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Abstract

Magmatic explosive eruptions are influenced by mass transfer processes of gas diffusion into bubbles caused by decompression.

Melnik and Sparks [Melnik, O.E., Sparks, R.S.J. 2002, Modelling of conduit flow dynamic during explosive activity at Soufriere

Hills Volcano, Montserrat. In: Druitt, T.H., Kokelaar, B.P. (eds). The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to

1999. Geological Society, London, Memoirs, 21, 307–317] proposed two end member cases corresponding to complete

equilibrium and complete disequilibrium. In the first case, diffusion is fast enough to maintain the system near equilibrium and

a long-lived explosive eruption develops. In the latter case, pre-existing bubbles expand under conditions of explosive eruption and

decompression, but diffusive gas transfer is negligible. This leads to a much shorter eruption. Here we develop this model to

consider the role of mass transfer by investigating transient flows at the start of an explosive eruption triggered by a sudden

decompression. The simulations reveal a spectrum of behaviours from sustained to short-lived highly non-equilibrium Vulcanian-

style explosions lasting a few tens of seconds, through longer lasting eruptions that can be sustained for tens of minutes and finally

to eruptions that can last hours or even days. Behaviour is controlled by a mass-transfer parameter, x, which equals n*
2/3D, where

n* is the bubble number density and D is the diffusivity. The parameter x is expected to vary between 10�5 and 1 s�1 in nature and

reflects a time-scale for efficient diffusion. The spectrum of model behaviours is consistent with variations in styles of explosive

eruptions of silicic volcanoes. In the initial stages peak discharges occur over 10–20 s and then decline to low discharges. If a

critical bubble overpressure is assumed to be the criterion for fragmentation then fragmentation may stop and start several times in

the declining period causing several pulses of high-intensity discharge. For the cases of strong disequilibria, the fluxes can decrease

to negligible values where other processes, such as gas escape through permeable magma, prevents explosive conditions becoming

re-established so that explosive activity stops and dome growth can start. For cases closer to the equilibrium the eruption can

evolve towards a quasi-steady sustained flow, never declining sufficiently for gas escape to become dominant.
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1. Introduction

The dynamics of explosive volcanic eruptions can be

usefully investigated by mathematical models. Conduit

flows involve the transition from slow ascent of bubbly

viscous magma through a fragmentation zone to a high-

speed flow of a gas-particle dispersion (Fig. 1). Math-
al Research 153 (2006) 148–165



Fig. 1. Schematic representation of flow zones during explosive

eruptions. Magma undergoes the instantaneous nucleation, zone

with gas exsolution into the bubbles and possible gas escape, then

abrupt fragmentation and zone of gas-particle dispersion.
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ematical descriptions of these flows involve making

various assumptions about the properties of the

magma, the boundary conditions, and the geometry of

the volcanic system. This paper considers three main

related issues. First, there is the question of how close

explosive flows are to conditions of equilibrium be-

tween dissolved and exsolved gas. Second, there is the

issue whether the activity consists of a short-lived

Vulcanian explosion or develops into a sustained,

long-lived Plinian style eruption. Melnik and Sparks

(2002a,b) proposed that these contrasted styles might

be controlled by the extent of disequilibrium. Third,

there is the issue of the initial evolution of explosive

eruptions from unsteady to quasi-steady flows.

A central matter is the extent to which the gas

exsolution is at equilibrium during the processes of

bubble nucleation and growth in explosive conduit

flows. The possibility of strong disequilibrium and

large supersaturations were recognised by Proussevitch

and Sahagian (1996), Navon and Lyakhovsky (1998),
and Mangan and Sisson (2001). Decompression rates

may be so fast that bubble growth occurs far from

equilibrium (Gardner et al., 2000). Two end member

cases may be recognized when a column of a gas-rich

magma is decompressed and an explosive flow initi-

ates (Melnik and Sparks, 2002a). In one the system is

always maintained close to equilibrium and the flow

expands continuously. In the complete disequilibrium

end member the existing bubbles in the column ex-

pand, but there is negligible diffusion into these bub-

bles and no extra nucleation occurs. The first case

may correspond to sustained long-lived Plinian erup-

tions and the later case may correspond to short-lived

Vulcanian eruptions where the explosive flow stops

because there is only a finite amount of bubbly

magma that can expand to reach critical conditions

for fragmentation.

The majority of conduit flow models have investi-

gated the quasi-steady, sustained flows that develop

once an eruption has become well established (Wilson

et al., 1980; Papale and Dobran, 1993; Papale, 1999;

Melnik, 2000; Slezin, 2003). In this situation an approx-

imate balance is achieved between the flow regimes in

the conduit (Fig. 1) and parameters change sufficiently

slowly so that the fragmentation level adjusts to main-

tain quasi-steady flow condition. This situation is not

appropriate for the early stages of explosive eruptions

due to a sudden decompression induced, for example,

by dome or sector collapse. Our investigation focuses on

such unsteady initial flows and how they can adjust to

quasi-steady conditions.

This paper develops the model of Melnik and

Sparks (2002a) to investigate the role of gas diffusion

in transient explosive volcanic flows. The two end

members, studied by Melnik and Sparks (2002a),

correspond to fast diffusion in decompressing

magma and slow diffusion where negligible gas is

transferred into expanding gas bubbles during the

decompression. Here fast and slow diffusion terms

are used relative to the time scale for the magma

decompression in explosive conduit flows. By intro-

ducing diffusion into the problem, we can investigate

under what conditions the two end-member cases

might be good approximations. We also compare dif-

ferent fragmentation assumptions, namely, fragmenta-

tion at a fixed volume fraction of bubbles (Sparks,

1978; Wilson et al., 1980) and fragmentation at a

fixed overpressure in growing bubbles (Barmin and

Melnik, 1993; Melnik, 2000). Our model is concerned

with the initial stage of explosive eruption when the

column of slowly ascending magma is suddenly

decompressed and the pressure reduction is sufficient
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to reach conditions for explosive fragmentation. Such

an initiating event might be a dome collapse, a sector

collapse or simply development of an excess pressure

at the top of the conduit that reaches the fragmentation

threshold. The evolution of initial unsteady flow

depends on the physical conditions in the magma

column before an eruption is triggered, so we also

develop a model of a slow magma ascent that sets up

the initial conditions for explosive flows. We finally

investigate how initial unsteady flows might evolve

into sustained quasi-steady flows.

2. The model

2.1. Description of the physical system

Active silicic volcanoes are commonly in the state of

slow magma ascent which feeds either lava domes or

intrusive cryptodomes. The conduit is filled with

magma which ascends slowly and decompresses,

resulting in nucleation and growth of bubbles driven

by diffusion of the gas from the melt. Near the surface

gas can escape through permeable magma all the way

to the surface or the conduit wallrocks (Taylor et al.,

1983; Woods and Koyaguchi, 1994; Jaupart, 1998;

Melnik and Sparks, 1999; Melnik and Sparks,

2002b). The extruding dome or cryptodome maintains

a pressure difference between the magma ascending in

the conduit and atmosphere, which can be related to

variations in dome height and degassing processes that

cause rheological stiffening (Stasiuk and Jaupart, 1997;

Melnik and Sparks, 1999). To describe the dynamics of

a slow extrusion, we develop a steady model.

Lava dome extrusion or cryptodome intrusion can

turn to explosive eruption by a sudden decompression.

