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Abstract

Least squares linear regression is so popular that it is sometimes
applied without checking that its basic requirements are satisfied. In
particular, in studying earthquake phenomena, the conditions a) that
the uncertainty on the independent variable is at least one order of
magnitude smaller than the one on the dependent variable, b) that
both data and uncertainties are normally distributed, and c) that
residuals are constant are at times disregarded. This may easily lead
to wrong results. As an alternative to least-squares, when the ratio
between errors on the independent and the dependent variable can
be estimated, orthogonal regression can be applied. We test the per-
formance of orthogonal regression in its general form against Gaus-
sian and non-Gaussian data and error distributions and compare it
with standard least square regression. General orthogonal regression
is found to be superior or equal to the standard least squares in all
the cases investigated and its use is recommended. We also compare
the performance of orthogonal regression versus standard regression
when, as often happens in the literature, the ratio between errors on
the independent and the dependent variables cannot be estimated and
is arbitrarily set to 1. We apply these results to magnitude scale con-
version, which is a common problem in seismology, with important
implications in seismic hazard evaluation, and analyze it through spe-
cific tests. Our analysis concludes that the commonly used standard
regression may induce systematic errors in magnitude conversion as
high as 0.3-0.4, and, even more importantly, this can introduce ap-
parent catalogue incompleteness, as well as a heavy bias in estimates
of the slope of the frequency-magnitude distributions. All this can
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be avoided by using the general orthogonal regression in magnitude
conversions.

1 Introduction

Linear least squares fitting is the simplest and most commonly applied technique
for establishing a linear (or linearized) functional relation between two variables.
However, the mathematical and statistical validity of this method is based on
stringent constraints, the most important of which is that the independent variable
(x) must be known to a much greater accuracy than the dependent variable (y).
It follows that this regression can never be inverted, that is, the regression of y
against x cannot be inverted to derive the regression of x against y. This suggests
that y = α+ β x should more properly be written as y ← α+ β x.

Linear least squares is applied very frequently, to the point where familiarity
may induce users to forget these constraints, and this may lead to wrong results.

Orthogonal regression is a more appropriate technique to deal with least squares
problems in which dependent and independent variables are both affected by un-
certainty. This technique is analyzed here in its general formulation (GOR) and its
performance is compared to that of standard least squares (SR) and inverted stan-
dard least squares regression (ISR), that is, the standard regression in which the
roles of dependent (y) and independent (y) variables are reversed. SR and ISR are
expected to give very different results not only when errors on X and Y are very
different but also when errors are similar and large. The general orthogonal re-
gression technique is then applied to a couple of important seismological problems:
magnitude conversion and the way this affects the magnitude distribution.

Explanation of notation. In this paper, we use the upper case letters (for
example, X, Y ) to indicate the true value of a variable and the lower case let-
ters (for example, x, y) to indicate the value of the same variable affected by
(measurement) errors.

Measuring the size of seismic events. The problem of magnitude
conversion. Estimating the hazard potential of an earthquake implies mea-
surement of the severity of the shaking in the frequency band to which buildings
are sensitive, that is, typically, 0.1-10 Hz, while the ultimate effect will depend
also on event duration and on local resonances. Energy magnitude (Me, Choy
& Boatwright, 1995) and moment magnitude (Mw), which is based on the scalar
seismic moment (M0) are the most relevant in this respect. The seismic moment
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(which is a function of the product of the rupture area and the average displace-
ment) does not tell us much about the relative amount of energy released at the
frequencies relevant to the seismic hazard estimates (cfr, e.g., NMSOP, Chapter
3).

Ignoring the point that a single indicator of size may be inadequate in seismic
hazard estimates, the state of the art is to use Mw on account of its better definition
in seismological terms. Unfortunately a moment-tensor solution can be practically
worked out only for sizeable events, so, for the bulk of the events in any seismic
catalogue, the size estimate is made on the basis of magnitude or, for the historical
part of the catalogue, on the basis of intensity. Local magnitude (ML), surface
wave magnitude (Ms), body wave magnitude (mb) and duration magnitude (Md)
are the magnitudes most commonly reported in seismic catalogues (see Table 1
for magnitude acronyms). This variety of indicators of earthquake size reflects the
specific instrument used (e.g. the Wood-Anderson seismometer to produce ML

data) as well as the properties of the seismic sequence. For example, amplitude
saturation, inhibiting the evaluation of ML or mb for strong earthquakes, led to
the introduction of the duration magnitude Md, which in turn is not immune from
problems, not least, that it lacks a unique definition (see e.g. Lee et al., 1972
for the procedure followed in California and Gasperini, 2002, for the procedure
adopted in Italy). Additionally, in seismic swarms or aftershock sequences, the
beginning of an event may overlap the end of the previous one, making the Md

estimate impossible or highly inaccurate. Finally, a wide variety of events can
lead to systematic errors in the reported magnitudes, such as deviations in the
instrumental calibration or changes in the seismic equipment (Habermann, 1986),
changes of the agency operating the earthquake recording network, introduction of
new software for the analysis, removal or addition of seismograph stations as well
as changes in the magnitude definition (Zúñiga and Wyss, 1995). Such systematic
errors can be very large, as much as 0.5 magnitude units, as found by Pérez
(1999). In this jungle of parameterizations of earthquake size, homogeneous unified
databases have always been sought and effective magnitude conversion functions
are thus necessary. Standard regression is usually applied in the literature to
estimate the value of a random variable (y) corresponding to a certain value of the
independent (X) variable. If the X-error is small compared to the Y -error then
the Y -estimates are correct.

For uniformity we might wish to adopt Mw, but, given the composition of
seismic catalogues, we will need to estimate Mw from measurements of ML, or
some other magnitude, which have a much lower accuracy (Kagan, 2002b; 2003;
Table 2). Hence, we are interested in an orthogonal regression in which the error
on the variable X is larger than or comparable to the error on variable Y . In this
paper we analyze this problem with respect to regression. Finally, we demonstrate
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the method in action through an application to Italian seismicity.

