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Constrained Dix inversion
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ABSTRACT

locity data.

‘We propose a stable inversion method to create geological-
ly constrained instantaneous velocities from a set of sparse,
irregularly picked stacking- or rms-velocity functions in ver-
tical time. The method is primarily designed for building ini-
tial velocity models for curved-ray time migration and initial
macromodels for depth migration and tomography. It is
mainly applicable in regions containing compacted sedi-
ments, in which the velocity gradually increases with depth
and can be laterally varying. Inversion is done in four stages:
establishing a global initial background-velocity trend, ap-
plying an explicit unconstrained inversion, performing a con-
strained least-squares inversion, and finally, fine gridding.
The method can be applied to create a new velocity field (cre-
ate mode) or to update an existing one (update mode). In the
create mode, initially, the velocity trend is assumed an expo-
nential, asymptotically bounded function, defined locally by
three parameters at each lateral node and calculated from a
reference datum surface. Velocity picks related to nonsedi-
ment rocks, such as salt flanks or basalt boundaries, require
different trend functions and therefore are treated differently.
In the update mode, the velocity trend is a background-veloc-
ity field, normally used for time or depth imaging. The uncon-
strained inversion results in a piecewise-constant, residual
instantaneous velocity with respect to the velocity trend and
is mainly used for regularizing the input data. The con-
strained inversion is performed individually for each rms-ve-
locity function in vertical time, and the lateral and vertical
continuities are controlled by the global velocity-trend func-
tion. A special damping technique suppresses vertical oscilla-
tions of the results. Finally, smoothing and gridding (interpo-
lation) are done for the resulting instantaneous velocity to
generate a regular, fine grid in space and time. This method
leads to a stable and geologically plausible velocity model,
even in cases of noisy input rms-velocity or residual rms-ve-

INTRODUCTION

Durbaum (1954) and Dix (1955) proposed to estimate interval ve-
locities from picked rms, or stacking, velocities, and corresponding
traveltimes by the well-known formula

V% Iy — V% —1n-1
U, = \/ Taaln = Tt (1)
Iy = Ih

where U, is the local rms velocity over the time interval Az, = ¢,
— t,_1, which approximates the actual interval velocity Vi =
Az,/At,, and Az, is the corresponding depth interval (Hubral and
Krey, 1980). Parameters V,,_, and V,, are rms velocities at the top
and bottom interfaces of the interval. Note that for any velocity dis-
tribution, U, = V" and the exact equality takes place only in the case
of a constant velocity on the interval. Equation 1 (Dix transform) is
the standard, unconstrained, explicit velocity inversion in which the
instantaneous velocity V,, is assumed piecewise constant,
Vo.. = U,, with discontinuities at the interfaces. The Dix transform
can easily produce nonrealistic and highly oscillating velocities,
even for relatively small variations in stacking or rms velocities.

We review several works related to the uncertainty of the classical
Dix inversion. In these works, the authors use the term interval ve-
locity instead of the more accurate term local rms velocity mentioned
above. To be consistent with the cited works, the term interval veloc-
ityis also used in our review.

Uncertainty of interval velocity estimates was extensively studied
by Hubral (1976), Hubral and Krey (1980), Toldi (1985), Thore et al.
(2002), and other researchers. Hajnal and Sereda (1981) developed
and analyzed the first-order-difference equation governing the un-
certainty of the Dix inversion. They demonstrated that the uncertain-
ty in the calculated interval velocity increases with depth and is in-
versely proportional to layer thickness:

w, _ 2 o
&V, At

where 6U,, is the uncertainty of the interval velocity, 6V, is the uncer-
tainty of the rms velocity, ¢ is the total traveltime at the midpoint of
the interval, and At, is the interval traveltime. The derivation is
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shown in Appendix A. The ratio 2¢/At, is an error-amplification fac-
tor: The uncertainty of the interval velocity obtained by the Dix in-
version essentially exceeds the uncertainty of the rms velocity (i.e.,
S8U,>> 6V,). Ursin (1981) studied the errors of direct and least-
squares inversion schemes that estimate the interval velocity. In par-
ticular, he used a linear inverse scheme to determine the velocity
function parameters in each layer. In this scheme, the difference be-
tween the measured and computed nonzero-offset traveltimes was
minimized in the least-squares sense.

Landa et al. (1991) studied the uncertainties in the interval veloci-
ty and depth estimates in a general, layer-stripping approach; they
accounted for local errors connected to the analyzed velocity layer
and for global errors connected to the overburden model. The au-
thors showed that the uncertainty in the interval velocity in a given
layer depends primarily on uncertainties of the stacking velocities
from the top and the bottom of the layer. There is a negative correla-
tion between the velocity estimates in two successive layers (see Ap-
pendix A for details),

d Un+1 _ AZ,,

d Un Azn+l ’ (3)
In other words, if there is a large error in the estimate for the nth lay-
er, the error for the n + 1th layer will be of the opposite sign and will
partly compensate for the previous error. This leads to oscillations in
the vertical velocity profile.

Seismic imaging is based on iterative improvement of the velocity
field to obtain flat image gathers and a final image, which should also
agree with the local geological assumptions. The seismic imaging
solution is not unique. Many combinations of instantaneous velocity
models can generate flat image gathers. It is therefore essential to
constrain any inverted velocity field by the geologic rules relevant to
the area of investigation. There is always a trade-off between the re-
quirement for accuracy (fitting the data exactly) and the need for sta-
bility. Both the accuracy and the stability of the instantaneous veloc-
ity estimation are critical for seismic imaging, for which the Dix
transform is normally used to obtain initial velocity models. There-
fore, anumber of implicit approaches have been developed such that
a single erroneous value of stacking velocity does not easily corrupt
the entire inversion. These methods are generally called constrained
velocity inversion (Oldenburg et al., 1984; DuBose, 1988; Harlan,
1999; Zhang and Wang, 2003; Ren et al., 2004; Valenciano et al.,
2004).

Vertical rms- (stacking-) velocity analysis is routinely used for ve-
locity model building. The set of rms-velocity values picked along
the vertical time axis at a given lateral location is stored as an rms-
velocity function. From here forth, we refer to this set of values as an
rms-velocity vertical function.

Harlan’s (1999) algorithm finds a global solution for a set of verti-
cal functions by applying the least-squares fit. A few noisy data
points are largely ignored when contradicted by many neighboring
values. Damping is applied to avoid unnecessary sharpness in the es-
timated instantaneous velocities. Ferguson and Stewart (1955) de-
veloped a linearization technique for a constrained inversion of P-S
seismic data to give an S instantaneous-velocity estimate.

Several ray-based layer-stripping methods for velocity model de-
termination had been studied. Gjoystdal and Ursin (1981) proposed
a velocity-inversion approach using picked reflection times. Landa
et al. (1988) described a method for determining velocity-depth
model parameters by maximizing the coherency of the input traces

measured along the calculated reflection time trajectories (coheren-
cy inversion) by applying the simplex method. A similar approach
was applied by Sorin and Hanyga (1996). To speed up the iterative
procedure for the seismic inversion with a poor initial guess, Druzhi-
nin and Hanyga (1998) proposed a high-order perturbation method.
This technique becomes an attractive alternative to iterative least-
squares inversion to replace the linearization procedures when they
become inconsistent.

A constrained instantaneous velocity is important as input for
seismic inversion, which is a highly nonlinear problem. It is com-
monly solved iteratively by applying linear methods, such as seismic
tomography (e.g., Goldin, 1986). Global tomography methods have
been studied by many researchers. In these methods, traveltime er-
rors along reflected rays are minimized to simultaneously find veloc-
ity-depth model parameters (Bishop et al., 1985; Williamson, 1990;
Stork, 1992; Kosloff et al., 1996). The ray tracing in the tomography
requires instantaneous velocity, and the success of the tomography
depends strongly on the initial instantaneous velocity field, which is
usually obtained by simplistic approximations.

Curved-ray time migration is now a standard procedure for time
imaging. It requires an initial instantaneous velocity for 1D ray trac-
ing. The initial instantaneous velocity is normally obtained by in-
verse Dix transform from picked rms velocities. It is essential to ob-
tain a stable, geologically constrained inverted velocity with mini-
mum oscillations.