A common cause of a sudden decompression is dome

collapse, as at the Soufriere volcano, Montserrat

(Robertson et al., 1998; Druitt et al., 2002) and edifice

collapse, as at Mount St. Helens (Voight et al., 1981).

After collapse the pressure at the top of the conduit

decreases rapidly. A rarefaction wave propagates down

the conduit reducing the pressure. Bubbles in the

magma respond to the pressure change by expanding,

but viscous resistance result in excess pressure. If this

overpressure exceeds a critical threshold for fragmen-

tation, then explosive disruption can initiate. Alterna-

tively the bubble can grow to reach a critical volume

fraction of bubbles for fragmentation. In both cases the

fragmentation occurs in a zone of small length in

comparison with the length of the conduit (Barmin

and Melnik, 1993). Fragmented bubbly liquid forms a

gas-particle dispersion.
The fragmentation front propagates down follow-

ing the rarefaction wave and the gas-particle disper-

sion zone expands. In this zone material accelerates

easily as the viscosity is negligible. To describe the

dynamics of an explosive eruption, which is triggered

by a sudden decompression, we develop an unsteady

model.

2.2. Governing equations

The mechanical description of conduit flow during

explosive eruptions has been extensively discussed in

Wilson et al. (1980), Dobran (1992), Barmin and

Melnik (1993), Woods and Koyaguchi (1994), Papale

(1999), Melnik (2000), Melnik and Sparks (2002a),

Slezin (2003). The present model develops the models

of Melnik and Sparks (2002a), where two end-mem-

ber cases were considered; one in which diffusion into

the growing bubbles is fast enough to maintain the

system close to equilibrium and the other in which

diffusion is so slow that bubbles that existed prior to

the onset of explosive activity expand without further

significant mass transfer. Dimensional analysis pro-

vides criteria for these cases based on the Peclet

number, Pe, which is the ratio of the characteristic

time of diffusion of dissolved gas and the character-

istic time of decompression (Navon and Lyakhovsky,

1998). In one end member case (Pe NN1) the mass

transfer between the melt and bubbles is negligible.

This might be reasonable for the initial stages of an

explosive eruption when the fragmentation front has a

velocity, Vf, typically in the range of tens to over 100

m/s (Spieler et al., 2004). In the second end member

case (Pe bb1) diffusion maintains the system close to

equilibrium. This case describes a situation when the

velocity of the fragmentation wave is sufficiently low

that magma beneath the fragmentation front can grow

bubbles close to equilibrium. Our goal is to establish

when and if these end member situations might be

applicable.

We consider the flow in the vertical conduit of a

constant diameter. Our model excludes continuous nu-

cleation, interaction of bubbles at high concentration,

and variation of the mixture temperature (Barmin and

Melnik, 1993). We assume that the relative velocities

between bubbles and liquid and between particles and

gas are small in comparison with the mixture velocity

(Melnik, 2000). We also neglect changes in crystal

content due to microlite crystallization (Melnik and

Sparks, 2002a) as this process is very slow and is not

expected to occur on the time scale of an explosive

eruption. Because a mixture parcel spends a short time
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in the zone of gas-particle dispersion, we neglect degas-

sing in this zone. With these assumptions, the system of

flow equations for both the bubbly liquid and gas-

particle dispersion zones can be written as

Bq
Bt
þ Bqm

Bx
¼ 0 ð1Þ

Bqe

Bt
þ Bqem

Bx
¼ kJ ð2Þ

q
Bm
Bt
þ qm

Bm
Bx
¼ � BP

Bx
� qg � k

32lavm
d2

ð3Þ

q ¼ qe þ qd þ qm ð4Þ

P ¼ q0
eRwT ð5Þ

qe ¼ aq0
e ð6Þ

qm ¼ 1� að Þ bq0
x þ 1� bð Þ 1� cavð Þq0

m

� �
ð7Þ

qd ¼ 1� að Þ 1� bð Þcavq0
m ð8Þ

Here and further, the following notations are used: q
are densities (subscript: e, exsolved gas; d, dissolved

gas; m, melt; x, crystal; no subscript, mixture; super-

script: 0, pure; no superscript, reduced density, e.g.,

mass of a given component divided by unit volume

of the mixture); d is the conduit diameter, m is the

mixture velocity, P is the mixture pressure, a is the

gas volume fraction per unit volume of mixture, b is the

crystal content per unit volume of melt with crystals, T

is the absolute magma temperature, Rw =461 J kg�1

K�1 is the gas constant divided by the molecular

weight of water, t is the time and x is the vertical

coordinate with x =0 corresponding to the top of the

magma chamber and positive in the upward direction.

The coefficient k indicates the flow regime: k =1 for

bubbly liquid, and k=0 for gas-particle dispersion. The

subscript bavQ relates to the dissolved water concentra-

tion, c, and viscosity, l, averaged over the melt shells.

The system consists of continuity equations for the

mixture as a whole (1) and exsolved gas component

(2), the momentum equation for the mixture as a whole

(3), and equations of state (4)–(8). The continuity equa-

tions for exsolved gas component (2) accounts for a

mass flux, J, due to diffusion. The momentum Eq. (3)

takes into account gravity forces and conduit resistance

(in Poiseuille form).

As we assume no bubble nucleation and no crystal

growth the number density of bubbles per unit volume
of magma, n, and density of the melt component are

conserved in the parcel of magma:

Bqm

Bt
þ Bqmm

Bx
¼ 0 ð9Þ

Bn

Bt
þ Bnm

Bx
¼ 0 ð10Þ

The continuity Eqs. (9) and (10) can be integrated

due to the assumption of equal component velocities

(Melnik and Sparks, 2002a):

qm

qm4

¼ n

n4
¼ q

q4

ð11Þ

q4 ¼ bq0
x þ 1� bð Þq0

m

qm4 ¼ 1� bð Þ 1� c0ð Þq0
m ð12Þ

The subscript * relates to the values taken at the

saturation pressure P*= (c0/Cf)
2 (Table 1), when a bb1

and bubbles instantly nucleate with initial bubble num-

ber densityn*.Eqs. (4)–(11) allow calculation of P, a and

n as functions of q and qe . Neglecting cav in compari-

son with 1 the integral (11) allows n to be expressed as

n ¼ n4 1� að Þ ð13Þ

This equation takes account of the expansion of the

parcel of magma so that the bubble number density per

unit volume of magma reduces as the magma expands.

2.3. Diffusion of volatiles into bubbles

In order to describe diffusion, we use the quasi-

steady bubble growth model of Lensky et al. (2001),

which extends the shell model concept of Proussevitch

et al. (1993) and Proussevitch and Sahagian (1996).

For a solitary bubble, this growth model gives an

exact distribution of volatiles concentration around

the bubble. When there are many bubbles in the

melt, we follow Proussevitch et al. (1993) in which

each bubble is surrounded by a spherical shell of melt.

The shell provides the bubble with water and expands

according to mass conservation. Close to the bubble

surface the water concentration is at equilibrium. Mass

conservation of water inside the shell is used as a

second boundary condition that allows to state the

problem.