Magnitude distribution. The frequency-magnitude distribution of earth-
quakes (Ishimoto and Iida, 1939, Gutenberg and Richter, 1944), often called the
Gutenberg-Richter or G-R relation, is a basic ingredient of seismic hazard esti-
mates and is also used to test the completeness of seismic catalogues. The G-R
relation states that

logN(m) = a− bm, (1)

where N(m) is the number of events with magnitude ≥ m and a, b are constants
(b ≈ 1.0). Tinti and Mulargia (1985) studied the effect of magnitude errors on the
G-R relation and found that they do not practically affect the b but only the a
value. If we consider earthquakes with magnitude mz and larger, the probability
density function for the G-R equation 1 can be written in the form

f(d) = B exp−Bd d ≥ 0, (2)

where d = m − mz and B = b loge 10 ' loge 10 (Utsu, 1999; Kagan, 2005). We
now show how the b-value of the frequency-magnitude relation is affected when
the magnitudes used are converted from other magnitudes through standard or
orthogonal regressions. The G-R b-value will be calculated through the Maximum-
Likelihood Method, since neither standard nor orthogonal regression would apply
(see Section 4).

2 The magnitude conversion problem

However refined it may be, no analysis can give results of better quality than
that of the data it employs. Regarding earthquake size, data are often referred to
moment magnitude, Mw, which is linked to the seismic scalar moment M0 through
the relation

Mw =
2

3
log10 M0 − C [M0 in Nm]. (3)

Hanks and Kanamori (1979) suggest C = 6 + 1
30 but for simplicity of expression

we use C = 6.0, as in Hanks (1992). Moment magnitude, which can be computed
when a moment-tensor solution is available, has a number of advantages over other
magnitude definitions: 1) it is a physical parameter of the earthquake, which allows
the earthquake process to be quantitatively linked to tectonic deformation (cf.
Kagan, 2002a; Bird and Kagan, 2004); 2) it does not saturate for large earthquakes;
3) it allows determination of the moment magnitude with an accuracy 2-3 times
higher than with other magnitudes (cf. Kagan, 2002b; 2003). However, we must
note that these properties apply only when Mw is estimated directly from the
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seismic recording and this is generally true for a very small percentage of events
(the larger ones). In all other cases Mw is a value converted from other data, so
the benefits listed above do not fully apply.

The standard least square linear regression procedure has so far been the
method most commonly used to find the relation between different types of magni-
tude (see, e.g., Gasperini and Ferrari, 2000; Gasperini, 2002 and Bindi et al., 2005
for the Italian catalogues, Braunmiller et al., 2005 for Switzerland). However, one
can argue that this method is misapplied: 1) because both the dependent and
the non-dependent variable are affected by similar errors and this contradicts the
basic assumption of the standard regression method, 2) because magnitude is not
a normally distributed variable. Although other methods exist (see Castellaro and
Mulargia, 2006), the most general solution is general orthogonal regression. In this
paper we test the performance of this method in the case of magnitude conversion
(see Section 3).

We start by summarizing the properties of orthogonal regression in its general
formulation (GOR) and then proceed to test its performance through simulations
on Gaussian and non-Gaussian data sets and error distributions. Next, we apply it
to find the relations between Mw and other magnitudes. Last, we explore the bias
induced by the use of the standard regression through a specific non-parametric
test. We analyze the performance of the different procedures on simulated data
sets in order to study the influence of the regression method. Investigating the
practical problem would add several difficulties (threshold difference for both mag-
nitudes, non-linearity of regression curves, spatial and temporal inhomogeneities
of earthquake catalogs, and other less known aspects of magnitude determination)
which are left to future studies.

The dataset used for these analyses on real data is described in Table 2. It
consists of 109 events, recorded in Italy between 1981 and 1996, for which both
Ms and Mw magnitudes were estimated, of 121 events for which ML and Mw

magnitudes are available and of 204 events with mb and Mw. For each magnitude
type an estimate of the global standard deviation σ (computed for earthquakes
with at least 3 station estimates) is also given (Table 2) and it shows clearly that
mb has the largest standard error.

3 General orthogonal regression

Standard least squares regression assumes that the error on the independent vari-
able (X) is zero and that the error on the dependent variable (Y ) is normally dis-
tributed and approximately constant over the whole regression domain (cf. Draper
and Smith, 1998). This means that a bell-shaped Gaussian curve exists on the y
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axis, centered at each ‘true’ value Yi, and that each measured value yi is sampled
on such a distribution (Figure 1a). The adjustment from the experimental value
yi to the ‘true’ value Yi is thus made along vertical lines as shown in Figure 1b
(see also York, 1967).

If an error is also present on the X variable, each measurement is sampled from
a two-dimensional normal-distribution centred at the ‘true’ value (X,Y) and with
major and minor axes equal to σx and σy (Figure 2a). In other words the paths
from the experimental (xi, yi) to the ‘true’ (Xi, Yi) follows lines with slopes which
depend on the size of the errors affecting x and y. For constant σx and σy the slope
of the lines from the experimental to the ‘true’ line is the same (Figure 2b and York,
1967) and, in the case of general orthogonal regression, is the weighted orthogonal
distance. The use of standard regression in the latter case is like projecting xi on
the abscissa of the sampled point, which again results in a Gaussian distribution.
However, in case of magnitudes, non-linearity in the m1÷m2 relation, saturation of
magnitude scales, additive and multiplicative noise and a host of other phenomena
may result in a distortion of the Gaussian distribution on y. Since the least square
estimator of a regression coefficient is vulnerable to gross errors and the related
confidence interval is sensitive to non-normality of the parent distribution, it is
important to test its validity.

General orthogonal regression is designed to account for the effects of mea-
surement error in predictors (Madansky, 1959; Fuller, 1987; Kendall and Stuart,
1979, chap. 28; Carroll and Ruppert, 1996). Its general lines can be outlined as
follows: let us assume that two variables Y and X are linearly related and that
their measurement errors ε and u are independent normal variates with variances
σ2
ε and σ2

u respectively, i.e.
y = Y + ε, (4)

x = X + u, (5)

and the regression-like model

Y = α+ βX + ε̂, (6)

where ε̂ = ε+ u. Now consider the error variance ratio

η =
σ2
ε

σ2
u

, (7)

where σ2
ε = σ2

y and σ2
u = σ2

x, provided that σ2
ε and σ2

u are constants. Orthogonal
regression (OR) is often defined as the case in which η = 1. The general orthogonal
regression estimator is obtained by minimizing

n∑

i=1

[
(yi − α− βXi)

2

η
+ (xi −Xi)

2

]
(8)
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in the unknowns, that is α, β, Xi. For η = 1 we have the squared Euclidean
distance of the point (xi, yi) from the line (Xi, α+ βXi). If η 6= 1 then equation 8
represents a weighted orthogonal distance.