In this study, we propose a stable and fast computational scheme
for a constrained velocity inversion. The method can be applied to
create a new velocity field (create mode) and to update an existing
one (update mode). An important feature of the method is a charac-
teristic velocity-trend function (background-guiding velocity mod-
el), initially approximated by a monotonously increasing and
asymptotically bounded velocity function. In addition, the proposed
method can be applied to update background velocities that are used
in prestack seismic migrations (Deregowski, 1990). In this case, re-
sidual rms velocities are picked along the migrated image gathers,
and they can be used, along with the background velocity, as the in-
put for our constrained inversion. Here, the external background in-
stantaneous velocity is used twice; it is a reference velocity and also
atrend function for the inversion. We compute the rms velocity from
the reference background instantaneous velocity and add the residu-
al rms velocity to get the input for the inversion.

The velocity inversion is decoupled into two stages: explicit un-
constrained and implicit constrained inversion. In the unconstrained
inversion, we assume a piecewise-constant, residual instantaneous
velocity that should be added to the background velocity. The residu-
als are constant values within the intervals between two successive
picked points. To find the residuals, we assume that the uncon-
strained, inverted instantaneous velocity matches the input rms ve-
locity exactly. We then use the unconstrained inverted velocities to
regularize the input data on a uniform, coarse time grid, which is
needed for the global constrained inversion.

The constrained inversion is a minimization problem. The invert-
ed instantaneous velocity should not only match the given rms ve-
locity; it should also be close to the trend model. A damping mecha-
nism causes the results to behave in a stable, nonoscillatory fashion.
The damping mechanism can either minimize the jumps of the in-
verted velocity gradient, or make these jumps close to the gradient
jumps of the velocity trend. Following a widely used conventional
approach, we also solve the inversion problem by the least-squares
fit. The cost function includes three penalty terms: rms-velocity fit,
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velocity-trend fit, and damping term. They all may have different
weights in the cost function. The rms weight is responsible for the
accuracy of the results. The trend weight controls lateral and vertical
continuity, and the damping weight affects the stability of the inver-
sion by suppressing the unwanted oscillations. For noisy data, the re-
quirements for accuracy and stability, or continuity, may contradict
each other. The optimum relation between the weights is a compro-
mise. For a noisy input, the rms-velocity weight is automatically re-
duced to result in a stable and geologically plausible output. Most of
the velocity inversion algorithms, both constrained and uncon-
strained, assume discontinuous, piecewise-constant instantaneous
velocity, and the interval velocities are the degrees of freedom to be
established (Dix, 1955; Taner and Koehler, 1969; Hubral and Krey,
1980; Grechka et al., 1996; Harlan, 1999; Ren et al., 2004). In our
method, the instantaneous velocity within the compacted sediments
is assumed continuous, and the degrees of freedom are instantaneous
velocities at the interval ends (interfaces). Because n intervals corre-
spondton + 1 points, we have an extra degree of freedom compared
to the classical approach. The problem, therefore, is underdeter-
mined, and the additional inversion parameter allows us to control
the results. Between the interfaces, we assume a linear variation of
the instantaneous velocity in depth, which corresponds to an expo-
nential velocity function in time.

The initial trend is an exponentially bounded velocity function
that asymptotically approaches a predefined limit at large depth
(Ravve and Koren, 2004, 2006a, 2006b). This function is character-
ized by three parameters: the instantaneous velocity, its vertical gra-
dient at the datum surface (topography, sea bottom, or other known
horizon representing the top of the sediment layers), and the
asymptotic value. The parameters of the exponential velocity trend
are established on a coarse lateral grid by global fitting to the rms-
velocity data within predefined radii of influence.

For the inversion, we introduce a coarse, regular time grid with an
origin at the datum horizon. Inversion is done individually for each
vertical function; this results in the instantaneous-velocity-versus-
time data at sparse and irregular lateral locations of the vertical func-
tions. Finally, we apply a robust gridding algorithm, which interpo-
lates and extrapolates the velocity field over the nodes of a fine, regu-
lar grid. Gridding is performed successively for slices, and each slice
corresponds to a fixed node of the coarse time grid. Gridding is based
on a minimum curvature method (Briggs, 1974), slightly modified to
achieve better continuity.

A 2D synthetic data example of a salt body within a set of com-
pacted sediments is used to demonstrate the method. A real field data
set acquired above a fault-shadow area is then considered. The resid-
ual rms velocities were automatically picked, resulting in noisy, os-
cillating input data for the inversion. We show the ability of the con-
strained inversion to produce a geologically plausible, stable model
from this type of data.

INITIAL TREND FUNCTION

The velocity-trend model can be given externally from a previous
analysis or calculated internally from the rms-velocity data. In the
latter case, the velocity-trend model is constructed on a coarse lateral
grid. Ateach point of the lateral grid, the vertical variations of the in-
stantaneous velocity are approximated by a monotonously increas-
ing exponential, asymptotically bounded distribution (Ravve and
Koren, 2004, 2006a):

k
ViP(z) =V, + AV - |:1 - exp(— ﬁ)], AV=V, -V,
4)

where V,(x,y) is the instantaneous velocity at the datum level,
ko(x,y) is its vertical gradient at the same level, V.. is the asymptotic
velocity at the infinite depth, and AV is the instantaneous-velocity
range (see Figure 1). We assume that the asymptotic value V.. is ap-
proximately known from the physical properties of fully compacted
sediments; however, the two other parameters, V, and k,, are to be es-
tablished. Because the input rms velocities are given in time, we re-
arrange equation 4 to be instantaneous velocity versus one-way
traveltime,

_ Va - Vo
TV, + AV - exp(= kyt - Vo IAV)

Vo (1) (5)

The trend parameters at each lateral, coarse-grid point are estab-
lished by a least-squares fit. We request that the rms velocities com-
puted from the exponential velocity-trend function V5 should be as
close as possible to the picked rms-velocity values V§*¢, Along the
vertical direction, the rms velocity is defined by
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Figure 1. Exponential, asymptotically bounded velocity model: (a)
instantaneous velocity versus depth, (b) instantaneous velocity ver-
sus one-way traveltime. The sea bottom depth is 1500 m; the marine
velocity is 1500 m/s. Parameters of the exponential velocity distri-
bution are V, = 2200 m/s, k, = 0.5 s, and V.. = 5000 m/s.
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where W is a hyperbolic parameter defined as W = g\/é( 7)dT. For
the exponential distribution (Ravve and Koren, 2004, 2006a),

AV -V, S V,-AV* A-1
wW*(f)=———— - n— - — . ———,
k, Ve k, S
A= explk,t- V.IAV), S=V, A+ AV,
AV=V,-V,. (7)

Thus, the rms velocity V, of the exponential distribution is a function
of the two parameters, V, and k,, and of the time V§*®*(V,,k,,1).

We introduce a predefined radius of influence R. For any coarse-
grid point, all vertical functions that are laterally within the given ra-
dius, d=R, will affect the trend parameters. However, the vertical
functions will have different weights. The weight decreases as the
distance between the grid point and the vertical function increases.
The maximum weight is unity and corresponds to a vanishing dis-
tance. We propose the following weighting function:

L_ .
wi; = exp(— ad;;/R?) for d; =R,

wi=0 for d;>R, (8)

where superscript L means lateral. In this equation, i is the index of
the vertical function, and j is the index of the grid node where the ve-
locity-trend parameters are being estimated. For the limiting case d
= R, we desire a preset weight wt = & where is a given small value,
say one percent, £ = 1072, This leads to @ = —In & in equation 8. Ob-
viously, a larger radius of influence improves stability but decreases
accuracy of the inversion results.