A diffusion equation with defining boundary condi-

tions can be written as

dc

dt
¼ Bc

Bt
þ dr

dt

Bc

Br
¼ D

1

r2
B

Br
r2

Bc

Br

� �
ð14Þ
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4

3
pna3 ¼ a

4

3
pnS3 ¼ 1 ð15Þ

c að Þ¼Cf

ffiffiffi
P
p 4

3
pS30c0q

0
m¼

4

3
pa3q0

eþ4pq0
m

Z S

a

r2c rð Þdr

ð16Þ

Here c is the mass fraction of dissolved gas (water)

in the melt, D is the diffusion coefficient of water in

silicic melt, and Cf is the solubility coefficient. Eq. (15)

relate the bubble radius a, the shell radius S, the num-

ber density per unit volume of magma and gas volume

fraction n. We follow the concept of Proussevitch and

Sahagian (1996) in approximation of the total volume

of unfragmented magma column as the sum of all the

shell volumes. Eq. (16) gives the boundary conditions

for Eq. (14).

The mass flux, J, into a bubble is related to the

concentration gradient on its border:

J ¼ 4pa2nDq0
m

Bc

Br
jr¼a ð17Þ

When Peclet number is small (Pe bb1) an approxi-

mate analytical solution can be written down, as the

unsteady term in the diffusion Eq. (14) is negligibly

small. Then concentration profile has a simple form

(Lensky et al., 2001):

c rð Þ ¼ C1 þ C2

1

r
ð18Þ

The constants C1 and C2 can be found from Eqs.

(14)–(16):

C1 ¼
2qg4a

3 þ qm4 3c að Þa S2 � a2ð Þ � 2c0S
3
0

� �
qm4 3S2a� a3 � 2S3ð Þ ð19Þ

C2 ¼
2a qg4a

3 þ qm4 c að Þ S3 � a3ð Þ � c0S
3
0

� �� �
qm4 3S2a� a3 � 2S3ð Þ ð20Þ

4

3
pn4S

3
0 ¼ 1 qg4 ¼ c0 1� bð Þq0

m ð21Þ

In order to apply this analytical solution (18) (19)

(20) (21), we have to be sure that Peb1 in the conduit

flow. However, in the initial stages of an explosive

eruption PeH1 due to fast fragmentation processes.

Hence, negligible amounts of gas diffuse into bubbles

(Melnik and Sparks, 2002a). We now estimate Pe when

the fragmentation front stops.

The diffusion of the gas to the bubbles occurs on a

length scale less than the thickness of the shell. The
length scale, hs, is related to the bubble number and gas

volume fraction:

hs a; nð Þ ¼
31=3 1� a1=3

� �
4pnð Þ1=3

ð22Þ

We calculate the diffusion time scale for the aver-

aged gas volume fraction aa in the bubbly liquid with

approximation (13):

tD ¼
hs aa; n4 1� aað Þð Þ½ �2

D
ð23Þ

We do not consider the diffusion in the zone of gas-

particle dispersion, because a parcel of the mixture

spends a very short time in this zone compared to the

bubbly liquid zone. Consequently, the decompression

time tF is the time for a magma parcel to ascend from its

initial position in the chamber or the conduit up to the

fragmentation front tF=xf /va, where xf is the fragmen-

tation front position, va is the average velocity of

bubbly liquid ascent. The calculations of Melnik and

Sparks (2002a, see Fig. 7) provide typical parameters in

the conduit in an explosive eruption (aa=0.3, xf =2 km,

va=0.1 m s�1). The ratio between diffusion and ascent

time scales is expected to be less than 1 for quasi-static

bubble growth:

Pe ¼
32=3 1� a1=3a

	 
2
ma

4p 1� aað Þð Þ2=3xf
1

Dn
2=3
4

b1 ð24Þ

For conditions discussed above, the quasi-static

model for diffusion will be valid for Dn*
2/3N5�

10�7 s�1.

Due to diffusion, there is a distribution of dissolved

gas concentration around the bubble and therefore vis-

cosity variation. We average dissolved gas concentra-

tion and viscosity in a shell around a bubble for the

system of macroscopic Eqs. (1)–(8):

cav ¼
3

S3 � a3ð Þ

Z S

a

r2c rð Þdr ð25Þ

lav ¼
3h bð Þ
S3 � a3ð Þ

Z S

a

r2l c rð Þð Þdr ð26Þ

For crystal contents below 55%, the coefficient is

based on the empirical studies of Marsh (1981). For

higher crystal contents, the value of the coefficient is

quite uncertain, and we follow the estimate of Melnik
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and Sparks (1999) based on empirical evidence for very

crystal-rich andesite lava domes.

0Vbb0:55 h bð Þ ¼ 1� 1:67bð Þ�2:5
0:55Vbb1 log h bð Þ=1:6½ � ¼ arctan 20:6 b� 0:62ð Þ½ � þ p=2

ð27Þ

2.4. Fragmentation criteria

For the unsteady model, we study numerically the

influence of different fragmentation criteria: threshold

gas volume fraction (VF) and threshold overpressure in

the bubbles (OP). To investigate the OP criterion, we

express the bubble overpressure with the Rayleigh–

Lamb equation:

DP ¼ 4leff

a

Ba

Bt
þ m

Ba

Bx

� �
ð28Þ

Here the effective viscosity leff represents the integral

of the viscous stresses within the shell:

leff ¼ 3a31
Z S

a

l c rð Þð Þ
r4

dr ð29Þ

It is calculated according to Lensky et al. (2001). A

coefficient 1 is included to account for the influence of

crystals. The problem here is that individual bubble

shells may contain no crystals, but on a larger scale,

the expanding system has to deform a crystal-melt mix-

ture. If the crystals have no influence then 1 =1, but this
seems unrealistic for high crystal contents because

expanding bubbles have to not only deform the melt

shell but contribute to the squeezing of viscous melt

around neighbouring crystals on a larger scale. If a

bubble is attached to a crystal, it cannot expand easily

towards the crystal direction because a crystal undergoes

additional resistance from the surrounding melt. Thus,

the coefficient 1 may be much higher than 1. In our

calculations, we take 1 equal to h(b), although 1 should

be considered as a free parameter since a suitable com-

plicated microscopic model has yet to be developed.

We transform Eq. (28) using Eqs. (1), (2) and (15):

DP ¼ 4leff

3

Bm
Bx
þ J

q

� �
ð30Þ

The models with two pressures in the mixture by

Melnik (2000) show that difference between phase

pressures DP is small in comparison with the critical

overpressure for fragmentation, DPCR, in most of the

bubbly zone. The value DP becomes comparable with
DPCR only in a small region below the fragmentation

front. Therefore, the influence of pressure disequilibri-

um on mass transfer and gas density remains insignif-

icant and allows to consider conduit flow and bubble

growth with one pressure only.

2.5. Approximation for viscosity function

Here we assume that the melt composition is rhyolite

and use the experimental results of Hess and Dingwell

(1996) for a leucogranite to parameterise the relation-

ship between pure melt viscosity, temperature and water

content.

log10l c; Tð Þ ¼ 0:2911þ 0:8330lnc

� 1304þ 2368lnc

T � 344:2� 32:25lnc
ð31Þ

where l is in Pa s, T is in K, and c is the mass fraction.

The equations for both average and effective viscos-

ities, (26) and (29), contain the pure melt viscosity in

the integrals. The integrals have to be calculated at

every time step and every grid point, which is very

time consuming. In order to increase the code speed, we

use a simplified formula in order to get analytical

solution for integral expressions.