Let us call s2
y, s

2
x and sxy the sample variance of the y, x and the sample

covariance between y and x. The general orthogonal estimator of slope is then

β̂ =
s2
y − ηs2

x +
√

(s2
y − ηs2

x)2 + 4ηs2
xy

2sxy
, (9)

and the estimator of the intercept is

α̂ = y − β̂x, (10)

where y and x stand for the average values.
Note that while the standard regression predicts Y from X, since it assumes

that no error is present in measuraments of X (i.e. x = X), orthogonal regression
predicts Y from x and y, as shown by equation 8 above.

As demonstrated in Fuller (1987), in practice, the following formulas can be
used to estimate the errors on the regression parameters:

σ̂2
β̂

=
σ̂xsv + σ̂usv − σ̂2

uv

(n− 1)σ̂2
x

, (11)

and
σ̂2
α̂ =

sv
n

+ x2σ̂2
β̂
, (12)

where

sv =

∑n
i=1[Yi − y − β̂(Xi − x)]2

(n− 2)
=

(n− 1)(η + β̂2)σ̂u
(n− 2)

, (13)

σ̂uv = −β̂σ̂u, (14)

and

σ̂x =

√
(s2
y − ηs2

x)2 + 4ηs2
xy − (s2

y − ηs2
x)

2η
, (15)

σ̂u =
s2
y + ηs2

x −
√

(s2
y − ηs2

x) + 4ηs2
xy

2η
. (16)

Under the assumption that the variations of the observations about the line are
normal, that is that the errors are all from the same normal distributions N(0, σ2),
it can be shown that the 100(1− α)% confidence limits for β and α are

β ± t(n− 2, 1− 1

2
α)
σ̂xsv + σ̂usv − σ̂2

uv

(n− 1)σ̂2
x

, (17)
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α± t(n− 2, 1− 1

2
α)

(
sv
n

+ x2σ̂β̂

)
, (18)

where t(n− 2, 1− 1
2α) is the 100(1− 1

2α) percentage point of a t-distribution with
(n− 2) degrees of freedom (e.g., Kendall & Stuart, 1979).

3.1 Simulations

In principle, the theoretical likelihood function can be obtained for the main vari-
able (magnitude) in x and y distributed according to the exponential (G-R) law
and assuming that errors in both are Gaussian. Wetherill (1986, p. 284) states
that if the x-distribution is non-Gaussian, then it is possible in principle to obtain
estimates of regression parameters and mentions that Reiersol (1950) considered
this problem in general. However, one should not expect that such a theoretical
derivation would be of great value in the magnitude regression problem since other
issues such as magnitude threshold variation (Katsura and Ogata, 2004) and non-
linearity of magnitude relations blur the picture. The most appropriate technique
to deal with all these problems seems to be a simulation (see also Stefanski and
Cook, 1995).

In this Section we analyze the performance of general orthogonal regression
compared to standard least square regression on:

1. normally, lognormally and exponentially distributed variables,

2. normally, lognormally and exponentially distributed errors,

3. different amount of errors.

The performance of the GOR method is first analyzed versus SR and ISR
by studying the distribution curves of the β values (that is the slope coefficients)
calculated on 103 regressions of 50 different (x, y) sets generated according to some
fixed criteria: all the (x, y) sets have been produced starting from x : y = 1 : 1
and adding noise to x and/or y according to different criteria. The true result
of the regression is then expected to be β = 1 in all cases. This value is chosen
as the most representative of the magnitude regression problem. Large deviations
from this should suggest the presence of saturation effects or other problems in the
magnitude measurement. Noise is added in 4 ways: we explore the case in which
η = 25, where η is defined as in equation 7, that is when an error on Y 5 times
larger than the error on X is added. Second, we explore η = 4, that is the case
in which the errors on Y are twice the size of the errors on X; third η = 1, the
case in which errors on Y and X are comparable in size. Last, we use η = 0.25,
that is the case in which the errors on X are twice the errors on Y . Since the
requirements of SR apply strictly only when η >> 1 and when variables and their
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errors are normally distributed, we can expect a priori SR to perform well only in
the first case (η = 25) and with variables and errors normally distributed. In the
fourth case ISR is expected to perform as GOR and as SR in the case η = 25, so
this case will be presented only in Section 3.1.1.

3.1.1 Normal distributions and errors

When data and errors are normally distributed and the error on Y is much larger
than the error on X, SR and GOR have a practically identical performance, as
shown in Figure 3a which shows the case of errors on Y 5 times larger than the
error on X. The β distribution curve of the ISR, as obvious, performs much worse
since error is mostly on the dependent variable.

When the error on Y is twice that on X (Figure 3b), SR regression performs
slightly worse than GOR while ISR gives estimates in error by 5%.

When errors on Y are comparable to errors on X (Figure 3c), GOR performs
better than SR and ISR. The discrepancy between SR and ISR depends on σx and
σy and increases with data scatter (see Section 3.4 and also Fig.2 and 3 in Bormann
and Wylegalla, 1975; and Fig. 3 and 4 in Bormann and Khalturin, 1975).

Last, when errors on Y are half the size of errors on X, GOR performs always
well while, as expected, SR does not. This case corresponds to Figure 3a where
error size on X and Y has been exchanged. ISR is then expected to perform as SR
in case a above, that is approximately as GOR.

3.1.2 Exponential distributions and Gaussian errors

We now consider sets of data distributed according to exponential functions and
with Gaussian errors. This is a case of interest in seismology since frequency-
magnitude is an exponential distribution affected by Gaussian errors (see equations
1 and 2).