In addition to the lateral weights w¥, there are also vertical weights
wy. The lateral weights are the same for all points of each specific
vertical function. The vertical weights usually decrease with travel-
time. The misfit function becomes

Land survey Marine survey

Minimum time Minimum time

Topography time

Horizon time

Sea-surface time

Sea-bottom time.
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Redatum horizon

(optional)

Maximum time Maximum time

Figure 2. Redatuming scheme for a land and a marine survey. After
redatuming, the input rms velocity is measured from a reference ho-
rizon. This horizon is also the origin of the coarse time grid used in
the constrained inversion.
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where the inner sum stands for all N; + 1 picked nodes of the fixed
vertical function i, and the outer sum accumulates all M; vertical
functions within the radius of influence around lateral node j. The
necessary condition for alocal minimum requires that the two partial
derivatives dA;/dV, and dA;/dk, vanish. This leads to a nonlinear set
with two unknown variables, and we solve it by applying an iterative
procedure. The solution technique is presented in Appendix B. Thus,
the trend parameters V, and k, are computed at each node of the
coarse grid by global fitting of the exponential model to the data. The
top velocity and its gradient are then further interpolated to a fine
grid, and in particular, they are established at the lateral locations of
the vertical functions.

It is important to note that the calculated internal-velocity trend is
geologically adequate only for compacted sediment layers, possibly
for layers with small anomalies. The exponential velocity model
represents the real physical behavior of the velocity profile, in which
the velocity gradually increases with depth and approaches a limit-
ing value at large depth. Conventional velocity-versus-depth models
[linear velocity and classical unbounded exponent (Slotnick, 1936,
1959); linear slowness (Al-Chalabi, 1997a; Faust, 1951, 1953) with
different power indices, parabolic (Houston, 1939; Al-Chalabi,
1997b); etc.] all suffer from the same disadvantage: they are un-
bounded at large depth. Among the family of monotonously increas-
ing and bounded models, we found the exponential asymptotic mod-
el to be the most simple and adequate. In the case of strong velocity
variations, such as in salt domes, basalts, or high-velocity carbonate
rocks, the velocity trend will bias the results of the inversion in a
wrong fashion. Therefore, when the parameters of the internal trend
are being calculated, we filter out the picks on and below the first
strong velocity anomaly and assume that the sediments extend to the
maximum depth considered. The velocity anomalies will be still ap-
proximately found by the inversion. To treat more accurately the ve-
locity anomalies in the case of rapid velocity change or discontinuity
of the instantaneous velocity or a decreasing-velocity-with-depth
trend, an external background trend is needed. This function is spec-
ified numerically and accounts for the anomalies. It can be obtained
from a previous run of the proposed inversion or from a more accu-
rate ray-based tomographic inversion. The technique of inversion
with an external trend function is presented in Appendix H.

Aj(Va’ka) =

REDATUMING

Because the velocity trend starts from a reference horizon, a reda-
tum procedure should be performed before calculating the trend. At
the reference horizon, the rms velocity V4 and the traveltime 7,; are
specified. For a marine survey, the rms velocity is normally the water
velocity. We drop out all picked points whose traveltime does not ex-
ceed the horizon time. For data points below the horizon, the reda-
tum formula is defined by

2 old old 2
new _ V2,n o~ VZ,H iy new _ old ¢ (10)
- 2 A AT
t, —ty

The redatum horizon is shown in Figure 2 for land and marine sur-
veys.
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EXPLICIT, UNCONSTRAINED
VELOCITY INVERSION

The explicit, unconstrained velocity inversion described here fol-
lows the velocity-trend function and is defined by a set of piecewise-
constant residuals to be found. It differs from the standard, uncon-
strained Dix (1955) inversion, which does not require a trend but
leads to noisy and highly oscillating results.

We distinguish two inversion modes: create and update. In both
cases, the input data are vertical functions of rms velocities at sparse,
irregular, lateral locations. The picked points in the vertical direction
are also sparse. In the create mode, the rms or stacking velocities
Vs are picked along unmigrated gathers (or inverse, NMO-migrat-
ed gathers). In the update mode, the picked values are residuals of
the rms velocity AV,,, and the rms velocities are calculated. First,
the background instantaneous velocity used for the migration is
transformed to rms velocity versus time. Second, we add the picked
residual rms velocities in time to the background rms-velocity mod-
el and get the vertical function at the sparse picked points:

Vo' = Vot + AVyy, (11)

where the rms velocities and residuals are measured from the earth’s
surface. Third, we apply the redatum procedure described above.
Fourth, we proceed with the unconstrained inversion described be-
low in this section. Fifth, we use the unconstrained inversion results
for regularization of the input rms data on a coarse time grid.

The unconstrained velocity inversion is based on an assumption
that, between two successive picked points, the instantaneous veloc-
ity follows the velocity-trend function with a constant, residual in-
stantaneous velocity,

Vo) = Ve + AV, (12)

where £ is the index of the interval between two picked points. The
velocity-trend function in equation 12 can be external or internal.
The unknown residual AV, is calculated by equation 13 (see Ap-
pendix C for details)

AV = V(U = (UF™ + (Vi - Vi, (13)

where U and Uy are local rms velocities on the interval k be-
tween two picked points for the input vertical function and the veloc-
ity trend, respectively. Parameter Vg% is the interval (local average)
velocity of the trend between the picked points. After we obtain the
constant residuals AVy,, the instantaneous velocity becomes a
known function (equation 12). Note that at the endpoints of the orig-
inal interval #,_; and #;, the unconstrained inverted velocity fits the
rms data exactly. To calculate the interval (local average) and the lo-
cal rms velocity of the trend, we use the trend data on a fine time grid.

CONSTRAINED VELOCITY INVERSION

We perform the inversion for each vertical function individually,
assuming a locally varying 1D model. Following a conventional ap-
proach, we solve the inversion problem by the least-squares fit (e.g.,
Tarantola, 1987; Menke, 1989). The primary drawback of the meth-
od is a lack of robustness, i.e., strong sensitivity to outliers (a small
number of large errors) in the data set. Another inevitable problem of
the least-squares inversion is nonuniqueness: More than one solu-
tion will satisfy the observation within a prescribed error, and differ-
ent models may satisfy the mean-squares error equally well (e.g.,

Lines and Treitel, 1985). In this study, we exploit the velocity-trend
model and the damping technique to reduce the sensitivity of inver-
sion to noise. Increase of weights for trend function and damping
mechanism will necessarily lead to a smooth, stable, and unique so-
lution and will suppress any anomalous rms-velocity picks. Howev-
er, setting these weights too high will suppress even the reliable data.
In case of an excessive trend weight, the resulting solution will al-
most coincide with the trend. In the case of an excessive damping
weight, the solution will produce a nearly linear distribution of ve-
locity versus depth within the whole depth range. The optimum level
of suppression is a trade-off between the desired accuracy and stabil-
ity, which requires an informal, ad hoc choice of the weights through
trial and error (DuBose, 19838).

Regularization in time

Recall that the picked points are irregular not only laterally but
also in time. We apply regularization in time by introducing a regu-
lar, coarse time grid. This will facilitate the lateral gridding proce-
dure that follows the multiple 1D inversion of the vertical functions.
Gridding is performed successively by slices, whereby each slice
corresponds to a fixed time measured from the datum.

At this point, the unconstrained inversion is already performed.
Equation 12 represents a continuous function V§#*(z) that matches
exactly the input rms-velocity data at the picked points. In addition,
V§aa(t) follows the velocity trend. We apply the standard interpola-
tion formula to obtain the rms velocity Vs at any point n between
the picked points k — 1 and &,

Iy

(V3o 1= (Vagt)? -ty + f [Voi'()Fdr.
S|

V(?,?cta(T) = V(;r,ind(T) +AVop oy =1, =t (14)

This interpolation is applied to regularize the input rms velocity for a
uniform, coarse time grid.

