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A 3D parametric inversion algorithm for triaxial induction data
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ABSTRACT

We develop a parametric inversion algorithm to de-
termine simultaneously the horizontal and vertical resis-
tivities of both the formation and invasion zones, inva-
sion radius, bed boundary upper location and thickness,
and relative dip angle from electromagnetic triaxial in-
duction logging data. This is a full 3D inverse scatter-
ing problem in transversally isotropic media. To acquire
sufficient sensitivity to invert for all of these parameters,
we collect the data using a multicomponent, multispac-
ing induction array. For each transmitter-receiver spac-
ing this multicomponent tool has sets of three orthogo-
nal transmitter and receiver coils. At each logging point
single-frequency data are collected at multiple spacings
to obtain information at different depths of investiga-
tion.

This inversion problem is solved iteratively with
a constrained regularized Gauss-Newton minimization
scheme. As documented in the literature, the main com-
putational bottleneck when solving this full 3D inverse
problem is the CPU time associated with constructing
the Jacobian matrix. In this study, to achieve the in-
version results within a reasonable computational time,
we implement a dual grid approach wherein the Jaco-
bian matrix is computed using a very coarse optimal
grid. Furthermore, to regularize the inversion process
we use the so-called multiplicative regularization tech-
nique. This technique automatically determines the reg-
ularization parameter.

Synthetic data tests indicate the developed inversion
algorithm is robust in extracting formation and invasion
anisotropic resistivities, invasion radii, bed boundary lo-
cations, relative dip, and azimuth angle from multispac-
ing, multicomponent induction logging data.
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INTRODUCTION

The anisotropic layered formation model with invasion for
electrical resistivity (conductivity) is a useful model for inter-
preting oil- and gas-bearing reservoirs. For many sedimentary
rocks, this resistivity anisotropy has a relative uniform value in
the bedding plane (horizontal resistivity) and a varying value
in the direction perpendicular to the plane (vertical resistiv-
ity). Such a medium is referred to as a transversally isotropic
(TI) medium or TI anisotropic medium. A common case is
a laminated sand-shale sequence where the horizontal resis-
tivity is smaller than the vertical resistivity. In wells drilled
perpendicular to bedding planes, conventional induction tools
with vertical-component transmitters and receivers can only
detect signals from currents that flow parallel to the bedding
plane and hence cannot resolve the vertical resistivity. This
greatly limits the application of these conventional tools and
makes their interpretation unreliable in case if anisotropy is
present.

A modern multicomponent induction tool that measures
five components of magnetic fields has been developed by
Kriegshauser et al. (2000). A fully multicomponent induction
tool has also been developed by Rosthal et al. (2003) to mea-
sure all nine components of the magnetic fields. One of the
main advantages of the latter tool is its ability to invert the rel-
ative azimuth angle by rotating the measurement tensor (with-
out the need for any inversion procedure) as shown in Wang
et al. (2003). Until now, most of the inversion algorithms de-
veloped for the multicomponent induction tool have been
based on 1D models [neglecting the invasion zones; see Lu
and Alumbaugh (2001), Yu et al. (2001), Wang et al. (2003),
and Zhang et al. (2004)] or on 2D models [assuming the tool
intersects the layering formation perpendicularly; see Zhang
and Mezzatesta (2001)]. All of these assumptions can repre-
sent gross sources of error in the inversion procedure. Hence,
a reliable quantitative interpretation of multicomponent, mul-
tispacing induction logging data can only be achieved by using
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G2 Abubakar et al.

a full 3D inversion with features and capabilities that make it
efficient and practical.

We propose a full 3D parametric inversion algorithm where
we simultaneously invert the horizontal and vertical formation
resistivities Rth and Rtv , the horizontal and vertical invasion
resistivities Rxoh and Rxov , the invasion radii r, the bed bound-
ary upper location z1 and thickness �z, and the relative dip
angle θ after rotating the measurement data tensor to obtain
the relative azimuth angle φ. The procedure to do this rota-
tion is described in Wang et al. (2003). Note that the ability to
rotate the data tensor is one of the significant advantages of
a full multicomponent induction logging tool where the three
orthogonal sensors are located at a common point.

Our inversion algorithm is a constrained, regularized
Gauss-Newton minimization scheme (see Habashy and
Abubakar, 2004). The forward simulator used to model the
data is a fully anisotropic 3D finite-difference algorithm de-
veloped by Davydycheva et al. (2003). In the Gauss-Newton
minimization scheme, the a priori information on the physical
bounds of the unknown parameters is enforced using a non-
linear transformation. Furthermore, to guarantee an error-
reducing minimization scheme, we use a line search and a
backtracking procedure.

In this model-based inversion approach, the number of un-
knowns is less than the number of data points. Consequently,
the Jacobian matrix is constructed by a direct finite difference
obtained by a perturbation of the inverted parameters, one
by one. For the example considered in our paper, the compu-
tational cost of such a Jacobian matrix construction is about
90% of the total computational time of the entire inversion
procedure. To speed up the computation of the Jacobian ma-
trix, we incorporated a very coarse optimal grid (see Druskin
and Knizhnerman, 1999) for its calculation. Hence, in this in-
version algorithm we introduce two different sets of optimal
grids: a fine grid to calculate the cost functional to be min-
imized and a coarser grid to construct the Jacobian matrix.
This approach significantly reduces the computational time,
especially when the number of unknowns becomes large.

To improve the conditioning of our inversion algorithm, we
use a multiplicative regularization analysis to determine the
appropriate regularization parameter (see Abubakar et al.,
2002). As a result of this analysis, the optimal regularization

Figure 1. Parametric model used in the inversion algorithm.

parameter is found to be proportional to the data misfit (the
nonregularized cost functional). Hence, by using this particu-
lar choice of the regularization parameter, the characteristic of
this inversion process is such that it will apply a large weight-
ing parameter on the regularization term at the beginning of
the optimization process when the data mismatch is large. In
this case, the search direction is predominantly a steepest de-
scent, which is the more appropriate approach to use in the ini-
tial steps of the optimization process since it tends to suppress
large swings in the search direction. As the iteration proceeds,
the optimization process gradually places more emphasis on
minimizing the data mismatch and less emphasis on the regu-
larization term. In this case, the search direction corresponds
to a Newton search method, which is the more appropriate
approach to use as we get closer to the minimum of the non-
regularized cost functional where the quadratic model for the
cost functional becomes more accurate. Furthermore, if noise
is present in the data, the data misfit generally will be bounded
below by the level of noise present. Hence, the weight of the
regularization term is adjusted in an adaptive fashion so as not
to fall below the noise level. This suppresses any magnifica-
tion of the noise as a result of the presence of small eigen-
values in the spectrum of the inversion operator. This feature
is extremely important when we have measurements that are
redundant or lack sensitivity to certain model parameters re-
sulting from the poor conditioning of the inversion.

INVERSION ALGORITHM

Here, we adopt a model-based inversion approach. Our
generic model is a dipping TI anisotropic layered formation
with a pistonlike invasion. Figure 1 shows a six-layer example
for such a formation model. The ith layer is characterized by
its horizontal and vertical formation resistivities (Rth,i , Rtv,i),
horizontal and vertical invasion resistivities (Rxoh,i , Rxov,i), in-
vasion radius ri , and the layer thickness �zi . In addition to
these model parameters per layer, we also have parameters
that define the overall formation model. These are the loca-
tion of the uppermost bed boundary z1, the relative dip an-
gle θ , and the relative azimuth angle φ. This leads to a total
of 6B + 1 parameters for a formation that has B layers. No
borehole parameters are included in the inversion since the
measurements are assumed to be borehole corrected.