As might be anticipated, the performance of the various approaches differs.
When errors on Y are 5 times larger than errors on X (Figure 4a) and when errors
on Y are twice those on X (Figure 4b), the β distributions obtained with GOR
and SR are comparable even if the SR distribution appears to be biased towards
smaller values by a few percent.

GOR performance remains good while SR decays with decreasing error on Y
ratio over error on X (Figure 4c). We note that ISR also performs poorly in the
whole range of η considered.
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3.1.3 Exponential distributions and errors

We now consider sets of data distributed according to exponential functions and
with exponential errors. We take into account this case since we consider it as
worse than exponentially distributed data with normal errors (Section 3.1.2) and
we want to see whether GOR continues to perform well under such unfavourable
circumstances.

As in Section 3.1.2, when errors on Y are 5 times larger than errors on X
(Figure 5a), the β distributions obtained with GOR and SR are comparable even
if the SR distribution appears to be biased towards smaller values by a few percent.

GOR performance remains good while SR progressively decays with decreasing
error on Y ratio over error on X (Figure 5b, c). We note that ISR also performs
poorly in the whole range of η considered.

3.1.4 Lognormal distributions and errors

When used on lognormally distributed data and errors, with errors on Y 5 times
larger than error on X, GOR performs better than SR, which appears to be biased
to values smaller than real by a few percent (Figure 6a). GOR performs much
better than SR and ISR in all the other cases investigated (Figure 6b, c).

3.2 What happens if η is unknown?

It often happens (see Section 3.5) that when the ratio between errors on the Y
and X variables is unknown, it is assumed to be equal to unity, that is η = 1,
which formally coincides with the OR assumption. In some cases this assumption
is justified and is expected to be not too far from reality. We explore the effects
of this assumption when η 6= 1.

First we considered a set of lognormal data and error (as in Figures 6a-c) with
a true η = 0.25, that is, error on X twice that on Y . When η = 1 is used instead
of η = 0.25, one still obtains a better performance than SR, as it can be seen in
Figure 7a, although in a less evident way than Figures 6a-c, where the true η was
applied.

In any case, the use of η = 1 can lead to wrong results if the true η is very
large, as shown in Figure 7b. Here the β coefficients of the regressions have been
computed for the OR (η = 1) instead of the correct value η = 25 on a set of
lognormally distributed data and errors. This case corresponds to that studied in
Figure 6a with the correct η.

In light of this and of the considerations in the previous Section, the use of
GOR is recommended in all cases, provided that at least an order of magnitude of
η is available.
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3.3 Does magnitude distribution induce a bias in magnitude-
magnitude regressions?

Having established the superiority of GOR with respect to SR in general terms, let
us now test the GOR on a typical seismological problem. In order to verify whether
the exponential distribution of earthquake magnitudes, which has an upper and
lower cutoff (cf. Kagan, 2002a), induces a bias in magnitude vs. magnitude re-
gressions according to different scales, we simulate magnitude-frequency relations,
add errors, remove events below the lower threshold and then run standard and or-
thogonal regressions. To this end, we created a synthetic database of 120 (m1,m2)
pairs of magnitudes distributed according to an exponential-distribution and af-
fected by a Gaussian error. The parameter B of the exponential distribution is
set to loge 10 = 2.3, corresponding to b ' 1 in the G-R relation (equation 1 and
2, Section 4); σm2 is fixed to 0.18 and σm1 is set to 0.22 as in Table 2. We should
therefore expect that ISR gives more robust results compared to SR. The number
of pairs was fixed to such a small value in order to be similar to the true database
available (Table 2). We note that m1 and m2 have been generated using the same
distribution, hence on average m1 = m2, i.e., contrary to Figures 10-12 which
represent real cases and which will be discussed later on, there is no systematic
bias in magnitude relation. The results of the standard and orthogonal regression
on this data set are reported in Figure 8, which shows the substantial systematic
error (biases) introduced by the use of standard regression. For example, suppose
that we measured m1 = 6.0. This value would give m2 = 5.70 according to the SR,
m2 = 6.24 according to the ISR but m2 = 6.00 according to the general orthogonal
regression. Systematic errors of opposite sign would occur for m1 approximately
lower than 4.5.

Since this set is composed of synthetic data, generated by a simulation which
does not include data incompleteness at low magnitude, there is no lower complete-
ness threshold and the cumulative frequency-magnitude distribution is a line with
slope equal to −1 without any deviation from linearity. However, if by analogy
with what is usually done in seismology we consider only events above a magnitude
threshold (say 4.5) higher than the simulation threshold (Figure 9) we still obtain
different regression laws and, as expected since η < 1, the ISR is closer to GOR.
For m1 = 6, GOR would estimate m2 = 6.18, SR would estimate m2 = 5.79 and
ISR would produce m2 = 6.46. Again, the most correct results are given by GOR.

3.4 Application

We now apply orthogonal regression to the real datasets of Table 2 and find the
regression coefficients and error estimates reported in Table 3. The estimates of
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standard deviation σ of the different magnitudes, needed to derive the η value,
have been computed from the cases in which more than 3 stations recorded and
classified the same earthquake. Although they may be rough estimates, the relative
values appear reasonable considering how the different magnitudes are derived from
earthquake recordings.

As can be seen from Figures 10, 11 and 12, the general orthogonal regression
estimator (GOR) has the property of lying between the slope of the standard
regression of y on x (SR) and the inverse of the slope of the standard regression of
x on y (ISR). It can also be noted, as already found by Bormann and Wylegalla
(1975, Fig. 2 and 3) and Bormann and Khalturin (1975, Fig. 3 and 4), that the
slope difference between SR and ISR increases with data scatter.

Considering the Mw ÷mb regression (Figure 12) we observe that the general
orthogonal regression slope is much closer to the inverted least square regression
slope when mb is taken as the dependent variable, and in fact η < 1.

The above examples show that normal regression may introduce significant er-
rors, (from +0.1 to -0.3 in the example of Figure 8) during magnitude conversion.
Moreover, as Figures 10-12 demonstrate, a substantial systematic bias is present
in observational data. Non-linearity in the magnitude relation, which is obvious
in the Mw ÷mb plot, adds to conversion errors. In conclusion, this bias, together
with improper accounting for magnitudes’ uncertainty, leads to significant distor-
tion of seismicity and of any seismic hazard estimate based on them. Therefore,
general orthogonal regression should always be used, rather than standard regres-
sion, in magnitude conversions, provided that at least an order of magnitude of η
is available.

In addition, note that if the differences between magnitudes were due to ran-
dom errors, we should see α-values of the order of 0.0, and β-values of the order
of 1.0 as in Figures 8 and9. Clearly this is not a case, and the reason for this
is not only incorrect use of regression. Magnitudes are empirical quantities, and
their inter-relationship was established through various regression relations, so one
should not expect that they rigorously characterize earthquake size. Since the β-
values often are substantially different from 1.0, this should strongly affect the
b-value (of the G-R relation) bias (see more in Section 4).

3.5 Orthogonal regression in the seismic literature: a
critical review

Orthogonal regression has been used several times to study European seismicity
(Bormann and Khalturin, 1975 and Ambraseys, 1990; Panza et al., 1993; Cav-
allini and Rebez, 1996; Kaverina et al., 1996; Gutdeutsch et al., 2002 and 2005;
Grünthal and Wahlström, 2003; Stromeyer et al., 2004) and global magnitude re-
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lations (Bormann and Wylegalla, 1975). It has also been applied to find the slope
of the magnitude-intensity relation (cf. Cavallini and Rebez, 1996; Gutdeutsch et
al., 2002; Stromeyer et al., 2004). All these applications dealt with the special
case (OR) of assuming equal errors on the dependent and independent variables,
i.e. η = 1 in equations 7-9, whereas we deal with the general orthogonal regres-
sion method (GOR) of η 6= 1. Note that similar general results would be less
comfortably achieved by rescaling the axes as a function of σy and σx to reach
η = 1.

Gutdeutsch et al. (2002) also applied OR also to find the ML ÷Ms relation
for the high-quality Kárnik (1996) earthquake database of Central and Southern
Europe, which includes also Italy. It is interesting to note that their ML ÷Ms

orthogonal regression based on about 250 pairs (ML,Ms) gives β = 0.893± 0.163,
which is in perfect agreement with our βML÷Ms = 0.859 derived by merging the
first two equations in Table 3. This probably implies that the error ratio of ML

and Ms is close enough to 1 (a more detailed discussion of this problem is left to
another manuscript currently in preparation).

As an alternative to OR, Grünthal and Wahlström (2003) and Stromeyer et
al. (2004) proposed the chi-square maximum likelihood regression. They applied
it to find the Mw ÷mx relationship for Central Europe earthquakes, including a
small part of Northern Italy. An advantage of the chi-square regression is that
it is a distribution-free method. It has, however, the same problem as GOR: the
ratio of the standard deviations of the data should be known with a reasonable
accuracy, for example 30%. Grünthal and Wahlström (2003) and Stromeyer et al.
(2004), instead, assumed η = 1 as in OR. In any case, we note that Grünthal and
Wahlström’s (2003) chi-square regression gave βMw÷Ms = 0.769, while our general
orthogonal regression gives βMw÷Ms = 0.765, i.e. a very similar result in spite of
the different method and data set. A comparison between chi-square method and
OR can also be found in Gutdeutsch et al. (2005).

4 Frequency-Magnitude relation.

Frequency-magnitude relations (G-R relation) are ubiquitously used in seismol-
ogy, for example, to test the completeness of seismic catalogues, to estimate seis-
mic hazard or in the thermodynamic criticality approach to earthquake modelling
(Knopoff, 2000). The G-R relation can itself be treated as a regression but it is not
amenable to the case treated in this paper since neither the assumptions of SR,
nor those of GOR strictly apply. The preferred technique to estimate the b-value
in this case is the Maximum Likelihood Estimator Method (MLEM) given by Aki
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(1965) and discussed by Weichert (1980), Utsu (1999) and Kagan (2005):

b =
log10 e

M −Mc
, (19)

where M is the average magnitude and Mc is the lower cutoff magnitude (or the
completeness threshold magnitude). The accuracy on the b-value, derived from
the statistical estimation theory (Aki, 1965; Utsu, 1999), is given by

σb =
b√
n
, (20)

where n is the total number of earthquakes in the sample.
Since the G-R relations are evaluated on a single magnitude scale, which is in

general derivesd from converting other magnitudes, it is nevertheless interesting to
see how the b estimations are affected by the use of different regression procedures
employed for magnitude conversion. Again, the issue is most effectively treated in
simulation.

We start by assuming that we have a set of 104 exponentially distributed events
with M2 magnitude values which follow a G-R relation (equation 2) without added
error and which represent our ‘true’ data. We then add random Gaussian errors
with variance σ2

m2 and obtain a set of 104 (m2) data which represent the ‘noisy’
data, i.e. the measured data of the same set. These can be seen as the real
moment magnitude data (with error). Generally these data are unavailable and
are derived by converting estimates measured on other magnitude scales. We
consider just one such magnitude scale, which we call m1 and generate a set of 104

(m1) synthetic data still using an exponential distribution with B = 2.3 (equation
2) but with different realizations and Gaussian errors with variance σ2

m1. These
can be imagined to correspond, say, to ML data.

We now derive the conversion law for m2 data from the m1 set (m2 = α+β m1)
by using both SR (ṁ2) and GOR (m̈2) and study how the G-R plot of the derived
magnitudes (ṁ2) and (m̈2) is consequently affected. The b-values in both cases
are computed through the MLEM (equations 19-20).

Figures 13 to 15 show both the ‘true’ data relative to M2, the corresponding
noisy ones with directly added noise m2, and the ṁ2 and m̈2 ones inferred from
m1. We first note that, as predicted by Tinti and Mulargia (1985), a magnitude
error affects the a, but not the b-value in the G-R relation. In particular, in the
log-linear part of the plot, a is shifted to a′ as a function of the variance σ2

m:

a′ = a+
b2σ2

m

2 log10 e
, (21)
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so that the effect of magnitude uncertainties is that the observed number of earth-
quakes exceeding a given magnitude always appears larger than the true number.

Figure 13 shows that when η = 25 (σm2 = 0.5 and σm1 = 0.1), i.e. when the
error on the original variable m2 is 5 times larger than error on the original variable
m1, SR and GOR give overlapping G-R plots which coincide with the ‘true’ data.
As stated in Section 3, SR (when σy >> σx) and GOR are capable of retrieving
Y from x, because x can be considered ' X. However, σy >> σx hardly occurs
in real earthquake catalogues since measurement errors on m2 are unlikely to be
5 times larger than measurement errors on m1 (see e.g. Table 2 for realistic error
estimates on m1 and m2. As mentioned above, in the most common case m2 = Mw

and m1 = ML). In this example we have used a large σm2 in order to emphasize the
effect of the magnitude uncertainties (dashed vs solid line) in Figure 13. Note that,
in this case, the true a-value at m = 5.5 is 2.51 (corresponding to 326 earthquakes),
while the observed a′-value is 2.78 (corresponding to 604 earthquakes) which fits
with the theoretical a′ = 2.79 derived from equation 21 (corresponding to 617
earthquakes).

When η decreases from 25 to 1 (σm2 = σm1 = 0.2) and 0.25 (σm2 = 0.2,
σm1 = 0.4), (see Figure 14 and 15) the G-R relation derived using ṁ2 values
(converted from m1 through SR) strongly differs from the true G-R, while the G-
R obtained using m̈2 values (converted through the GOR) still replicate the true
relation.

An example of average b slope coefficients and their error is shown in Table 4
and is obtained through MLEM on events with m ≥ 4.5. Due to the large sample
size on which we run these simulations, we expect that the b-values obtained in
this way are less scattered than in the simulations of Figures 3-6.

In summary, Figures 13-15 and Table 4 show that the use of ṁ2 data inferred
from m1 through SR produces a strong bias in the slope which is reflected in a
biased estimate of the b-value, even when computed through the MLEM. When
m̈2 data inferred from GOR are used, true unbiased M2 data are always produced.
This demonstrates the importance of using GOR in converting magnitudes to be
used in the G-R relation to obtain correct hazard estimates.

5 Regression problems involving slope: a non-

parametric regression test

The performance of a least square estimator of a regression coefficient can be
gauged through a non-parametric test.

When there are no ties in the data (i.e., all data points are distinct), Theil’s test
(p. 416 in Hollander and Wolfe, 1999) is suitable. When ties are present (and this

16



is easily the case with magnitudes), an estimate of the regression coefficients can
be produced based on Kendall’s tau (Kendall, 1962; Sen, 1968). This procedure
is similar to Theil’s but is based on weaker assumptions and does not require
x1, . . ., xn to be all distinct. We start from the premise that the model is

yi = α+ βxi i = 1, . . ., n, (22)

where x1 ≤ x2 ≤ . . . ≤ xn are the known constants and α and β the unknown
parameters. Calling N the number of non-zero differences xj − xi (1 ≤ i ≤ j ≤
n), Sen (1968) shows that the point estimator is the median of the N slopes
(yj − yi)/(xj − xi) for which xj 6= xi and this is shown to be unbiased for β. The
confidence interval for β is also obtained in terms of second order statistics of this
set of N slopes.

Let us define c(u) to be 1, 0 or -1 if u > 0, u = 0 or u > 0 respectively. Then
the number of positive differences xj − xi is

N =
∑

1≤i<j≤n
c(xj − xi), (23)

and N ≤ (n
2

)
. For any real β, Zi(β) = yi − βxi. Relying on the Kendall’s tau

statistic (Kendall, 1962) between xi and Zi(β) we thus have

Un(β) =

[
N

(
n

2

)]− 1
2 ∑

i≤i<j≤n
c(xj − xi) c(Zj(β)− Zi(β)). (24)

Since we deal with quite large sample sizes, we can use the asymptotic formula

Un(β) = τ1/2ε


Vn/

√√√√N
(
n

2

)
 , (25)

where τε is the upper 100ε% point of a standard normal distribution and the
variance Vn is

Vn =
1

18
[n(n− 1)(2n+ 5)−

an∑

j=1

uj(uj − 1)(2uj + 5)]. (26)

Let xn be composed of an ≥ 2 distinct sets of elements. In each of the i-th
(i = 1, ..., an) set there are then ui all equal elements which are the values to
be inserted in equation 26. Un(β) is a strictly distribution-free statistic having a
distribution symmetric about 0. This implies that one way of estimating β is to
make Un(β) as close to zero as possible, by varying β.
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The confidence interval for β having the confidence coefficient 1− εn is thus

P{β∗L < β < β∗U |β} = 1− εn, (27)

where
β∗U = Sup{β : Un(β) ≥ −Un}, (28)

β∗L = Inf{β : Un(β) ≤ Un}. (29)

We recall that these formulas apply exclusively when ties are present in the x
variable only. We now consider the set of N distinct pairs (i, j) for which xj > xi
and define

Xij =
yj − yi
xj − xi

. (30)

Thus the Xij are the slopes of the lines connecting each pair of points (xi, yi) and
(xj , yj) where xi 6= xj . After arranging the N values of Xij in increasing order,
the slope estimator is shown (Sen, 1968) to be the median of the N numbers and
the confidence interval is given by the M1-th and M2-th values

N∗ =

√√√√N
(
n

2

)
Un and Mi =

1

2
(N + (−1)iN∗). (31)

An extensive study of this test performance in presence of ties, outliers and
non-normal data and error distributions can be found in Castellaro and Mulargia
(2006).

5.1 Application

The test described above provides a robust (point as well as interval) estimator of
β, which is valid also when the parent distributions are not Gaussian (as happens
with magnitudes). We apply it to our dataset in order to find the regression
coefficients which express one type of magnitude with respect to another, and
their significance. We use a 2.5% significance on each tail (i.e. τ1/2ε = 1.96 in
equation 25) and find that the slope regression values should be included within
the following ranges (Table 5):

0.574 < βMw−Ms < 0.827, (32)

0.770 < βMw−ML
< 0.937, (33)

0.690 < βMw−mb < 1.600, (34)
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when the Mw data are on the y axis. Since the test applies when there are ties
only in the x variable, we removed ties on y, when present, by averaging their
values and properly accounting for the number of degrees of freedom.

We note that the Mw ÷ mb confidence interval on slope is very large and
this happens because of the large number of ties on x (mb, see Figure 12). If
one averages the tied-values, the confidence interval is then restricted to 1.01 <
βMw−mb < 1.29, which does not include the slope value found with the SR, while
it still includes the slope value found with GOR (Table 3). In general, the GOR
values lie in the middle of the slope ranges derived from Kendall’s tau and are
more stable than the SR slopes.

6 Discussion and conclusions

We have found that orthogonal regression in its general form (GOR) provides
superior performance to standard linear regression (SR) in virtually all cases, pro-
vided that at least an order of magnitude estimate of the error ratio on the y
and x variables is available. The use of general orthogonal regression is therefore
recommended in all practical cases.

As a demonstration of its application we selected the case of magnitude con-
versions for Italian seismicity. Practically all the regression laws proposed in the
literature for converting magnitudes from one scale to another were based on the
standard least square regression, which is not a good estimator since both the x
and y variables are affected by errors of non-negligible size and since the data are
not normally distributed, features which contradict the basic assumptions of stan-
dard least square regression. General orthogonal regression, which is specifically
formulated to handle the case where both variables are affected by errors of non-
negligible size, should instead be used to obtain reliable magnitude conversions and
trustworthy seismic hazard estimates. This appears clearly in the final applica-
tion in which we show that the Gutenberg-Richter frequency-magnitude relation,
which is in general calculated on magnitudes converted from various scales, can
be heavily biased if magnitudes are converted through standard least squares. By
contrast, it is possible to obtain unbiased estimates of a- and b-values (equation
1) by converting magnitudes through generalized orthogonal regression.

The influence of magnitude uncertainties on the a- and b-values provides a
strong indication of serious biases in traditional interpretations of earthquake size
distribution. Shifts in the a-values due to magnitude errors may have important
consequences on seismic data obtained in different time intervals. As a rule, the
accuracy of older data is lower, and since the a-value shift is always positive and
proportional to the square of magnitude errors (Tinti and Mulargia, 1985 and
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equation 21), this means that the seismic activity for older time intervals may
spuriously appear to exceed more recent activity by a significant margin. This
effect is likely to be at least in part responsible for the often claimed discrepancy
between earthquake rates in recent and old catalogs. Such disagreement in earth-
quake rates might even be taken as evidence for the presence of characteristic
earthquakes in a region.

Virtually all traditional (non seismic moment) earthquake catalogs contain sev-
eral magnitudes, the relationships between which have been established by stan-
dard (not orthogonal) regression. Bias and systematic effects in magnitude data
are difficult or next to impossible to disentangle. As Figures 13-15 and Table 4
demonstrate, incorrect application of regression methods in the magnitude con-
version may induce b-value bias of the order of 20%-40%. Hence, the variations in
b-values (claimed by many researchers) may have an additional explanation as an
artifact of improper catalog data processing.
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Magnitude definition
Ms surface wave magnitude
ML local magnitude
Md duration magnitude
Mw moment magnitude
M0 scalar seismic moment
Me energy magnitude

Table 1: Symbols used to indicate different magnitudes: ML indicates a true
or synthetic Wood-Anderson magnitude calculated from broad-band seis-
mic stations; Md is calculated as in Gasperini (2002); Me as in Choy and
Boatwright (1995).

Data no.
Ms Mw 109
ML Mw 121
mb Mw 204

σ
Ms 0.28
ML 0.22
mb 0.37
Mw 0.18

Table 2: Data sets used to perform the tests on the slope. The left table
reports the number of events recorded in Italy between 1981 and 1996 for
which both the magnitudes shown in the first two columns are available. The
right table reports the standard deviation σ of the different magnitudes.
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y x β α α′′

Mw Ms 0.765± 0.035 1.445± 0.175 0.426
Mw ML 0.890± 0.033 0.770± 0.159 0.283
Mw mb 1.291± 0.046 −1.272± 0.271 0.037

Table 3: Results of the general orthogonal regression (GOR) applied to our
data set. The model is y = α + βx, that is Mw = α + βmx. α′′ applies
when magnitudes are reduced so that m′′w = Mw − 4.5, m′′x = mx − 4.5 and
m′′w = α′′ + βm′′x. See Figures 10-12.

bM2 bm2 bṁ2 bm̈2

η = 25 1.091± 0.009 1.006± 0.006 1.149± 0.009 1.113± 0.008
η = 1 1.194± 0.010 1.044± 0.007 1.259± 0.010 1.205± 0.010
η = 0.25 1.141± 0.009 1.147± 0.009 1.399± 0.012 1.069± 0.008

Table 4: b-values of the G-R distribution computed through the maximum
likelihood estimator method (MLEM) regression using m = 4.5 as lower
cutoff for the M2 exponential data set without errors (bM2), the m2 expo-
nential data set with Gaussian errors (bm2), the ṁ2 data set retrieved from
m1 through the standard regression (bṁ2) and the m̈2 data set retrieved from
m1 through the general orthogonal regression (bm̈2). η is the variance ratio
between m2 and m1.
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Figure 1: Standard least square regression applies when the dependent vari-
able is affected by a Gaussian error much larger than the error affecting
the independent variable (A) and it consists in projecting the independent
variable along a vertical line (B).
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Figure 2: General orthogonal regression (A) applies when both variables are
affected by non-negligible Gaussian errors. The path from the experimental
(xi, yi) points to the ‘true’ (Xi, Yi) is the weighted orthogonal distance from
the line (B).
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SR non parametric test
y x β β 95% confidence interval
Mw Ms 0.673± 0.0322 0.703 0.574 < βMw−Ms < 0.827
Ms Mw 1.190± 0.0569
Mw ML 0.813± 0.0316 0.856 0.770 < βMw−ML

< 0.937
ML Mw 1.040± 0.0405
Mw mb 0.971± 0.0429 1.157 0.690 < βMw−mb < 1.600
mb Mw 0.737± 0.0325

Table 5: Comparison between the standard regression and the non-
parametric test on β, where the model is intended to be y = α + βx. 3-
rd column: β coefficient of the standard regression applied to the data set
described in Table 2. Confidence bounds are given as one σ. 4-th and 5-th
columns: results of the Kendall’s tau test on β in terms of the 95% confidence
interval. Parameters derived through the general orthogonal regression on
the same dataset are in Table 3.

• Figure 3 Left: examples taken from the 103 generations of 50 couples of
points (x, y). Data are normally distributed and variable Gaussian errors
have been added on the x and y axis. Right: frequency-distribution of the
β coefficient found with generalized orthogonal regression (GOR), standard
least squares (SR) and inverted standard least squares (ISR) method. (A)

η = 25, σy = 2, σx =

√
σ2
y

η = 0.4 as from equation 7. (B) η = 4, σy = 2,

σx = 1. (C) η = 1, σy = 2, σx = 2. (D) η = 0.25, σy = 2, σx = 4.

• Figure 4 Left: examples taken from the 103 generations of 50 couples
of points (x, y). Data are exponentially distributed and variable Gaussian
errors have been added on the x and y axis. Right: frequency-distribution
of the β coefficient found with the GOR, SR and ISR method. (A) η = 25,
σy = 1, σx = 0.2. (B) η = 4, σy = 1, σx = 0.5. (C) η = 1, σy = 1, σx = 1.

• Figure 5 Left: examples taken from the 103 generations of 50 couples of
points (x, y). Data are exponentially distributed and variable exponential
errors have been added on the x and y axis. Right: frequency-distribution
of the β coefficient found with the GOR, SR and ISR method. (A) η = 25,
σy = 1, σx = 0.2. (B) η = 4, σy = 1, σx = 0.5. (C) η = 1, σy = 1, σx = 1.

• Figure 6 Left: examples taken from the 103 generations of 50 couples
of points (x, y). Data are log-normally distributed and variable log-normal
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errors have been added on the x and y axis. Right: frequency-distribution
of the β coefficient found with the GOR, SR and ISR method. (A) η = 25,
σy = 2, σx = 0.4. (B) η = 4, σy = 2, σx = 1. (C) η = 1, σy = 2, σx = 2.
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Figure 4:
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Figure 7: Examples taken from the 103 generations of 50 couples of points
(x, y). Data are log-normally distributed and variable log-normal errors have
been added on the x and y axis. Frequency-distribution of the β coefficient
found with OR and the SR method. (A) in the calculation η has been set
to 1 instead of the true 0.25 value (σy = 2, σx = 4). (B) in the calculation
η has been set to 1 instead of the true 25 value (σy = 2, σx = 0.4).
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GOR    m"2 = -0.014 + 1.011 m" 1
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Figure 8: Standard and generalized orthogonal regression values for the
120 couples of simulated events distributed according to an exponential-
distribution with parameter B = 2.30 and affected by Gaussian error with
η = 0.67 (σy = 0.18, σx = 0.22). Results of the regressions on the whole data
set. We define the reduced magnitude m′′1 = m1 − 4.5 and m′′2 = m2 − 4.5.
Regression results are shown in inset: GOR→ general orthogonal regression,
SR → standard regression, ISR → inverted standard regression.
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Figure 9: As in Figure 8 but regressions have been computed on data above
the m = 4.5 threshold only.

37



3 3.5 4 4.5 5 5.5 6 6.5 7
3.5

4

4.5

5

5.5

6

6.5

7

Ms

M
w

109 data, η = 0.41
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GOR   M"w  = 0.426 + 0.765 M"s
SR      M"w = 0.465 + 0.673 M"s
ISR     M"s  = -0.466 + 1.190 M"w

Figure 10: Standard and generalized orthogonal regression values for the 109
couples of events recorded in Italy between 1981 and 1996 gauged with Mw

and Ms. We define the reduced magnitudes M ′′
s = Ms − 4.5 and M ′′

w =
Mw−4.5. Regression results are shown in inset: GOR→ general orthogonal
regression, SR → standard regression, ISR → inverted standard regression.
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121 data, η = 0.67
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GOR	  M"w = 0.283 + 0.890 M"L
SR	  M"w = 0.301 + 0.813 M"L    
ISR	  M"L = -0.451 + 1.04 M"w

Figure 11: Standard and generalized orthogonal regression values for the 121
couples of events recorded in Italy between 1981 and 1996 gauged with Mw

and ML. We define the reduced magnitudes M ′′
L = ML − 4.5 and M ′′

w =
Mw−4.5. Regression results are shown in inset: GOR→ general orthogonal
regression, SR → standard regression, ISR → inverted standard regression.
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204 data, η = 0.24

data                                            
GOR       M"w = 0.037 + 1.291 m"b
SR          M"w  = 0.137 + 0.971 m"b     
ISR         m"b  = -0.014 + 0.737 M"w

Figure 12: Standard and generalized orthogonal regression values for the
204 couples of events recorded in Italy between 1981 and 1996 gauged with
Mw and mb. Generalized orthogonal regression slope is much closer to the
least square regression slope when mb is on the y axis and treated as the
variable affected by the largest error. We define the reduced magnitudes
m′′b = mb − 4.5 and M ′′

w = Mw − 4.5. Regression results are shown in inset:
GOR → general orthogonal regression, SR → standard regression, ISR →
inverted standard regression.
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Figure 13: Cumulative frequency-magnitude plots (Gutenberg-Richter, G-R
relations) of synthetic magnitude data (M2) following an exponential distri-
bution with parameter 2.3. Thick solid line: G-R of true data (M2). Dashed
line: G-R of M2 data after Gaussian error addition (m2) with σ = 0.2.
Diamonds (♦): G-R of ṁ2 data, estimated from m1 through the standard
regression (SR, ṁ2 ← α+ βm1). Stars (?): G-R of m̈2 data, estimated from
m1 through the general orthogonal regression (GOR, m̈2 = α + βm1) with
true η = 25 (σm2 = 0.5, σm1 = 0.1).
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Figure 14: As in Figure 13 but stars (?): G-R of m̈2 data, estimated from
m1 through general orthogonal regression with η = 1 (σm2 = 0.2, σm1 = 0.2).
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Figure 15: As in Figure 13 but stars (?): G-R of m̈2 data, estimated from m1

through general orthogonal regression with η = 0.25 (σm2 = 0.2, σm1 = 0.4).
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