Cost function

To reduce the sensitivity of the inversion to data noise, we con-
struct a cost function that includes three components. The rms-
velocity misfit (data misfit) is only one of them. The two others, the
velocity-trend-model misfit and the antioscillatory damping energy,
improve the robustness and stability of the method. The optimum
values of the parameters (instantaneous velocities at the nodes of the
coarse time grid) minimize the cost function F:

F= B + C + D
Data misfit Trend misfit

— min. (15)

Damping energy

Next, we derive the three components of the cost function in equa-
tion 15, referred to also as a variation-energy function.
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Data misfit

Suppose that the vertical rms-velocity function includes N + 1
equally spaced nodes; thus, there are N intervals. The unknown val-
ues are nodal instantaneous velocities: Voo, Vo, ..., Von. Conse-
quently, we have N + 1 degrees of freedom to be established. Be-
tween the coarse grid nodes, we assume a linear variation of the in-
stantaneous velocity in depth. Let V,,,_; and V,,, be the inverted in-
stantaneous velocities at the top and bottom interface of the coarse
interval Az, = 1, — t,_,. For the linear velocity distribution in depth,
the inverted, local rms velocity Ul" becomes a function of the two in-
terface velocities related to that interval (see Appendix D for

details):
in VS n V(% n—1
Up" (Vo1 Vo) = \/ 2 (Vo IV _)- (16)
0,n" YV 0,n—1

The inverted, local rms velocities for the intervals UL" should fit the
local rms-velocity data U8 The data-misfit function is the first
component of the variation energy (equation 15). Assume that in the
vertical direction, the nodes are enumerated from zero, the intervals
are enumerated from unity, and interval n connects nodes n — 1 and
n. Summing the data misfit over the intervals, we obtain

N
1 N
= 52 Atn : W;ms[Ui:n(VO,n—l’VO,n) - Ugata]z’ (17)
n=1

where wi™ are weights of the data misfit on the intervals. These
weights may be data dependent (lesser weights for noisy data and
vice versa). In the case of a noisy input leading to unstable (oscillat-
ing) results, we reduce the weights of the rms-velocity fit as com-
pared to the weights of the trend function and damping mechanism,
and we rerun the inversion. Note that only the ratio between the dif-
ferent weights is important.

Geophysical inverse problems are generally not well-posed.
Many of these problems are overdetermined, i.e., the number of data
points exceeds the number of model parameters (Lines and Treitel,
1984). Normally, the number of picked traveltimes is the upper limit
for the model parameters that one can safely invert (Vesnaver and
Bohm, 2000). The approach we propose in this study is an exception:
itis an underdetermined problem. We have N + 1 unknown instanta-
neous velocities at the nodes and N observed local rms velocities
(data) on the intervals. However, because the data alone leads to an
underdetermined system, either the trend-misfit term or the damp-
ing-energy term is a must in the cost function. We include both of
them. The weights of the velocity trend and the damping weight can
not both be negligibly small as compared to the weights of the data fit
because this will lead to an ill-conditioned equation set with an un-
stable solution.

Trend misfit

The inverted instantaneous-velocity function should be as close
as possible to the velocity trend. The trend-misfit function can be de-
fined as the L,-norm of the difference between the instantaneous ve-
locity model and the trend model:

n

N
1 .
C= > > [ wrerdvingg) — v, + 7)Pdr — min,

N
n=1

(18)

where summation is done over the intervals and wi*™ is the weight of
the nth vertical interval. Normally, these weights decrease with trav-
eltime. For the linear instantaneous velocity versus depth, velocity
versus time reads (see Appendix D)

Von(r) = Vo, o/t Vgldin, 0= 7 < Ar,. (19)

In the case of an internal (initial) exponential trend, the instanta-
neous velocity V() is given by equation 5. Otherwise, it is an ex-
ternal function specified at the nodes of the fine grid (normally, with
the standard two-way resolution of 4 ms), and we consider it as a
given, continuous function of time.

Antioscillatory damping mechanism

The interval velocities obtained by Dix inversion are subjected to
essential uncertainties. To suppress the unwanted vertical oscilla-
tions of the inverted velocity, we propose a special stabilization tech-
nique, implemented as a damping term in the cost function. Recall
that the vertical gradient of the inverted velocity is assumed piece-
wise-constant, with the discontinuities of the gradient at the nodal
points.

We propose two kinds of damping mechanisms:

e Absolute damping mechanism that suppresses any gradient
jumps (usually applied with the internal trend).

e Damping mechanism following trend that allows gradient jumps
similar to the jumps of the trend model (usually applied with the
external trend). This damping technique keeps a minimum dis-
crepancy between the gradient jumps of the model and the veloc-
ity trend.

Technical details related to damping terms are explained in Appen-
dix E.

Initial guess

To get an initial guess for the velocity function, we apply the un-
constrained Dix-inversion formula (equation 1) resulting in piece-
wise-constant instantaneous velocities with discontinuities at the in-
terfaces. Recall that interval n stretches between the interfaces n — 1
and n. To get the velocities V,, at the interfaces, we average their val-
ues above and below the interface:

U,+ U,
Vo, = —n T (20)
’ 2
The exceptions are, of course, the first interface (datum) and the last
interface, where no averaging is needed.

Minimizing the cost function

At the minimum point, all partial derivatives of the variation-
energy function with respect to the model parameters V,, vanish.
Equation 15 yields a nonlinear set of N + 1 equations with N + 1
variables: dF/dV,, = 0. The data-misfit and the trend-misfit terms
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present a sum of items, where each item is related to a definite inter-
val and depends on two nodal velocities at the ends of this interval.
Therefore, these terms result in a tridiagonal matrix of second deriv-
atives (Hessian matrix) d2F/(dV,,dV,,,). The damping term is a
sum of the items, where each item is related to a definite joint and de-
pends on three nodal velocities: that at the joint and two other veloci-
ties at the nodes immediately before and after the joint. This term
makes the resulting Hessian matrix pentadiagonal. We use a special
direct solver for a symmetric pentadiagonal matrix, and the compu-
tations are very fast. The technique of solution for the nonlinear set is
based on the Newton method and is presented in Appendix F. Two or
three iterations usually suffice for convergence.

Besides the Newton method, one of the most common algorithms
used to find local minima in multidimensions is the conjugate-gradi-
ent method (Hestens and Stiefel, 1952) and its variations. The meth-
od was developed for the solution of sparse systems and is widely
used to solve large geophysical inverse problems (e.g., VanDecar
and Snieder, 1994; Kosloff et al., 1996). Its advantage is that the
method does not require the knowledge of the Hessian matrix; how-
ever, it requires about N iterations to converge, where N is the
amount of model parameters (Press et al., 1999). For the problem
that we solve, the maximum two-way traveltime is usually a few sec-
onds, and the resolution of the coarse time grid is ~0.1 s, so that N
may vary from 60 to 100 per vertical function. The Newton method
requires the Hessian matrix of the variation energy, but this matrix is
symmetric and either tridiagonal (no damping term in the cost func-
tion) or pentadiagonal (with a damping term). Thus, the second de-
rivative consists of only two or three vectors (diagonals); therefore,
we found this approach efficient.

GENERATION OF OUTPUT
ON A REGULAR MESH

As a result of the inversion, the instantaneous velocities are ob-
tained at lateral locations of vertical functions on a regular, coarse
time grid. A special gridding procedure is needed to get aregular fine
grid of the instantaneous velocities. Because the time grid is the
same for all vertical functions (with respect to the datum surface), we
apply the gridding procedure successively for all
time slices. For each slice, the traveltime is fixed
and a 2D problem is considered. There is a set of a)
control points at the locations of vertical func-
tions, and there are also trend values at the other
grid nodes. The weight of trend values is now
very small, and the weight of control values is
large but still finite and not extremely large. Larg-
er weight of the control points leads to a better ac-
curacy of the result at the control points, but this
can yield a worse lateral continuity and vice ver-
sa. The optimum weight is a compromise.

Different gridding algorithms exist that take
the observed values at the control points to define
the value of a continuous function of the two
space variables. Bhattacharyya (1969) proposed
to use a bicubic spline interpolation. Briggs
(1974) proposed to solve a biharmonic equation
toresultin a surface of minimum curvature. Phys-
ically, this surface models static bending of a thin,
elastic plate (Timoshenko and Woinowsky-
Krieger, 1968). Smith and Wessel (1990) intro-
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duced a tension term into the minimum-curvature equation to sup-
press oscillations and to avoid extraneous inflection points.

To find the nodal velocities, we apply a slightly modified Briggs
(1974) approach, relaxing the requirement of exact data fit at the ob-
servation (control) points (e.g., Lancaster and Salkauskas, 1986).
For this, we consider static bending of a thin, rectangular plate with
free edges. The plate rests on soft springs (trend points) and stiff
springs (control points). The springs are unstretched when the bend-
ing displacements at their locations are equal to the given control or
trend values. The weights are rigidities of control and trend springs
related to the plate stiffness. The springs are not necessarily located
at the nodes. The problem is solved by the finite-element method.
Each node has three degrees of freedom: velocity and its derivatives
in two lateral directions. The stiffness matrix is symmetric and nar-
rowband. For 2D single line, a beam with free ends resting on
springs is calculated instead of a plate. The technique of gridding is
explained in Appendix G.

BACKWARD REDATUMING

After the gridding, we perform backward redatuming. The values
of inverted instantaneous velocities are correct, but time shift is
needed because the origin of the coarse time grid corresponds to the
laterally varying datum surface. Therefore, the datum time (e.g., sea
bottom in marine data) should be added. Above the datum, the in-
stantaneous velocities are known before the inversion. Finally, we
interpolate vertically for the fine time grid, assuming linear varia-
tions of the instantaneous velocity in depth between the nodes of the
coarse time grid.

SYNTHETIC EXAMPLE

A synthetic example of the velocity inversion is shown in Figure
3. The model consists of a laterally varying sea-bottom profile, thick
sediment layers, and a salt body within. Finite-difference modeling
(Tal-Ezer et al., 1987) was used to generate synthetic data of 750
common midpoints (CMPs) with a 25-m interval. The true instanta-
neous-velocity model scaled from depth is shown in Figure 3a. Fig-
ure 3b and ¢ demonstrate the undamped and damped (with the

b) Undamped marine C) Damped marine

200 400 600 200 400 600

0

CMP number CMP number

Figure 3. (a) True instantaneous-velocity model (scaled from depth), 750 CMPs with a
25-m interval. The two-way traveltime range is 5 s. (b) Noisy result of the constrained
velocity inversion — no damping involved. The unwanted vertical oscillations of the in-
stantaneous velocity are present. (c) Stable damped result of velocity inversion. Range of
the inverted instantaneous velocity: minimum, 1.5 km/s; maximum, 4.8 km/s.



R120 Koren and Ravve

weight wimP = 2) results of the inversion, respectively. The unwant-
ed vertical oscillations of the instantaneous velocity are clearly seen
in Figure 3b. The minimum instantaneous velocity is 1.5 km/s, and
the maximum is 4.8 km/s.

A total of 75 rms-velocity vertical functions were automatically
picked and used as input for the inversion, and the instantaneous ve-
locity was obtained (Figure 3c). Figure 4a shows the rms-velocity
section obtained from the inverted instantaneous velocity (by for-
ward Dix transform). The minimum rms velocity is 1.5 km/s, and
the maximum is 3.6 km/s. The marine (sea bottom) horizon was

b)

rms and interval velocity c)
1000 2000 3000 4000 5000
0

a) rms velocity section
200 400 600

Two-way vertical time (s)

CMP number Velocity (m/s)

Figure 4. (a) The rms-velocity section obtained after inversion. Range of the rms veloci-
ty: minimum, 1.5 km/s; maximum, 3.6 km/s. (b) Semblance, vertical function, and re-
sultof inversion for CMP#321. The instantaneous velocity is shown by red solid line, and
the rms velocity obtained by forward Dix transform from the inverted instantaneous ve-
locity is shown by red dashed line. The pink crosses are rms-velocity picks. Residual
rms-velocity scale range is —610 m/s (—2000 ft/s) = AV,= + 610 m/s (+2000 ft/s).
Instantaneous- and rms-velocity scale range is: 1520 m/s (5000 ft/s) ={V,,V,} =4570
m/s (15000 ft/s). (c) CMP gather #321. The pink lines along the input CMP gathers are

hyperbolae corresponding to the picked rms velocities.
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Figure 5. Convergence of the constrained Dix inversion. The two-
way time is measured from the reference datum. Black dots are regu-
larized input rms velocities on the coarse time grid. Green dots show
internal trend — an exponential, asymptotically bounded velocity
function. The blue solid line is the initial guess for the constrained
velocity inversion. The black thin line is the result of the inversion
with the damping weight w¥™ = (.5, and red thick line is the result
with wdmp = 2,

CMP gather #321
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Offset index
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used as a redatum surface. Next, we consider a representative verti-
cal function (CMP#321) that involves reflections from the salt body.
The dashed vertical line in Figure 4a shows the selected location.
Figure 4b shows the results of the inversion for this specific location:
the instantaneous velocity (red solid line) and the rms velocity ob-
tained by forward Dix transform from the inverted instantaneous ve-
locity (red dashed line). The pink crosses are rms-velocity picks. The
inverted rms velocity does not necessarily pass through the picked
points, although it is very close. There is no exact match between the
rms input data and the results. It is only the best fit in a least-squares
sense. Figure 4c shows the CMP gather for that
location. The pink lines along the input CMP
gathers are hyperbolas corresponding to the
picked rms velocities.

Figure 5 illustrates the convergence of the iter-
ative procedure. The green points show the inter-
nal exponential velocity trend. The black points
are the input rms velocities measured from the da-
tum surface (in this case, the sea bottom) and reg-
ularized on a coarse time grid (45 nodes, with
two-way time interval Az = 0.1 s). The thin blue
line is the initial guess for the instantaneous ve-
locity obtained by the standard Dix inversion
with further averaging of the discontinuities. Two
iterations of the Newton method were needed to
achieve convergence, but the velocities after the
first iteration almost coincide with the final inver-
sion results, and these two lines on the plot look
identical. We see only the final result, shown by
the thin black line. The weight of the data misfit
was 1, the trend weight was 0.25, and the damp-
ing weight was 0.5. The solid red line shows the
solution for an increased damping weight wdmp
= 2. For large traveltimes, between 3 and 4.4 s,
the resulting solution tends toward higher veloci-
ties than those of the initial guess. This is the ef-
fect of the exponential velocity trend, which as-
sumes that the sediment velocity increases with
depth. The user can control this effect and even
switch it off.

REAL DATA EXAMPLE

The velocity inversion was performed in update mode for real
data acquired above a fault-shadow region. The data include 270
vertical functions for residual rms velocities AV at 270 CMPs.
Figure 6a shows the background-velocity field and the result of the
prestack time migration (PSTM). In Figure 6b, we present the result
of the constrained velocity inversion for the representative CMP
#9763. We show the instantaneous-velocity trend V§e(z) (black
solid line); the rms velocity Vi*(z) transformed from the velocity
trend (black dash line); the inverted instantaneous velocity V{™ (tur-
quoise solid line); the rms of the inverted velocity Vi™ (turquoise
dash line); the resulting residual rms velocity AV4i™ (pale blue solid
line), which is the difference between the rms of the inverted veloci-
ty and the rms of the background-velocity trend, AVi™ = Vi
— Vjend; and the input residual rms velocity AV#@ (pink crosses). As
we see, the graph of the resulting residual AVi™(z) does not pass ex-
actly through the picked points AV but is close to the data.
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Following Alkhalifah (1997), the fourth-order average velocity of
the anisotropic medium V, can be defined as

for the residual rms velocity AV#4% picked in Figure 6b:

2

h
AU

Figure 7a shows the background-velocity trend V{§(z) for all

CMPs. Figure 7b shows the input residual rms ve-
locity which was obtained by an automatic pick-
ing procedure (Swan, 2001). The result of the au-
tomatic picking is rather noisy, and the range of
the residual rms velocity is =240 m/s (800 ft/s)
= AV =430 m/s (1400 ft/s). Figure 7¢ dem-
onstrates the ability of the constrained inversion
to produce a geologically plausible and stable re-
sult even for this type of data. The weight of the
data (rms velocity) misfit was 1, the weight of the
trend misfit was 0.25, and that of the absolute
damping was 0.5. Figure 7d shows the result of
the unconstrained inversion, which is somewhat
noisy. The color scale on the right side of Figure 7
is related to velocities (Figure 7a, ¢, and d). For
the residual rms velocities in Figure 7b, dark blue
corresponds to the minimum value —240 m/s,
while red corresponds to the maximum value
+430 m/s.

This example reflects the attractiveness of the
implementation of the constrained inversion in a
production environment. It enables the use of
noisy, automatic picking output as an input for ve-
locity updating, without the need for intensive
human editing. The combination of the automatic
picking and the constrained inversion dramatical-
ly reduces the turnaround time of the processing
sequence.

INTRINSIC ANISOTROPY

In the inversion procedure, the anisotropy was
ignored, and we call the resulting instantaneous
velocity V, “isotropic.” Under the assumption of
vertical transverse isotropy (VTI), the isotropic
instantaneous velocity Vj is related to the true
vertical anisotropic velocity Vi"s° by

. \/b
niso
= —, (22)
0 V1 +26

where & is the Thomsen (1986) parameter. Super-
script “iso” for the isotropic velocity V is omit-
ted. To estimate the interval values of the intrinsic
anellipticity 7™, we use the inverted instanta-
neous velocity V, and the effective anellipticity
7, picked from the analysis of large-offset
moveout.

. Avcziata.

t

Vi) = % f Vo(r) - [1 + 85™(1)]dr. (23)
(21) 0

Assuming that the intrinsic anellipticity is piecewise-constant on the
intervals, we obtain

a) Time-migrated interval velocity b)
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Figure 6. (a) Background-velocity field and results of the PSTM over a fault-shadow re-
gion. (b) Results of the inversion for the representative CMP #9763 at the fault. The black
solid line is the instantaneous velocity trend V(7). Black dashed line is the rms veloci-
ty V4*rd(¢) transformed from the velocity trend. The turquoise solid line is the inverted in-
stantaneous velocity V™. The turquoise dashed line is the rms of the inverted velocity
Vi™. The pale blue solid line is the resulting residual rms velocity AVj™. The pink crosses
are the input residual rms velocity AVS44. (c) PSTM image gather at CMP #9763. The
pink lines are moveout-versus-offset trends for the residual rms velocity picked in Figure
6b (pink crosses).
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Figure 7. (a) Background instantaneous-velocity field at the fault shadow. The two-way
traveltime range is 7 s. (b) Residual rms velocity versus time (input data), obtained by au-
tomatic picking. The residual rms-velocity range is —240 m/s = AV?*@ =430 m/s. (c)
Results of the constrained velocity inversion. Results are stable and geologically plausi-
ble even for a noisy input data set. (d) Results of the unconstrained velocity inversion. Re-
sults are somewhat noisy.
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1
Vi to= 2 (10 +87™) - | Vi(r)dr,
i=1

lizy

Atp=ti—ty, t,= 2 A 15=0. (24)
i=1

Consider the last interval n connecting interfaces n — 1 and n. Equa-
tion 24 becomes

tn
4 4 _ int 4
Viw tn= Vi thy = (1 + 87, )J Vo(r)dr. (25)
-1

Introduce the isotropic nonhyperbolic parameter His° and the aniso-
tropic nonhyperbolic parameter Hi"° over interval n of the aniso-

tropic medium: ,

H™ = J Vo (t)dt,

In-1

tn
H™° = (1 + 87™) f Vo (t)dt. (26)
Iy

Equation 25 relates the anisotropic nonhyperbolic parameter to the
fourth-order average velocity V,, of the anisotropic medium:

i 4 4
HillmSO = V4,n Clh V4,n—l “lyet- (27)

Itfollows from equation 25 that the intrinsic interval anellipticity de-
pends on the isotropic and the anisotropic nonhyperbolic parameters
over the interval,

aniso is0
Hn B Hn

Hzniso — (1 + 877innt)HLso N nilm — 8Hiso
n

(28)

In the anisotropic model, the fourth-order average velocity V,, and

the rms velocity V,,, are related by the effective anellipticity 7",

Vi, =Va, - (1+870). (29)

n

Combining equations 27 and 29, we relate the anisotropic nonhyper-
bolic parameter to the rms velocities and to the effective anelliptici-
ties at the ends of the interval:

H:niso = V;,n . (1 + 87]:ff) : tn - V;,n—l : (1 + 87]:f—fl) : tn—l'
(30)

To suppress random errors, we average the intrinsic anellipticity
within the formation subvolumes. We also calculate the standard de-
viation of 7™ for each formation to estimate the reliability of the re-
sults.

Thus, the algorithm is as follows:

e (Calculate the rms velocities from the inverted instantaneous ve-
locities.

 Scanand pick the nodal values of effective anellipticity 7T using
the fourth-order moveout equation (Alkhalifah and Tsvankin,
1995),

2 off 4
2_ 2 X 27, X

+ TH T i b
Vaw VaulVaut, + (1+ 2757)x%]

31)

where x is the offset, 7, is the vertical traveltime, and ¢, is the
nonvertical traveltime.

e Calculate the anisotropic nonhyperbolic parameter H by
equation 30. Note that the nodal values of the rms velocities V,,
are obtained by forward Dix transform from the inverted instan-
taneous velocity V{» and correspond to a geologically plausible
model.

¢ Calculate the isotropic parameter H° by equation 26.

* Estimate the intrinsic anellipticity by equation 28.

¢ Average the intrinsic interval anellipticity within the formation.

Equation 28 may be presented in an equivalent form that gives a
better insight on the relation between the intrinsic, induced, and ef-
fective anellipticities. The induced anellipticity is caused solely by
vertical variations of the instantaneous velocity, without accounting
for the intrinsic anisotropy of the medium. In the isotropic model,
only the induced counterpart 7, is present, and equation 30 comes
to

Hirfo = V24,n (1 + 877i1nd = V24,n—1 (1 + 87721—(11) RISE
(32)

Equation 32 can be considered as a definition of the induced anellip-
ticity. At the origin 7, = 0, the induced anellipticity can be assumed
to be zero because at this point the rms velocity and the fourth-order
average velocity both coincide with the instantaneous velocity. At
other nodes equation 32 yields

n

D HC -V 1,
ind _ =1
ind _

33
8V, 1y (33)

The effective anellipticity includes the intrinsic and the induced
components, but it is not a simple sum of these components. More-
over, the induced and the effective anellipticities are nodal values,
but the intrinsic anellipticity is an interval value.

Recall that the resulting rms velocities are obtained by the forward
Dix transform from the instantaneous velocity model, which, in turn,
was obtained from the input rms velocities. The resulting rms veloci-
ties are the same for the isotropic model and for the model that takes
into account Thomsen parameter 8. Indeed, on the inverse Dix trans-
form, we divide the isotropic instantaneous velocity by the factor
V1 + 26 to get the true vertical velocity of the anisotropic model.
However, on the forward Dix transform that follows the inversion,
we multiply the instantaneous velocity by the same factor.

Introducing equations 30 and 32 into equation 28, we obtain

ind

nint _ V;,n(ylsz — 77innd) o Vgn—l(ntelf—fl = Tu-t) " In1
! Vg,n (L4890 -1, - Vg,n—l (1 + 870
(34)

As we see, the intrinsic anisotropy is a function of the difference be-
tween the effective and the induced anellipticity. The first Thomsen
anisotropy parameter Jis not needed to establish the intrinsic aniso-
tropy. Note that the only noisy component in equation 34 is the effec-
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tive anellipticity ™. The rms velocity V,, and the induced anellip-
ticity 7™ are obtained solely from the geologically feasible, inverted
instantaneous-velocity model. Recall that for the intrinsic anelliptic-
ity, subscript n means the number of the interval, whereas for the ef-
fective and induced anellipticities, » means the node number.
Parameter 7™ is related to the Thomsen parameters & and &,

int g é int int
n, = s =n"+5+2n, 0. 35
" 1+26 € " " ( )

Usually, parameter dis obtained by correlating seismic traces in the
vicinity of the wells to the sonic logs (or from check shots),

1 (VBSO)2 from seismic
2 (V?)niso)2 from well

and this makes it possible to estimate & by equation 35.

5= -1/, (36)

LIMITATIONS OF THE METHOD

The proposed approach is a local, 1D inversion in a 3D, laterally
varying medium under the assumptions of small offsets and small
dips. Under these assumptions, we obtain a stable and geologically
plausible initial velocity model, which can be an input for more ad-
vanced and powerful methods, such as depth tomography. The moti-
vation for this study is to increase the stability of the Dix-based in-
version, with a controlled loss of accuracy. In other words, the aim is
to develop a stable and not necessarily accurate approach that gives
an initial estimate for the instantaneous-velocity field from rms-ve-
locity data. The main idea is to find a geologically constrained, in-
stantaneous-velocity field that best fits rms-velocity data in a least-

squares sense. It is an attractive replacement for the standard, con-
ventional Dix inversion formula.

CONCLUSIONS

We derived a method to estimate nonoscillatory and geologically
plausible instantaneous velocities from conventional stacking- or
rms-velocity estimates using a combination of geologically credi-
ble, internal, analytical trend function and a least-squares fit. A new,
stable velocity-inversion algorithm is introduced, especially suit-
able for compacted-sediment regions, with the ability to handle dif-
ferent types of velocity anomalies. The method is extended for using
any arbitrary, external velocity-trend function and, therefore, can
also be applied to update background-velocity models with residual
rms velocities or residual moveouts. The input data can be located
spatially sparse and irregularly.

The inverted instantaneous velocity approximately matches the
transformed input rms velocity (in the least-squares sense) and is
controlled by the trend function and the antioscillatory damping
mechanism. The damping mechanism keeps unwanted vertical os-
cillations small. The constrained inversion can be combined with au-
tomatic picking procedures, resulting in a considerable speed-up of
the velocity updating. Automatic picking normally results in noisy
data, owing to the complex nature of the seismic data. The field ex-
ample presented in this study shows that even in the case of a noisy
data set, the proposed constrained inversion produces a stable veloc-
ity field. The gridding procedure provides further lateral smoothing
on a fine, regular grid in both lateral and vertical directions.

On the basis of the reliable, inverted instantaneous-velocity mod-
el, it becomes possible to determine intrinsic and induced anisotropy
parameters.

LIST OF SYMBOLS

= Misfit of exponential velocity distribution

Data misfit

Trend-function misfit

Spring stiffness

= Lateral distance between grid node and location of

vertical function

D = Damping energy

D¢ = Cylindrical stiffness of plate
F = Inversion cost function
G
h
H

a 0w
I

= Inversion gradient
= Offset
= Inversion Hessian matrix
H™s = Anisotropic nonhyperbolic parameter for interval n
H,** = Tsotropic nonhyperbolic parameter for interval n
k, = Initial gradient of exponential distribution
k, = Constant gradient on interval n for linear velocity
distribution in depth
L, = Euclidean norm
M, = Arithmetic average
M; = Logarithmic average
N = Amount of nodes in vertical function
p
R
s

Pressure applied to a plate surface

Radius of influence for internal trend estimate
Step of steepest descent

ty = One-way time for redatum horizon

t, = One-way vertical time at the bottom interface of layer
n
t,.; = One-way vertical time at the top interface of layer n
Us = Local rms velocity of input data on interval k
between two picked points
Upend = Local rms velocity of trend function on interval k
between two picked points

U, = Local rms velocity on interval n
Ui = Local rms velocity of linear distribution in depth on
interval n

V., = Initial velocity of exponential distribution
Virend = Interval velocity of trend on interval k between two
picked points

Vit = Interval (local average) velocity on a regular interval
n
Vgniso = True vertical anisotropic velocity (of compression
wave)

Vga(r) = Instantaneous velocity of updated trend (result of
unconstrained inversion) on interval k
Visnd(r)= Instantaneous velocity of trend on interval k
Vo.. = Instantaneous velocity at node n
Vs = rms velocity of exponential distribution
Von = rms velocity of redatum horizon
Vs = Regularized input rms velocity for node n of vertical
function i
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Vs = Tnput rms velocity at picked point &
Viend = rms velocity of trend function at picked point k
Vo, = rms velocity at node n
V,, = Fourth-order average velocity at node n
V.. = Asymptotic velocity of exponential distribution
w = Bending displacement of thin plate
wk = Lateral weight for vertical function i and grid node j
wdmp = Damping weight for joint n
wims = Weight of data misfit on interval n
wiend = Weight of trend misfit on interval n
Wda = Hyperbolic parameter of input data for interval k
between picked points
Wirend = Hyperbolic parameter for background velocity
distribution on this interval
W, = Hyperbolic parameter over interval n
Z = Distance measured from the top interface of an
interval
6 = First Thomsen anisotropy parameter
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APPENDIX A

UNCERTAINTY OF UNCONSTRAINED
INVERSION

In this appendix, we cite two papers to show that the uncon-
strained Dix inversion may lead to vertical oscillations of the instan-
taneous velocity and to demonstrate that the uncertainties of the rms
velocities are significantly amplified by the inversion, leading to
strong uncertainties of the interval velocity. To be consistent with the
cited works, the term interval velocity is used in this review instead
of the more accurate term local rms velocity derived by the Dix for-
mula. As we mentioned in the Introduction, there is a negative corre-
lation between the velocity estimates in two successive layers (Lan-
da et al., 1991), which leads to oscillations in the vertical velocity
profile. Consider the inverted interval velocity from the Dix equa-
tion 1 for the two successive intervals, Ar, =1, — f,_; and At,,,
= t,,1 — t,. Elimination of the rms velocity V,, at their common in-
terface t, leads to

2 2 2
_ V2 ne1lntl ~ V2 n-1ln-1 ~ UnAtn
Un+l -

Atn+1 ’
d Un+1 _ UnAtn _ VInntAtn _ Azn
d Un Un+1Atn+1 VLrj:lAth Azn+1 -

(A-1)

oU = Uncertainty of local rms velocity
6V, = Uncertainty of global rms velocity
At, One-way layer traveltime
AV = Velocity range of exponential distribution
AV, = Residual instantaneous velocity on interval k between
two picked points
AV, = Residual rms velocity at picked point k
Az, = Layer thickness corresponding to the true velocity
Azend = Layer thickness corresponding to velocity of trend in
the unconstrained inversion
e = Second Thomsen anisotropy parameter
7 = Anisotropic anellipticity
7T = Effective anellipticity at node n
ind = Induced anellipticity at node n
i = TIntrinsic anellipticity on interval n
v = Poisson’s ratio
7 = One-way time measured from the top interface of an
interval

Hajnal and Sereda (1981) demonstrated that the uncertainty in the
calculated interval velocity increases with depth and is inversely
proportional to layer thickness. According to equation A-1, the inter-
val velocity depends on two traveltimes and two rms velocities at the
interfaces, and the error of its estimate is

U, U
5Un = 5tn + 6,,_1 + 5V2n
d tn tn—l d V2,n ’
JaU,
+ “ Vo
I Vana ’
_ V%n - V% n—1 L, 5tn—1 =ty 5tn
- ZAln \’/Wn . Atn
Vouty - Vo, = Vo ituet - OVo
4 2, 2, 2,n—-1 1 2, 1’ (A-Z)

i
VW, - At,

where W,=V3 1, — V3,_1t,_,. We call W, the hyperbolic parameter.
Next, note that

A

The right side of equation A-3 is estimated at the midpoint of the in-
terval (for the midpoint, the subscript is omitted). Hajnal and Sereda
(1981) assume that the rms velocity varies slowly and neglect the de-
rivative dV,/dt. Furthermore, they consider the worst case, when the
errors of the rms velocities at the top and bottom interface 6V,,,_; and
&V, ., respectively, have opposite signs (actually, these signs are
unknown). In this case, the error terms +V,,f,-6V,, and
=V, it,_1 - 6V,,_1 have the same sign and do not compensate each
other. Assuming that the absolute value &V, of these errors is the
same, the error estimate of the interval velocity becomes
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% _ V2,ntn + V2,n—ltn—1 _ 2V2t
oV, \W, - At, At, - \W,/At,

_ 2VotlAr, 2V,t/ At, 2t
Nd(V2OIdt V2 + 2Vst - dVyldt A,
ty+ b,

— "—"1. (A-4)
P

The ratio 2¢/At, is the error amplification factor.

APPENDIX B

SOLUTION TECHNIQUE FOR VELOCITY
TREND PARAMETERS

The resolving set for minimization of the variation energy fol-
lows from equation 9. At the minimum point, these partial deriva-
tives vanish, and the matrix of second derivatives is positive definite:

IA; IA;
—L -9, —L=o. (B-1)
&Va’j (9ka,j

Subscript j denotes the lateral location. Apply the Newton iterative

procedure:
(m+1) (m) (m)
v v [ eves ©2)
L+ 1) i) Skm - |°
a.j aj a.j
where m is the number of the current iteration, and 6V.") and ok(") are
corrections obtained from the linear set,

2 2
924, %A, IA,
IV, AV 0k, [5V;j7>} IV,
2 2 ’ m | =~
924, J fzx, Sk JA;
IVes ke, IR, 3 ko,
(B-3)

The first derivatives of the misfit function are

9 A M~1 N

et L v

av.. 2 Wijz Wy
a,j i=0 n=0

qry O V2
ex ata
X[VZ p(Va,j’ka,j’tin) — V2,ind” ERY ’
a,j =t;,
M—1 N;
dA; :
— 1 _ L Vv
k. 2 w2,
a,j i=0 n=0
dat:
X[VZexp(Va,j’ka,j’tin)_ 2;1”21
P
s (B_4)
3 kaj limy,

where V$**(V, k. .t;,) is given by equation 6. The second deriva-
tives of the misfit function are

M -1 N,

FPA;, ’
] L |4
b = 2 W[jE Wy

d Va,j =0 n=0

AL (a V;’XP)Z]

X |:(V2exp _ Vdata . v
a,j

2.in 2
Ve
(92A- M1 N;

1

L _ L |4

P k2 = 2 W,“,‘E w,
a,j i=0 n=0

2
X[(V;xp vy SV (&) }
,in b
a2, \ dk,
P4, M N
L T
d Va,j d ka,j =0 n=0
Py
0V, d ke,
IVEP g v;*l’}

exp _ yydatay
X{(Vz 2.in

+ (B-3)
J Va’j Jd ka,j

In the proximity of the minimum point, the Hessian matrix H
(matrix of the second derivatives) is positive definite, and its deter-
minant can not vanish. However, this may happen on the way to the
minimum, especially if the initial guess is not very close to the solu-
tion. Or, even if the determinant does not vanish, it may become too
small — anyway, convergence of the Newton method is not guaran-
teed for any given initial guess. To overcome this problem, we apply
the following algorithm. Before updating the sought parameters, we
check whether the value of the cost function at the new point is
smaller than its current value. If it is smaller, then we update the pa-
rameters and pass to the next iteration. Otherwise, we try to decrease
the parameter increments by a factor (we use factor 0.7) and check
again. If it does not help, we apply the steepest descent. We try to
move in the antigradient direction (with the direction of the gradient
established at the current point) and choose the optimal step length.
This length is the ratio of two scalars: the gradient length squared
over the quadratic norm of the Hessian matrix H and the gradient
vector G:

¢"G [y
CeH G |am | T B9
. H - -

The superscript 7 indicates a transposed vector. The vector of pa-
rameter increments is then the opposite of the gradient multiplied by
step. Again, before making a step, we check whether the cost func-
tion decreases (because it is not guaranteed that the optimal step is
really an optimum). If the function decreases, we proceed. If the
function does not decrease, we decrease the length of the step by fac-
tor two and check again. If it still does not decrease, we continue de-
creasing the step. This loop is finite — at some small value of the
step, the cost function will necessarily decrease in the antigradient
direction. After the antigradient step is done, we immediately return
to Newton minimization. Convergence of the steepest descent is
very slow, and we use this method only to escape from the ravine
point, while continuing further with the Newton method (whose
convergence is fast but not guaranteed).
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APPENDIX C

TECHNIQUE FOR UNCONSTRAINED INVERSION

In this appendix, we develop the unconstrained inversion proce-
dure that matches the rms-velocity data at the picked points exactly
and at the same time follows the velocity-trend model. Assume that
on interval k£ between two successive picked points, the instanta-
neous velocity follows the velocity-trend function with a constant,
residual instantaneous velocity,

data(t) — trend(t) + AVO,k- (C-l)

The hyperbolic parameter W& of the data between the picked
points is calculated as
WES = V3 i = Vit (C-2)

and the following relationship holds:

f [Ve&(r) Pdr = f [ VE(r) + AV, Pdr = Wi,

Tg—1 Tg—1

(C-3)
Expansion of equation C-3 leads to
I
f [V(;fznd(T)]sz + 24V0,/<f trend(T)dT + AVO AL
T lg-1
s (C-4)

where Az, = t, — f,_, is the one-way interval traveltime. Equation
C-4 can be rearranged in terms of local rms velocity of the trend
Ujrend = \“W‘“""d/Atk, local rms velocity of the data U@
= VW ““‘/Atk, and the interval (local average) velocity of the trend
trend — A lrend/At
Viiek Zk ko

(UF)2 Aty + 24V - Az + AVG Aty = (US)? Ay,
(C-5)
Divide all terms by traveltime At,

(U2 4 2 AV, Vi 1+ AVE, = (U892, (C-6)

int,k

Solving quadratic equation C-6, we obtain the residual of the instan-
taneous velocity between the picked points

AV(),/( _ \”/(Ugata)z _ (U;crend)z + (Wrend 2 _ ‘rend‘ (C—7)

int,k int,k

In cases when the local rms velocities of the input data and of the
background-trend function, U and U™ are close, the expression
for a small residual AV, can be linearized,

( Ugata)2 _ ( U}(rend)z Wdala VVtrend

d trend
2 'ren A
int,k

AVO,k =

(C-8)

APPENDIX D

VELOCITY VERSUS TIME FOR CONSTANT
GRADIENT IN DEPTH

Although the linear velocity distribution in depth (Slotnick,
1936) is very common and widely used, we list here the basic rela-
tions for completeness. These relations are used in our inversion al-
gorithm.

Derive the law of the instantaneous velocity in time for constant
vertical gradient. We assume a linear distribution of the velocity in
depth:

Az, -2 y 2
— Vour t T
Az " Az

n

lin /2
VO,n(Z) = : VO,n’ Azn =Zn ~ Zn-1»

n

(D-1)

where V;,_, and V,,, are instantaneous velocities at the top and bot-
tom interface, respectively; Az, is the interval thickness; and 0=Z
= Az, is the relative depth measured from the top interface. The one-
way interval traveltime is

Az,
d? A V
At, = f ZA = o P
| Vou2)  Vou = Vo Von-1
_ 1n(VO,n/VO,n—l) (D-Z)
k, ’
where
IVou  Vou=Von
= == — = const D-3
Py A (D-3)

is the vertical gradient. Note that the interval (local average) velocity
becomes the logarithmic average of the interface velocities,

An Vn_vn Vn +Vn
Vipn = 2 = —on =Sl o Z0al 2 50 (D-4)
’ At ln(VO n/VO n— 1) 2

In the case of a linear distribution in depth, the interval velocity nev-
er exceeds the average of the interface velocities, and the exact
equality in (D-4) occurs only in the case of constant velocity Vj,
= Vp,.-1. According to equation D-2, the velocities at the bottom in-
terface and at any intermediate point of the interval are, respectively,

Vo (1) = Vo, - explk,T),
(D-5)

VO,n = VO,n—l ’ exp(knAtn),

where 7 is the one-way traveltime measured from the top interface.
We eliminate the gradient &, from equation set D-5 to get the current
instantaneous velocity inside the interval versus interface velocities
and time,

Von(r) = Vol - Vi, 0= 7 < A, (D-6)
The logarithm of the velocity becomes

At, - T

In V(1) = gy

anOn 1+
n n

- In VO ns
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0=r71= A, (D-7)

Compare equations D-1 and D-7. Linear interpolation of the instan-
taneous velocity in depth means linear interpolation of its logarithm
in time. Compute the hyperbolic parameter on the interval,

At, At,
W, = f Vou(r)dr = f Vo7 . v gz
0 0
A, Vo - