributed to data errors should be addressed.

Any improvement in parameter estimation pro-

cedures must be tied to how we represent the

hydrological processes. As our knowledge of these

processes advance and as the availability of dis-

tributed forcing inputs increase, improved hydrologic

models are likely to emerge. This will bring new

challenges in terms of parameter estimation and

model calibration. Much of the work cited above

has already been reported, or is in the process of being

reported, by MOPEX project participants. At this

moment, there is no consensus about what type of

parameter estimation approach is likely to lead to

success. One of the advantages of MOPEX is that we

keep it open for all different approaches. With a true
collaborative spirit by international scientists,

enhanced a priori parameter estimation should be

available. This in turn should result in improved skill

in hydrologic predictions.
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