We found a general approximation of viscosity

lappr(c,T)=A(T)c
�m(T) where m(T) is an integer and

A(T) is a rational function. In the range of 1048

KbT b1281 K, the most appropriate approximation

lappr has is:

A Tð Þ ¼ 10290� 3:545T

T � 195:7
m Tð Þ ¼ 3 ð32Þ

Fig. 2 compares the Hess and Dingwell formula and

the suggested approximation for the temperature

T=1123 K. In the range 0.01bc b0.05 the deviation,

log10l(c,T)�log10lappr(c,T), does not exceed 0.36 log

units for the parameters in (32).

2.6. Diffusion parameter

We can express bubble number density, bubble and

shell radii as functions of a and n* and put the expres-

sions into the formula for mass transfer (17). An approx-

imate formula for mass flux into the bubble is thus

deduced:

J ¼ 2 6p2
� �1=3

n2=3Dq0
m

a1=3
qg4

qm4
aþ c að Þ 1� að Þ � c0

n4
n

� �	 

3a1=3 � a� 2

ð33Þ



ig. 2. Comparisons of Hess and Dingwell (1996) formula for vis-

osity and the approximation used in the model calculations (for a
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c

constant temperature, T=1123 K).
The integral (11) and its approximation for bubble

number density (13) allow us to substitute n/n*, a and

c(a) with q/q*, qe /q*, c0:

J ¼ n
2=3
4 Dq0

mf q=q4; qe=q4; c0ð Þ ð34Þ

We can transform the integrals (25), (26) and (29) in

the same way. For all the integrals, the terms with n*
disappear, so the effective viscosity and averaged vis-

cosity and concentration do not depend on the diffusion

parameters D and n*. Therefore, Eq. (34) completely

presents the contribution of bubble growth dynamics

into the flow model. The intensity of mass transfer is

controlled by the parameter x =n*
2/3D that we call the

diffusion parameter. The minimum value of x was

evaluated using Eq. (24). For the maximum possible

value of x, we choose the highest values of n* ob-

served in nature (Cashman, 2004) and highest diffusiv-

ities from water in rhyolitic melts under eruption

conditions (Zhang and Behrens, 2000): bubble number

density n*=10
16 m�3 and diffusion coefficient

D =10�11 m2 s�1. For these values, the diffusion pa-

rameter x is equal to xmax=0.464 s�1 that provides a

convenient scale. Below we use the dimensionless dif-

fusion parameter - =x/xmax.

3. Boundary and initial conditions

3.1. Steady-state solution

For the slow steady flow in the magma prior to the

rapid decompression that initiates explosive activity, the
system of governing equations (1–8 has a simplified

form

qm ¼ Q ð35Þ

dqem
dx
¼ J ð36Þ

dP

dx
¼ � qg � 32lavm

d2
ð37Þ

Here Q is the extrusion rate per unit area of the

conduit cross section. Pressure P, mass flux J and

average viscosity lav are functions of qe and Q. In

the modelling of extrusion, we assume a fixed pressure

in the chamber Pch at x =0, and a fixed pressure at the

base of the dome Pend, x =L. In order to satisfy the

boundary conditions, we choose the appropriate value

of Q by the shooting method and integrate the system

of Eqs. (35)–(37).

3.2. Unsteady solution

For the unsteady explosive flow that develops after a

sudden decompression, we solve the transient problem

in the conduit of L +hd length, where hd is the height of

the dome. For the initial conditions for the unsteady

model of explosive eruption, we use the corresponding

steady-state solution for a extrusion flow over the con-

duit length of L. We treat the interval above x =L as a

gas-particle dispersion zone. A further short length, the

height of the dome hd, is added to the solution above

x =L with atmospheric conditions fixed at x =L +hd.

This addition gives an initial dshockT condition at

x =L. The initial fragmentation front position coincides

with the position of the shock.

As the eruption develops, the chamber feeds magma

into the conduit. However, for most explosive eruptions,

the erupted volume in the initial transient stages is much

smaller than the chamber volume; hence, we assume the

chamber pressure is fixed. The vesicularity and the vis-

cosity of the magma feeding into the base of the conduit

remain constant as well. The pressure at x =L +hd is

fixed to be atmospheric if exit conditions are subsonic;

otherwise, for the supersonic regime, no boundary con-

ditions are necessary (Melnik and Sparks, 2002a).

The code used to solve the unsteady problem is

based on the Lax–Friedrichs numerical method de-

scribed in Appendix A.

4. The results

We first present the results for the simulations of

extrusion. These simulations will give a possible range



Table 1

Calculation sets

Parameter Symbol Values Dimension

Conduit length L 5000 m

Pressure at the magma

chamber

Pch 130 MPa

Pressure at the base of

the dome

Pend 5, 10, 20 MPa

Melt water content c0 0.05, 0.07

Conduit diameter d 30 m

Magma temperature Tch 1123 K

Magma crystal content b 0, 0.3, 0.6

Gas constant for H2O Rw 461 Jd kg�1d K�1

Density of melt qm
0 2300 kgd m�3

Density of crystals qx
0 2700 kgd m�3

Solubility coefficient Cf 4.1�10�6 Pa�1/2

Diffusion coefficient D 10�12, 10�13,

10�14

m2 s�1

Number density of

bubbles

n* 1010, 1012, 1014 m�3

Bold numbers mark the fixed parameters if not varied.
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Fig. 3. Distributions of dissolved water concentration (a) and gas

volume fraction of bubbles (b) for different values of the mass transfer

parameter - in a slow rising column of magma. For larger values of

- the system comes close to the equilibrium. Conditions for the

calculations are given in Table 1.
of initial conditions for the transient problem. Para-

meters in the steady models (Table 1) were first chosen

as appropriate for modelling the eruption of the Sou-

friere Hills volcano, Montserrat and are typical for a

crystal-rich andesite with a rhyolite melt phase. They

are mostly taken from Melnik and Sparks (2002a) since

we want to compare results with the end member cases

considered there. Parameter values marked in bold are

those used in calculations unless otherwise specified.

We focus on the role of diffusion coefficient D and

initial number density of bubbles n* because the sensi-

tivity of other parameters has been already discussed

(Melnik and Sparks, 2002a). Values of n* were chosen

here to represent the wide range of bubble number

densities commonly encountered in natural ejecta and

lava samples (Mangan and Sisson, 2001). The dimen-

sional analysis establishes that the effect of these para-

meters can be described by the combination x =n*
2/3D

and the range of the dimensionless parameter - =x/

xmax, for values of D and n* anticipated in nature - is

in the interval 2�10�6 to 1. We will vary the mass

transfer parameter -, changing the number density of

bubbles n* and D within their realistic intervals.

4.1. Initial steady-state profiles

Fig. 3 shows the profiles for averaged dissolved water

concentration (a) and gas volume fraction (b) in the

conduit below the plug for the case of slow extrusion

for - =10�6, 5�10�6, 2�10�5, 5�10�4. At the bot-

tom of the conduit, the magma flow is in equilibrium.

The flow stays close to equilibrium as long as its velocity

is small and the decompression rate is sufficiently small
that mass transfer is close to equilibrium. If the mass

transfer parameter - is high and, consequently, the

diffusive mass flux is high (see Eq. (34)), the system is

maintained close to equilibrium everywhere in the con-

duit. In Fig. 3 for -z2�10�5, the results are close to

equilibrium. As - decreases below 2�10�5, the sys-

tem departs from equilibrium because the bubbles are

separated by distances that are greater than the charac-

teristic diffusion distances on the time scale of magma

ascent. The concentration of dissolved water becomes

larger than the equilibrium concentration at a given

pressure (see Fig. 3a). In such circumstances, high

supersaturations may develop in regions of the melt

far from the bubbles. In such cases, new bubbles may

nucleate homogeneously, increasing the number densi-

ty. According to Mangan et al. (2004), about 100 MPa

overpressure has to be reached for homogeneous nu-



ig. 4. Distributions of gas volume fraction of bubbles for different

onfining pressures at the dome in slowly rising magma. Conditions

r the calculations are given in Table 1.
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cleation that correspond to an oversaturation of about 3

wt.%. Oversaturations calculated in the present results

(see Fig. 3a) are smaller (~80 MPa, 2 wt.%) and

homogeneous nucleation is not expected. Thus, even

in the case of slow extrusion flows, large deviations

from equilibrium can occur, on the assumptions of

either low bubble number densities or slow diffusion.

The gas volume fraction at x =0 km determines the

vesicularity of the magma at the top of the column

which is exposed to a lower pressure by a sudden

decompression event. For - =5�10�4, the vesicularity

at the top of the column is about 0.6, whereas as a result

of disequilibrium, for - =10�6, it is about 0.3.

Fig. 4 presents the profiles of gas volume fraction

for different dome confining pressures and

- =5�10�5. For a confining pressure of about 20

MPa, the top column vesicularity is about 0.4, it

tends to 1 as the confining pressure decreases. The

difference in the vesicularity of the top of the magma

chamber is mostly induced by different values of con-

fining pressure.
Table 2

Calculation sets

Parameter Symbol Values Dimension

Critical gas volume fraction aCR 0.6

Critical overpressure DPCR 1 MPa

Dome height hd 200 m

Parameters for crystal

influence on overpressure

h 50, 24.2

Bold numbers mark the fixed parameters if not varied.
4.2. Transient evolution of eruption

We investigate the transient flow with the VF and

OP fragmentation criteria. The discharge rate and frag-

mentation front evolutions are presented for different

sets of parameters (Melnik and Sparks, 2002a). Table 2

contains additional parameters for the unsteady model.

Fig. 5 shows results using the VF criterion. The

model with VF fragmentation criterion gives a single

eruption pulse. A peak discharge rate is reached after

several seconds and then declines gradually. For higher

-, the fragmentation front descends deeper and faster.

For - =10�6, the maximum discharge rate is about

7.5�106 kgd s�1, and for - =5�10�4, it is three

times higher. For the larger mass transfer parameter,

more gas exsolves from the melt and a magma parcel

reaches the fragmentation condition faster. As a conse-

quence, more efficient diffusion influences the frag-
ig. 5. Variation of discharge rate (a) and fragmentation front position

b) with time for different values of the mass transfer parameter, -,

or the volume fraction fragmentation criterion. Conditions for the

alculations are given in Tables 1 and 2.
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Fig. 6. Variation of discharge rate with time for different confining

pressures with VF fragmentation criterion. Although initial gas vol-

ume profiles differ significantly (Fig. 4), they do not influence the

dynamic of eruption strongly. Conditions for the calculations are

given in Tables 1 and 2.

R.M. Mason et al. / Journal of Volcanology and Geothermal Research 153 (2006) 148–165 157
Fig. 7. Variation of discharge rate (a) and fragmentation front position

(b) with time for the cases of no mass transfer and equilibrium mass

transfer of volatiles and for two cases of disequilibrium mass transfer

with overpressure (OP) fragmentation criterion. The last two cases

with finite diffusion show intermediate behaviour. Conditions for the

calculations are given in Tables 1 and 2.
mentation front depth and increases the intensity of

discharge.

Fig. 6 shows the discharge rate evolution for differ-

ent Pend from 5 MPa up to 20 MPa. The corresponding

initial gas volume profiles are presented on Fig. 4. The

wide variation of Pend does not influence the peak

discharge rate strongly. For higher Pend the initial vol-

ume fraction of gas is lower and, therefore, the denser

mixture cannot accelerate rapidly despite the large pres-

sure drop. Bubble growth in the initial stage of eruption

is not efficient due to its very short duration.

The model with OP, criterion given by Eq. (30),

produces pulse-like eruptions (Figs. 7 and 8). The

fragmentation front falls down in a series of steps.

Initially, it travels down with the rarefaction wave

after dome collapse. The fragmentation process stops

when the overpressure in the bubbles becomes less than

the critical value DPCR. With no fragmentation, the

interface between fragmented and unfragmented

magma ascends with the flow. Fragmentation starts

again when the critical overpressure is reached and

the interface moves downwards. Each fragmentation

event induces a pulse in discharge rate.

In Fig. 7, we compare the end member cases, equi-

librium and no mass transfer (Melnik and Sparks,

2002a), with our new results using the OP criterion.

Our calculation takes into account magma properties

that are not considered for the two member cases:

diffusion coefficient and bubble number density. In

order to represent the influence of these properties,

we consider variants of the most and the least intensive

mass transfer that might be relevant to natural systems
with - =1 (D =10�11 m2 s�1, n* =10
16 m�3) and

- =2�10�6 (D =10�14 m2 s�1, n* =10
12 m�3). For

comparison with the end member cases, the parameter 1
is taken to be equal to 50 as this value was used in

Melnik and Sparks (2002a).

There is a little difference in eruptive behaviour over

the first 8 s. The first peak in the discharge rate devel-

ops in the first several seconds with results being

similar for all cases. After about 8 s, the fragmentation

fronts evolve differently. For the no-mass-transfer case,

the fragmentation front stops at 1.3 km depth and the

level of unfragmented magma then tends to return to

the initial position. For the equilibrium mass transfer

case, fragmentation propagates further down to 2 km

and then after a pause descends step by step until

reaching the magma chamber. Over a 30-min period,

the no-mass-transfer case has only one discharge pulse,

the equilibrium mass transfer case has several pulses.



ig. 8. Variation of discharge rate (a) and fragmentation front position

b) with time for different initial water concentrations c0 with the OP

ragmentation criterion. The system with water-poor magma with the

west water concentration (c0=5%) stabilizes to a quasi-steady

ischarge at long time scales. Conditions for the calculations are

etailed in Tables 1 and 2.
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The new results which take account of mass transfer

processes show intermediate behaviour. For the case

closer to equilibrium (- =1) the fragmentation front

stops at 2 km, then the bubbly liquid level rises with

the flow over several minutes till the second pulse of

fragmentation starts at 33 min. For the case further from

equilibrium (- =2�10�6), the fragmentation front des-

cends to 1.5 km depth and then lifts up gradually.

There are major differences between the cases in

terms of the mass of magma erupted and in the intensity

of eruption. Here we compare results up to 30 min, after

which some of the models lose validity due to other

effects; for example, as discharge rate falls to very low

values, gas leakage from permeable magma may be-

come important so that conditions for explosive flow

are no longer achieved. The equilibrium and closer to

equilibrium cases last longer and maintain moderately

intense discharge rates up to 30 min. They produce

significant subsidiary pulses at later stages. As a con-

sequence of their long duration and greater intensity,

following the initial peak, much of the magma in the

conduit is drained. The models far from equilibrium are

much shorter in duration and decline to negligible

intensity after 3–5 min. The volume of magma erupted

is much smaller and the fragmentation remains at high

levels in the conduit. Total masses of erupted material

for 30 min are 6.6�109 kg for the equilibrium mass

transfer, 3.8�109 kg for - =1, 1.6�109 kg for

- =2�10�6, 1.6�109 kg for no mass transfer.

Fig. 8 gives results for different initial water con-

centrations in the melt of c0=0.05, 0.06, 0.07 and a

fixed value - =2�10�4. For c0=0.07, the eruption

comes to the pulsatory regime in 20 min. The fragmen-

tation front fluctuates at a depth about 3.6 km, produc-

ing discharge peaks of about 1.5�107 kgd s�1. The

fragmentation front does not reach the magma chamber

as in the equilibrium case (see Fig. 7), because the

system is still far from equilibrium. The intensity of

mass transfer increases due to higher water content,

which induces a higher water concentration gradient

in the shell around the bubble.

Fig. 9 presents discharge evolution for different

crystal contents with a fixed value - =2�10�4. Fol-

lowing Marsh (1981), the corresponding coefficients

for viscosity h(b) are equal to 1 (b =0) and 5.7

(b =0.3). In the third case for b =0.6, we calculate

h(b) with the function developed by Melnik and Sparks

(1999), h(0.6)=24.2. Here, we keep the water content

in the melt at the same value so that with decreasing

crystal content magma is progressively more water rich.

With reducing crystal content, the viscosity decreases.

If the viscosity is rather low, the fragmentation front can
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temporarily descend lower than a stabilized position

before ascending to it. For b =0, the maximum frag-

mentation depth reached is about 1.2 km; for b =0.3, it

is about 2.4 km. For b =0.6, the fragmentation front

keeps moving down over the 30 min of the calculation.

The stabilized discharges are higher for lower crystal

content. These calculations show that an initial transient

explosive flow can evolve into a quasi-steady flow with

a stabilized fragmentation depth.

Fig. 10 shows the total erupted mass (TEM) for 30

min of eruption via the mass transfer parameter. Two

curves correspond to VF (solid curve) and OP (dashed

curve) fragmentation criteria. For the minimum mass

transfer parameter - =2�10�6 the TEM values are

about 1.8�109 kg for VF criterion and 1.6�109 kg



Fig. 9. Variation of discharge rate (a) and fragmentation front position

(b) with time for different crystal contents for the VF fragmentation

criterion. The crystal-free system shows the highest peak in the

discharge rate and re-establishment of eruption at a steady rate of

discharge of about 5�106 kgd s�1 after nearly ceasing. Conditions

for the calculations are given in Tables 1 and 2.
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Fig. 10. Variation of total erupted mass (TEM) for 30 min of eruption

plotted vs. the mass transfer parameter - for VF criterion (solid

curve) and OP fragmentation criterion (dashed curve). Conditions

for the calculations are detailed in Tables 1 and 2.
for the OP criterion. For the higher mass transfer pa-

rameter, the TEM is higher, because intensity of diffu-

sion helps more material in the conduit to fragment and

increase the discharge rate. For the maximum mass

transfer parameter - =1, the TEM values are about

3.3�109 kg for VF criterion and 3.6�109 kg for OP

criterion. For both criteria the curves are close because

the most amount of material is erupted in the initial

eruption stage due to rarefaction of the volcanic col-

umn. Therefore, the TEM may differ by only a factor of

2 due to the mass transfer parameter.

A well-defined parameter set was developed during

the bVolcanic Eruption Mechanism Modeling Work-

shop.Q The workshop was organized at the University

of New Hampshire on November 2002 by Dork Saha-

gian and Alex Proussevitch. One of the outputs of the
workshop was a parameter set used for comparison of

different conduit flow models for a sustained explosive

eruption of rhyolite magma (Sahagian, 2006). We there-

fore present the output of the model for this standard set

of parameters for rhyolitic magmas (Table 3).

Fig. 11 shows the evolution of discharge and frag-

mentation front position with the VF criterion

(aCR=0.6) for the standard set (Table 3) and the stan-

dard set modified with different mass transfer para-

meters: - =1 and - =5�10�5. Over about 10 s, the

eruptions reach a peak in intensity and then decline. For

the case closer to equilibrium, the discharge rate

reaches 1.3�108 kgd s�1 over 10 s and fragmentation

goes down to 3.3 km. For the case closer to disequilib-

rium, the discharge rate reaches 4.4�107 kgd s�1 at 10 s

and the fragmentation front goes down to 300 m before

lifting up to 80 m depth. If we take lower diffusion

coefficient or lower number density of bubbles

(- b5�10�5), the system does not reach a threshold

condition for fragmentation so an explosive eruption

cannot develop. The calculation for the standard set,

when diffusion coefficient changes in the interval from

10�11 m2 s�1 to 10�14 m2 s�1 discharge, lies between

these two cases.

For the standard set, the discharge stabilizes at

4.6�107 kgd s�1, and for the close to equilibrium

case, the discharge stabilizes at 5.2�107 kgd s�1.

These results are in a good agreement with the dis-

charge value of 5.5�107 kgd s�1 obtained with the

steady model of Melnik et al. (2004) for equilibrium



able 3

tandard set for rhyolitic magma

arameter Symbol Values Dimension

onduit length L 8 km

ressure at the magma

chamber

Pch 200 MPa

ressure at the base of

the dome

Pend 10 MPa

elt water content c0 0.0585

onduit diameter d 50 m

agma temperature Tch 1123 K

agma crystal content b 0

as constant for H20 R 461 Jd kg�1d K�1

ensity of melt qm 2200 kgd m�3

ensity of crystals qx 2700 kgd m�3

olubility coefficient Cf 3.47�10�6 Pa�1/2

iffusion coefficient D Zhang formula

(Zhang and

Behrens, 2000)

m2 s�1

umber density of bubbles

in the chamber

n0 1015 m�3

ritical gas volume fraction aCR 0.6
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ig. 11. Variation of discharge and fragmentation front position with

me for the cases of no mass transfer and equilibrium mass transfer of

olatiles and for two cases of disequilibrium mass transfer with VF

ragmentation criterion. The last two cases have intermediate behav-

ur. Conditions for the calculations are detailed in Table 3.
conditions. The low discharges in all of the illustrative

cases reflect the effects of disequilibrium.

An important result, illustrated in both Figs. 9 and

11, is that in certain parameter ranges the systems

stabilize at a definite depth with a high discharge rate.

This stabilization represents the establishment of a

sustained quasi-steady explosive eruption, which then

lasts for many hours or days provided an appropriate

volume of magma exists. Our results thus display two

kinds of transient behaviour: eruptions which decline to

negligible intensity and are expected to stop, and erup-

tions that stabilize at a high intensity and become

sustained.

5. Discussion

Our modelling is related to some fundamental issues

of the variety of eruptive styles at explosive volcanoes.

Here we focus on the controls on the duration of

explosive eruptions with the behavioural extremes

being very short-lived, albeit intensive, Vulcanian

explosions and long-lived sustained Plinian eruptions.

Our discussion uses the recent eruptions of Mount St.

Helens, Pinatubo, Soufriere Hills, Montserrat and Las-

car, Chile, as examples of various behaviours.

We start by considering the case of short-lived Vul-

canian explosions which alternate with dome-growth

activity, as is observed at Soufriere Hills, Montserrat

(Druitt et al., 2002), Lascar (Matthews et al., 1997), and

Pinatubo prior to the climactic eruption (Delinger and

Hoblitt, 1999). Such Vulcanian explosions are very

short-lived (a few tens of seconds) and the volumes
erupted are only commensurate with emptying of the

upper parts of the conduit (Druitt et al., 2002). Dome

growth can resume shortly after Vulcanian explosions.

Our results confirm that such explosions can occur

under disequilibrium conditions with the fragmentation

level never reaching deep into the conduit and the most

intense peak in activity occurring in the first 10–30 s,

after which flow rates fall to negligible values in a few

hundred seconds.

We suggest that the principal processes causing the

explosive flow to stop are permeability development in

the magma and weak diffusion. Once fragmentation

stops, gas escape through permeable magma may pre-

vent the resumption of fragmentation. Here we consider

this process only qualitatively. The critical control is

whether the bubble pressure increases due to decom-

pression or decreases due to gas escape through perme-

able magma. In the high-intensity first pulse
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decompression is the dominant factor so the overpres-

sures build up; gas escape by permeable flow is negli-

gible. However, as the intensity and decompression rate

decline, a time is reached when permeable gas escape

becomes dominant so overpressure can no longer de-

velop. It is indeed plausible that the foam starts to

collapse to reconstitute bubbly magma into dense

magma. This later process may also have a role in

stopping further explosive activity since the strength

of magma and fragmentation threshold greatly increase

as porosity decreases (Spieler et al., 2004). The concept

is supported by observations on Montserrat where

strong ash-venting and seismic tremor occur for tens

of minutes following Vulcanian explosions (Druitt et

al., 2002). This strong degassing is also accompanied

by deflation as recorded by tilt meter (Voight et al.,

1999) and observations of slow rise of degassed magma

in the conduit in the following hours.

An intermediate style of activity between the Vul-

canian and sustained Plinian eruptions can be deduced

from observations at Soufriere Hills and Mount St.

Helens. On September 1996 at Soufriere Hills, a sub-

Plinian explosive eruption occurred for a period of

about 50 min, following a major episode of a dome

collapse (Robertson et al., 1998). After the climactic

eruption of 18 May 1980 at Mount St Helens, there

were several episodes of sub-Plinian eruptions in the

following months of 1980. Each explosive eruption

lasted a few tens of minutes and was then followed by

episodes of dome growth lasting a few days (Swanson

and Holcomb, 1989). We suggest that this style of

eruption corresponds to cases where the magma prop-

erties and conditions were closer to equilibrium so that

the explosive eruption could reach to greater depths in

the conduit and could be sustained at higher intensities

for significantly longer. Our models show that a sys-

tem that can be maintained closer to equilibrium has

the attributes of such sub-Plinian events associated

with dome growth. Observations indicate that the

sub-Plinian eruptions of September 1996 at Soufriere

Hills reached depths of 3–4 km (Robertson et al.,

1998). This eruption was also characterized by several

short seismic pulses which Melnik and Sparks (2002a)

interpreted as corresponding to the strong secondary

pulses predicted in the models. Such eruptions may

also cease and activity transform to dome extrusion,

because the intensity declines to the point where gas

escape becomes important and overpressures required

for further explosive activity can no longer be

attained.

The other end member style of explosive eruptions

are Plinian eruptions that can last several hours, in-
volve large volumes of magma and high intensities

and can be sustained or even increase with time. From

a hazard point of view, it is important to understand

what the critical factors are that allow such a sustained

explosive eruption to develop. The size of the mag-

matic system cannot be a factor, for example. It is

now clear that the Soufriere Hills chamber is substan-

tial with over 0.5 km3 of magma erupted so far, but

conditions for a sustained eruption have never devel-

oped in this system. The Vulcanian events and single

sub-Plinian event on Montserrat never evolved into

sustained eruptions. At Pinatubo, there was an earlier

episode of short-lived explosive eruptions alternating

with dome growth, which led into a major Plinian

eruption. In contrast, at Mount St. Helens the sus-

tained Plinian eruption of 18 May 1980 occurred

early and later the system only being capable of

short-lived sub-Plinian explosive eruptions alternating

with lava dome growth.

Our model sheds some light on these matters. We

have established that magma viscosity and water con-

tent may be important factors. By varying the crystal

content, we could model eruptions that evolve quasi-

steady states with a balance between magma flow

from the chamber into the conduit and outflow into

the dispersion zone with the fragmentation level being

at the stationary location in the conduit. In this case,

fragmentation never ceases and conditions for sus-

tained discharge are achieved. The controlling para-

meters that favour establishing of such conditions are

relatively low magma viscosity in the deep parts of the

conduit, which allows an adequate supply of fresh

magma, so that flow rate does not drop to negligible

values and gas escape through permeable magma

never becomes important in suppressing and stopping

explosive activity.

At least qualitatively, these interpretations based on

modelling results are consistent with observations at

the various case study volcanoes. For Montserrat, the

andesite magma is very phenocryst rich (Murphy et

al., 2000) and so has an unusually high viscosity and

low bulk water content (~2.0–2.5% H2O). We suggest

at Montserrat that the initial unsteady explosive flows

always decline to very low intensity where fragmen-

tation stops and gas escape becomes dominant, killing

off the possibility of sustained explosive eruption

developing. At Mount St. Helens, conditions were

appropriate for more sustained discharge because

gas-rich and sufficiently low viscosity magma had

intruded at a high crustal level. After explosive dis-

ruption of the cryptodome, a sustained explosive erup-

tion was able to develop so that a significant volume
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of the magma chamber (~0.2 km3) was expelled. We

suggest that following the climactic eruption, the

chamber viscosity increased significantly, perhaps

due to the combination of crystallization and gas

loss resulting from the 18 May 1980 eruption. This

possibility is supported by the petrological observa-

tions of higher crystallinities in later products of this

eruption (Cashman, 1992; Blundy and Cashman,

2001). Combination of parameters in the post-18

May system never allowed conditions for sustained

Plinian-style eruption to develop again.

There remain several unresolved issues and clear

opportunity for further model development. One of the

strong controls on the models is the bubble number

density which we have used as a free parameter. This

parameter has an important role in controlling how far

from equilibrium the system can get. Our model is

also simplified by only having a single nucleation

event. Thus, although the models span parameter

ranges that seem reasonable for most magmatic sys-

tems, the time history of bubbles nucleation is not

included. It could well be that some of the models

explored are not realized in nature simply because

physical conditions either prevent or allow high nu-

cleation rates and bubble densities. Future models will

need to incorporate nucleation kinetics to identify

which scenarios are realistic.

In general, we can state the following on the basis

of present understanding of nucleation. High crystal

content magmas may favour heterogeneous nucleation

and high bubble densities, especially if large numbers

of microlites are formed. High bubble density in its

turn favours development of magma permeability,

bubble coalescence and high viscosity, all of which

are factors that tend to inhibit explosive eruption at

shallow levels, by allowing gas to escape. Very large

supersaturation of 70–140 MPa are required to cause

homogenous nucleation in melts (Hurwitz and Navon,

1994; Mangan and Sisson, 2001). In a crystal-poor

magma, those values can be achieved even during

weak heterogeneous nucleation. Then intensive homo-

geneous nucleation takes place and results in very

high bubble number densities. Above the nucleation

threshold, magma can be maintained close to equilib-

rium. The low viscosity of crystal-poor magmas

favours rapid inflow and supply to the conduit from

chambers. In general, therefore, crystal-poor gas-rich

magmas favour Plinian style eruptions. For crystal-rich

magmas, the bubble nucleation level that is expected

to be deep and large supersaturations are more diffi-

cult to develop during slow magma ascent. Bubble

number density will be determined by the crystal
number density and can be expected to be quite low

(109–1011 m�3). During slow ascent, the crystal-rich

magmas can still maintain equilibrium or can be closer

to the equilibrium but can be expected to be far from

equilibrium at the onset of explosive activity. The

combination of high viscosity in crystal-rich magmas

and preexisting bubbles at depth favour Vulcanian and

sub-Plinian style eruptions.

Present models of magma flow are ready to incor-

porate the development of magma permeability as well

as nucleation kinetics. It seems likely that permeability

is a critical factor in determining whether an eruption

evolves into a sustained Plinian event that can erupt a

significant proportion of a chamber or is characterized

by short-lived explosions and lava dome growth. Un-

fortunately, the processes of bubble nucleation and

coalescence are still not sufficiently well understood

to be incorporated quantitatively into models, although

simplified models can be developed with plausible

parameterizations of the processes.
6. Conclusion

Our model simulations indicate that mass transfer

processes are likely to play an important role in

determining eruptive style. Our study has focused on

the initial unsteady stages of an explosive eruption

following a triggering event that suddenly causes a

large pressure drop in a column of magma. The

models simulate a range of behaviours from short-

lived but intense explosions lasting just a few tens

of seconds, to longer eruptions which can last tens of

minutes, but eventually decline to negligible flow

rates, to those eruptions that evolve into quasi-steady

sustained eruptions and might last hours or even days.

Comparable behaviours can be deduced from the

observations of different styles from Vulcanian explo-

sions to more prolonged eruptions which decline in

intensity after an initial peak to long-lived sustained

explosive eruptions. The model supports the proposal

of Melnik and Sparks (2002a) that this spectrum of

behaviours represents conditions in the eruptive sys-

tem that range from near disequilibrium to those that

are close to equilibrium.

For the parameters chosen in this study, eruptive

conditions never quite reach the end-member situa-

tions. The extent of disequilibrium is principally

governed by a parameter, x =n*
2/3D, which is a

measure of efficiency of mass transfer and by a

range of parameters that offset the time-scales of

magma flow and decompression. Factors that favour
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short Vulcanian eruptions include low bubble densi-

ties, low gas diffusivity, low dissolved water concen-

tration and high magma viscosity induced by high

crystal content. Factors that favour the development

of sustained explosive eruptions include high bubble

densities, high magma gas diffusivity, high dissolved

water concentration and low magma viscosity. In

addition, development of magma permeability, allow-

ing gas escape, is identified as a key process (Jaupart

and Allegre, 1991). Under such conditions gas es-

cape through permeable magma may prevent the

system moving back to explosive conditions and

thus explain why dome growth can resume. For the

sustained case, flow rates and fragmentation rates

never decrease sufficiently for gas escape to become

important.
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Appendix A. Numerical Technique

The Lax-Friedrichs conservative method (Guang-

Shan and Tadmor, 1998) is applied for unsteady flow

in the conduit. We use it since our system of Eqs. (1–5)

can be represented in the conservative form

Bu

Bt
þ Bf uð Þ

Bx
¼ w u; tð Þ

u ¼ q; qe;Qð Þ Q ¼ qm

f uð Þ ¼ Q; qem;P þ qm2
� �

w ¼ 0; J ; � qg � k
32lav

d2
m

� �
ð38Þ

The method works on the equally spaced x-grid

with step Dx. We chose time step Dtn to satisfy CFL

conditions (Guang-Shan and Tadmor, 1998). The x-

grid has to be staggered on 0.5Dx on the odd time

step Dtn: xi
n =xi

n + 1 +.5Dx. At any time step, the

vector function u(x) is fitted by a piecewise-linear
approximation. In order to account for discontinuities

we use the Minmod function, which chooses the best

appropriate slope uVi(xi
n,tn) from numerical deriva-

tives for the approximation:

Minmod d1; d2; d3ð Þ

¼
0 9k; l : dkdlV0

mini dið Þ 8k dkb0

maxi dið Þ 8k dkN0

8<
: ð39Þ

Here, instead of parameters di left, right, and central

derivatives are substituted. The principal method for-

mulas follow from the approximation of Eq. (38) in the

integral form on the rectangle {(xi
n,tn), (xi

n +Dx,tn),

(xi
n,tn+1), (xi

n+Dx,tn+1)}. The method has two semi-

steps: predictor that approximate the values

u(xi
n,tn +0.5Dtn), and corrector that calculates the

values u(xi
n +.5Dx,tn+1) on the staggered grid.

u xi; tn þ :5Dtnð Þu xi; tnð Þ þ Dtn

Dx
f V u xi; tnð Þð Þ

u xi þ :5Dx; tnþ1ð Þc 1

2
u xi; tnð Þ þ u xiþ1; tnð Þð Þ

þ 1

8
uV xi; tnð Þ � uV xiþ1; tnð Þð Þ

þ Dtk

Dx
f u xiþ1; tn þ :5Dtnð Þð Þ � f u xi; tn þ :5Dtnð Þð Þð Þ

ð40Þ

To estimate the accuracy of this method, the tran-

sient task was solved until stabilization and stabilized

profiles were compared with profiles from the steady-

state solution that was solved by the integration of

ODE. For 500 cells in the x-grid, the steady and stabi-

lized pressure profiles coincide up to 0.1%.
Appendix B. Boundary conditions

The LxF method deals with staggered grid that

requires special treatment of boundary conditions. If

the scheme executes on an odd time step, two vectors

have to be calculated additionally for the next step: u(0,

tk) and u(L, tk); after an even time step four vectors

have to be calculated u(� .5Dx,tk), u(.5Dx,tk),

u(L� .5Dx,tk), and u(L +.5Dx,tk). To obtain these

values, we make the linear projections of pressure,

gas volume and discharge fraction and restore vectors

u on the boundaries accordingly to Eqs. (4–7), (11),
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(12). As pressure in the chamber (Pch) is fixed, we

make projection with boundary data:

k ¼ 2z P :5Dx; tkð Þ ¼ 1

3
P 1:5Dx; tkð Þ þ 2

3
Pch

P � :5Dx; tkð Þ ¼ 2Pch � P :5Dx; tkð Þ

k ¼ 2zþ 1 P 0; tkð Þ ¼ Pch ð41Þ

As the discharge is not fixed at the boundaries, its

linear projection is built with its closest known values.

To avoid disturbances from the upper boundary condi-

tions the initial grid was enlarged with additional ghost

cells. The numerical technique greatly differs from the

one applied in Melnik and Sparks (2002a, see Appen-

dix) and, unfortunately, it hampers the precise congru-

ence of the variants presented in Fig. 7 that has to take

place in the first seconds of eruption.
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