The data used in the inversion are collected using a tool
that consists of three orthogonal transmitters, all located
at the same position on the tool axis, and three orthogo-
nal receivers similarly arranged. Hence, for each transmitter-
receiver spacing this multicomponent, multispacing tool mea-
sures all nine components of the magnetic field: Hxx, Hxy ,
Hxz, Hyx, Hyy, Hyz, Hzx, Hzy , and Hzz. The symbol Hij denotes
the magnetic field recorded by the j receiver from the i-
transmitter. For a TI anisotropic formation with dip but no
strike, i.e., with an azimuth angle φ = 0, the magnetic field
components Hxy,Hyx , Hyz, and Hzy vanish. Hence, the azimuth
angle φ is reconstructed first by estimating the azimuth an-
gle at which the data tensor can be rotated to minimize the
cross-coupling components of the magnetic field (Hxy, Hyx ,
Hyz, and Hzy) for each transmitter-receiver spacing. This is
done in a least-squares sense. Such a rotation places the y-axis
of our model along the relative strike of the formation. As
indicated by Zhang et al. (2004), this procedure of resolving
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Inversion of Triaxial Induction Data G3

φ without carrying out an inversion is only possible when all
magnetic-field components for each transmitter-receiver spac-
ing are measured at the same position.

After resolving the azimuthal angle, a total of N = 6B

model parameters must be inverted. These parameters are as-
sembled in the model parameter vector x defined by

x = [Rth,1, Rtv,1, Rxoh,1, Rxov,1, . . . , Rxoh,B, Rxov,B,

r1, r2, · · · , rB, z1,�z2, . . . ,�zB−1, θ ]T , (1)

where the superscript T indicates transposition.
The measurement data is assembled in a vector m defined

by

m = [Im(Hxx,1), Im(Hxz,1), Im(Hyy,1), Im(Hzx,1),

Im(Hzz,1), . . . , Im(Hzz,L×R)]T , (2)

where L × R is the number of logging points times the num-
ber of receiver arrays. Hence, in total we have M = 5L × R

corresponding to the five self- and cross-coupling components
of the magnetic field. Note that in equation 2 we only include
the imaginary part of the magnetic field in the inversion, since
it is the dominant part of the complex field resulting from the
presence of the inhomogeneity in the formation.

The unknown model parameter x is updated iteratively by
minimizing a quadratic cost functional of the form

C(x) = 1
2

[‖Wd · r(x)‖2+ λ‖Wx · (x − xref)‖2] , (3)

where ‖·‖ denotes the L2-norm of a vector and r is the residual
error defined as

rj (x) = sj (x) − mj, j = 1, 2, . . . , M, (4)

in which s(x) is the simulated tool response corresponding
to a particular value of the model parameter x. The positive
scalar factor λ in equation 3 is the regularization parameter. It
is a trade-off parameter determining the relative importance
of the two terms in the cost functional. The first term in the
cost functional represents the misfit between the measured
and predicted responses, the so-called data misfit. The second
term is included to regularize the optimization problem. The
value WT

x · Wx is the inverse of the model covariance matrix,
representing the degree of confidence in the reference model
xref and provided as a priori information. The value WT

d ·Wd is
the inverse of the data covariance matrix, which describes the
estimated uncertainties from noise contamination in the avail-
able data set. It describes not only the estimated variance for
each particular data point but also the estimated correlation
between errors. It therefore provides point-by-point weight-
ing of the input data according to a prescribed criterion.

To solve equation 3, we use a Gauss-Newton minimization
approach, which approximates a nonlinear function with a lo-
cal quadratic model constructed from the knowledge of the
first derivative evaluated at the current iterate. The Gauss-
Newton minimization approach has an overall convergence
rate that is slightly less than quadratic but significantly better
than linear. It also provides quadratic convergence in a neigh-
borhood of the minimum. We also incorporate a line search
along the Gauss-Newton step direction to guarantee a reduced
cost functional after each iteration.

The unknown model parameter is updated from iterate k to
iterate k + 1 as follows:

xk+1 = xk + νkpk, (5)

where νk is a positive real number chosen by means of the line
search procedure and pk is the Gauss-Newton step given by

pk = −H−1
k · gk, (6)

in which the gradient gk and the Hessian matrix Hk are given
by

gk = ∇C(x)|x=xk

= JT
k · WT

d · Wd · rk + λWT
x · Wx · (xk − xref) (7)

and

Hk = ∇∇C(x)|x=xk

= JT
k · WT

d · Wd · Jk + λWT
x · Wx. (8)

In equation 8 we neglect second-order derivatives in the Hes-
sian matrix. Since in this model-based inversion the total num-
ber of unknowns is not enormously large, the Hessian matrix
Hk is inverted using a simple Gaussian elimination procedure
(see Press et al., 1992). In equations 7 and 8 the Jacobian ma-
trix J(x) is given by

J(x) =




∂s1/∂x1 . . . ∂s1/∂xi . . . ∂s1/∂xN

...
. . .

...
. . .

...

∂sj /∂x1 . . . ∂sj /∂xi . . . ∂sj /∂xN

...
. . .

...
. . .

...

∂sM/∂x1 . . . ∂sM/∂xi . . . ∂sM/∂xN




, (9)

where each entry of the Jacobian matrix is estimated through
a finite-difference computation,

∂sj (x)
∂xi

≈ sj [(1 + �)xi] − sj (xi)
�xi

. (10)

In our implementation � is taken to be equal to 10−4. As is
clear from equation 10, the computation of this Jacobian ma-
trix J(x) will dominate the total computation time of the inver-
sion procedure. In each Gauss-Newton step we need to solve
M × N forward problems to construct J(x).

Computing the Jacobian matrix

To obtain the inversion results within acceptable computa-
tion time, we calculate each entry of the Jacobian matrix ap-
proximately, i.e.,

∂sj (x)
∂xi

≈ s
app
j [(1 + �)xi] − s

app
j (xi)

�xi

. (11)

This approximate solution sapp(x) is calculated using the finite-
difference forward-modeling code on a coarse optimal grid
along both the radial direction (the x-direction) and the in-
variant direction (the y-direction). Druskin and Knizhnerman
(1999) show this optimal grid results in finite-difference
schemes that are exponentially convergent. In this study, we
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G4 Abubakar et al.

use only three nodes on the optimal grid in the x- and y-
directions to calculate sapp(x).

To illustrate the effect of coarsening the optimal grid in
the forward-modeling code, we show in Figure 2 the for-
ward-modeling responses of the uninvaded nine-layer TI
anisotropic with dip model given in Wang et al. (2003). The
values of the formation resistivity and the bed-boundary pa-
rameters of this model are given in Table 1. In Figure 2 we
present the imaginary part of the xx- and zx-components of
the simulated magnetic field and compare it with the sim-
ulated magnetic field generated by a semianalytical forward
code. The transmitter-receiver spacing used in calculating the
responses shown in Figure 2 is 1.827 m and the frequency of
operation is 20 kHz. The computation times of our forward
code for one logging point, for all six receiver arrays (varied
from 0.3045 m up to 1.827 m), and for each transmitter polar-

Table 1. Model parameters of the noninvaded nine-layer TI
anisotropic with dip model; z1 = 3.045 ft and θ = 60◦.

�z Rth Rtv

(tvd in m) (�-m) (�-m)

10 10
2.436 50 200
2.436 10 10
1.218 50 200
1.218 10 10
1.218 0.5 2
2.436 10 10
2.436 0.5 2

10 10

Figure 2. Comparison of the uninvaded nine-layer TI
anisotropic with dip model responses between a semianalyt-
ical code and our forward code using different number of dis-
cretization nodes in the x- and y-directions.

ization are about 0.5 s (for three nodes), 4 s (for five nodes),
and 17 s (for seven nodes) on a PC with a Pentium IV 2.4-GHz
processor. Thus, by using an approximate Jacobian matrix cal-
culated by a minimum number of the optimal grid, we can sig-
nificantly reduce the computation. When we use the grid set
with five nodes for computing the data mismatch and the grid
set with three nodes for computing the Jacobian, the reduction
in computation time will be at least a factor of eight.

More details about the effect of reducing the number of op-
timal grids in our forward simulator can be found in Davy-
dycheva et al. (2003). Furthermore, a similar strategy is used
by Kriegshauser et al. (2001) to solve a 2D problem for multi-
component induction logging data. In their work they use a 1D
forward model to estimate the Jacobian matrix, showing that
the difference of the eigenvalues of the exact and the approxi-
mate Jacobian is within an acceptable level. The effectiveness
of using a coarse grid to compute the Jacobian matrix is borne
out by the successful inversion carried out in the numerical
examples section below.

Line-search procedure

An important feature of the inversion scheme is imposing
a line-search procedure along the descent direction that guar-
antees a reduction in the cost functional in equation 3 after
each iteration. This is done by calculating a scalar real positive
parameter νk that minimizes the cost functional C(xk + νkpk).
Since νk is a scalar quantity, this minimization can in princi-
ple be carried out by using any simple nonlinear minimiza-
tion routine (see Press et al., 1992). However, if the evalu-
ation of the cost function of equation 3 (which translates to
calculating the forward model) is expensive, as in this case, a
full nonlinear determination of νk might not be efficient from a
computational-cost viewpoint. It is therefore desirable to limit
the number of such evaluations as much as possible.

To do so, we adopt a procedure (see Dennis and Schnabel,
1983) whereby a step-length νk is selected to reduce the cost
functional such that the average rate of decrease from C(xk)
to C(xk + νkpk) is at least some prescribed fraction α of the
initial rate of decrease at xk along the direction pk , i.e.,

C(xk + νkpk) ≤ C(xk) + ανkδCk+1. (12)

In equation 12, 0 < α < 1 is a fractional number that, in prac-
tice, is set quite small (we set α to 10−4) so that little more
than a decrease in the cost functional value is required. The
symbol δCk+1 denotes the rate of decrease of C(x) at xk along
the direction pk and is given by

δCk+1 = ∂

∂ν
C(xk + νpk)

∣∣∣∣
ν=0

= gT (xk) · pk. (13)

The procedure we adopt is to first use the full Gauss-
Newton search step. If νk = 1 fails to satisfy the criterion given
by equation 12, we then backtrack along the direction of the
Gauss-Newton step until an acceptable next iterate according
to equation 5 is found. If, at the (k + 1)th iteration, ν

(m)
k is

the current mth step-length that does not satisfy the condition
of equation 12, we compute the next backtracking step-length
ν

(m+1)
k by searching for the minimum of the cost functional, as-

suming a quadratic approximation:

f (ν) ≡ C(xk + νpk) ≈ a + bν + cν2, (14)
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Inversion of Triaxial Induction Data G5

where the real constants a, b, and c are determined from the
current information on the cost functional C(x). Thus, ν

(m+1)
k ,

which is the minimum of f (ν), for m = 0, 1, 2, . . . is given by

ν
(m+1)
k = − b

2c

= −1
2

[
ν

(m)
k

]2
δCk+1

C
(
xk + ν

(m)
k pk

) − C(xk) − ν
(m)
k δCk+1

. (15)

We start with ν
(0)
k = 1 (full Gauss-Newton step) and proceed

with the backtracking procedure of equation 15 until condi-
tion 12 is satisfied. In general, it is not desirable to decrease
ν

(m+1)
k too much since this may excessively slow the iterative

process. To prevent this slowdown, we set ν
(m+1)
k = 0.1ν

(m)
k

if ν
(m+1)
k < 0.1ν

(m)
k (but with νk not to drop below 0.1, i.e.,

νmin
k = 0.1, to guard against too small a value of ν) and then

proceed with the iteration.

Constraining the inversion process

To impose a priori information such as positivity or maxi-
mum and minimum bounds on the unknown model parame-
ters, x = [xi, i = 1, 2, . . . , N ], we introduce a nonlinear trans-
formation of the form

xi = xmax
i + xmin

i

2
+ xmax

i − xmin
i

2
sin(ci), −∞< ci <∞,

(16)

where xmax
i and xmin

i are the upper and lower bounds on the
physical model parameter xi . It is clear that

xi → xmin
i , as sin(ci) → −1, (17)

xi → xmax
i , as sin(ci) → +1. (18)

These nonlinear transformations force the reconstruction of
the model parameters to lie always within their physical
bounds. Formally by using this nonlinear transformation we
should update the artificial unknown parameters ci instead of
the physical model parameters xi . However, it is straightfor-
ward to show that

∂sj

∂ci

= dxi

dci

∂sj

∂xi

=
√(

xmax
i − xi

)(
xi − xmin

i

)∂sj

∂xi

. (19)

The two successive iterates xi,k+1 and xi,k of xi are related by

xi,k+1 = xmax
i + xmin

i

2
+ xmax

i − xmin
i

2
sin(ci,k+1)

= xmax
i + xmin

i

2
+ xmax

i − xmin
i

2
sin(ci,k + qi,k), (20)

where

ci,k = arcsin
(

2xi,k − xmax
i − xmin

i

xmax
i − xmin

i

)
, (21)

and where qi,k = ci,k+1 − ci,k is the Gauss-Newton search step
in ci toward the minimum of the cost functional in equation 3.
This Gauss-Newton direction in ci is related to the Gauss-
Newton direction in xi through the following relation:

pi = qi

dxi

dci

. (22)

Hence, by using the relationship of equation 22 in equation 20,
we obtain the following relationship between the two succes-
sive iterates xi,k+1 and xi,k of xi (assuming an adjustable step-
length νk along the search direction xi):

xi,k+1 = xmax
i + xmin

i

2
+

(
xi,k − xmax

i + xmin
i

2

)
cos

(
νkpi,k

γk

)

+ γk sin
(

νkpi,k

γk

)
, (23)

where

γk =
√(

xmax
i − xi,k

)(
xi,k − xmin

i

)
. (24)

Thus, in the inversion process there is no need to compute
either ci or qi explicitly. This will reduce the round-off errors
caused by introducing of the nonlinear function.

Choosing the regularization parameter

Another important ingredient of any optimization method
is to determine the regularization parameter λ in the cost func-
tional C(x). Abubakar et al. (2003) introduce an automated
way to adaptively choose the regularization parameter. In this
approach the regularization is introduced as a multiplicative
factor in the cost functional. As a result of the analysis in
Habashy and Abubakar (2004), the regularization parameter
is found to be proportional to the nonregularized cost func-
tional, i.e., the first term of the cost function defined in equa-
tion 3. Together with a conjugate-gradient algorithm, this reg-
ularization technique is effective in inverting synthetic and
experimental data [see Abubakar et al. (2003) and van den
Berg et al. (2003)]. We adapt this multiplicative regulariza-
tion technique with a Newton-type algorithm. To that end, we
modify the cost functional given in equation 3 as follows:

Ck(x) = F (x)Rk(x), (25)

where F (x) is the cost functional corresponding to the data
mismatch

F (x) = 1
2
‖Wd · r(x)‖2 (26)

and Rk(x) is the regularization factor, chosen to be

Rk(x) = ηk(‖Wx · (x − xref)‖2 + ‖δ‖2), (27)

where

ηk = 1
‖Wx · (xk − xref)‖2 + ‖δ‖2

, (28)

in which δ is a constant parameter to be determined by nu-
merical experimentation. One should note that the regulariza-
tion process is far less sensitive to the parameter δ than to the
Tikhonov regularization parameter λ. For all of our examples,
we only use one value for δ. The normalization ηk in the regu-
larization factor Rk(x) is chosen so that Rk(x = xk) = 1. This
means that at the end of the optimization process the value of
the regularization parameter will be close to unity, i.e.,

lim
k→∞

Rk(xk+1) = 1. (29)
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G6 Abubakar et al.

The gradient of the cost functional Ck(x) in equation 25 is
given by

gk = JT
k · WT

d · Wd · rk

+ ηkF (xk)WT
x · Wx · (xk − xref), (30)

and its Hessian matrix is given by

Hk = JT
k · WT

d · Wd · Jk + ηkF (xk)WT
x · Wx

+ ηk

[
WT

x ·Wx · (xk − xref)
]T ·JT

k ·WT
d ·Wd · rk

+ ηk

[
JT

k ·WT
d · Wd · rk

]T ·WT
x ·Wx · (xk − xref).

(31)

In our numerical implementation and to restrain the inversion
process from exhibiting huge jumps between two successive
iterations, we set xref to be the value of x at the previous iter-
ation. For this particular choice of xref, the multiplicative cost
functional in equation 25 is equivalent to the additive one in
equation 3 if we choose λ to vary according to

λk = F (xk)
‖δ‖4

. (32)

By using the value of the regularization parameter given in
equation 32, our minimization procedure will place a relatively
large weight on the regularization term at the beginning of the
inversion process, when the value of the data misfit F (x) is
still large. In this case, the search direction is predominantly
a steepest descent, which is the more appropriate approach to
use during the initial steps of the iteration since it has the ten-
dency of suppressing large swings in the search direction. As
the iteration proceeds, less weight is put on the regularization
term of the cost functional, hence minimizing the data mis-
match of the cost functional. In this case the search direction
corresponds to a Newton search method, which is the more
appropriate approach to use as we get closer to the minimum
of the cost functional F (x) where the quadratic approximation
becomes more accurate.

If noise is present in the data, the data misfit term will have
a minimum value determined by the noise level present in the
data. As a consequence, the regularization term will be large

Figure 3. A dipping-bed model derived from a measured log
in Egypt. The resistivities are in ohm-m.

enough to suppress the effect of the noise on the inversion
process.

Finally, we note that the main advantage of using the pro-
cedure described above is that the inversion process automati-
cally and adaptively determines the regularization parameter.

Stopping criterion

The inversion process is terminated when either the rela-
tive data misfit reaches a prescribed value, the number of it-
eration exceeds the prescribed maximum, the differences be-
tween two successive iterates of the model parameters, or the
cost function is within a prescribed tolerance factor. More de-
tails about the stopping criterion can be found in Habashy and
Abubakar (2004).

NUMERICAL EXAMPLES

We now apply our inversion algorithm to synthetic data
sets. In the inversion process the resistivity, invasion radius,
dip angle, and the bed-boundary parameters are enforced to
lie within the following bounds:

10−4 ohm-m < Ri < 104 ohm-m,

2.358 × 10−3 m < ri < 2.030 m,

3.045 × 10−2 m < z1 < 12.180 m,

3.045 × 10−2 m < �zi < 24.360 m,

0.1◦ < θ < 90◦ (33)

by using the nonlinear transformation procedure. The covari-
ance matrix Wd is chosen to be

Wd = 1
‖m‖ I, (34)

where I is the identity matrix. We note that a different covari-
ance matrix Wd could boost the sensitivity of the data with re-
spect to some particular parameters. The construction of such
matrices is beyond the scope of this study. Moreover, we use
the simplest covariance matrix, since our objective is to test
the inversion algorithm in the worst-case scenario. The covari-
ance matrix Wx is chosen to be

Wx =




1
xref,1

. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
1

xref, N
2

. . . 0

...
. . .

...
. . .

...

0 . . . 0 . . .
1

xref,N




, (35)

with xref,i 
= 0 for i = 1, 2, · · · , N . Note that the use of equation
35 is necessary since we are dealing with inverting of model
parameters with different physical dimensions.

For the first example we consider a dipping-bed formation
model as shown in Figure 3. This formation model was derived
from a measured log in a field in Egypt. The formation is char-
acterized by a low-resistivity pay zone above an invaded pay
sand. The dip angle is 60◦.
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Inversion of Triaxial Induction Data G7

The measured data used in the inversion are sampled ev-
ery 2.436 m starting from 3.045 m up to 37.149 m in measured
depth (corresponding to 15 logging points). At each logging
point we collect the data using six receiver arrays. The fre-
quency of operation is 20 kHz. The details of the triaxial tool
arrays are given in Barber et al. (2004). After rotating the ten-
sor measurement data along the strike, the total independent
data points add up to 450 points.

As an initial guess for starting the inversion, we use a ho-
mogeneous whole-space model of 10 ohm-m resistivity. The
initial guess for the dip angle is 20◦. In the inversion we fix
the number of layers to four. This is the only a priori informa-
tion that introduced in our inversion procedure. In Figure 4 we
present the 1D plots of the true, initial, and inverted model pa-
rameters of the dipping-bed model given in Figure 3 as a func-
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Figure 4. The inversion results of the dipping-bed model given
in Figure 3 using clean data collected at 15 logging points.

tion of the measured depth. The true model parameters are
given by the solid lines, while the initial and inverted model
parameters are given by the green-dashed and blue-dashed-
dotted lines, respectively. The horizontal and vertical forma-
tion resistivities are given by the top plots, the horizontal and
vertical invasion resistivities are given by the middle plots, and
the invasion radii (in inches) are given by the bottom plot.
The inversion process is terminated when the value of

√
F (xk)

given in equation 26 reaches the level of 0.01%. In this case of
noise-free data, we obviously obtain an excellent reconstruc-
tion results, as shown in Figure 3.

Next, we add 5% random white noise to all of the data. The
corresponding inversion results are shown in Figure 5. The
inversion process is terminated after the data misfit reaches
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Figure 5. The inversion results of the dipping-bed model given
in Figure 3 using data with 5% random white noise collected
at 15 logging points.
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G8 Abubakar et al.

a value of 3.4%. Note that the inversion does a better job 10b
in inverting the bed-boundary parameters and dip angle than
in inverting the formation and invasion resistivities. This indi-
cates the multicomponent, multispace induction logging data
have more than adequate sensitivity to invert these geometri-
cal parameters.

To improve the reconstruction results, we add more data in
the inversion process. The measured data are collected every
1.218 m, starting from 3.045 m up to 37.149 m in measured
depth (corresponding to 29 logging points). To this data set,
we again add 5% random white noise. The inversion results
using this data set are given in Figure 6. As shown in Figure 6,
the reconstruction results are significantly improved. The final

Figure 6. The inversion results of the dipping-bed model given
in Figure 3 using data with 5% random white noise collected
at 29 logging points.

data misfit of the inversion using this data set is approximately
3.5%.

In the second example we consider a nine-layer formation
with dip and invasion. This formation consists of several high-
and low-resistivity layers. The dip angle in this formation is
60◦. The true model parameters are given in Table 2. The data
are collected using 69 logging points starting from z = 0 up
to z = 41.412 m in measured depth. The total number of
data points is 2070. A 5% random white noise is added to the
data used in the inversion. As an initial guess for the inver-
sion, we use a homogeneous whole-space model of 10 ohm-m
resistivity.

The inversion process terminates after 25 iterations. The
inversion results are shown in Figure 7. This example took

Figure 7. The inversion results of the nine-layer dipping-bed
model using data with 5% random white noise collected at
69 logging points.
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Inversion of Triaxial Induction Data G9

Table 2. Model parameters of the nine layer formation with
dip and invasion; z1 = 3.045 m and θ = 60◦.

�z Rth Rtv Rxoh Rxov ri

(tvd in m) (�-m) (�-m) (�-m) (�-m) (m)

∞ 10 10 10 10 0
2.436 50 200 5 20 0.254
2.436 10 10 10 10 0
1.218 50 200 5 20 0.254
1.218 10 10 10 10 0
1.218 0.5 2 5 20 0.254
2.436 10 10 10 10 0
2.436 0.5 2 5 20 0.254
∞ 10 10 10 10 0

approximately 30 hours on a single PC with a Pentium IV
2.4-GHz processor. A parallelized version of the code is cur-
rently being implemented; it will reduce the inversion time to
minutes instead of hours.

Finally, note that although this work is at a fairly early stage
of its development, it clearly demonstrates the power of mul-
ticomponent, multispacing induction logging measurements in
providing a robust inversion of formation parameters.

CONCLUSIONS

We developed one of the first full 3D parametric inver-
sion algorithms devoted for the quantitative interpretation
of multicomponent, multispacing induction logging measure-
ments. By calculating the Jacobian matrix over a coarse finite-
difference grid using the minimum-sized optimal grid, we can
obtain the solution within acceptable computation time. Fur-
thermore, by using the multiplicative regularization analysis,
we can arrive at a robust parametric inversion scheme. More-
over, our study indicates that the triaxial induction tool has
sufficient sensitivities to invert for both geometrical parame-
ters as well as the material properties of the formation.

Future work will be directed toward studying the perfor-
mance of the inversion algorithm to real field data.
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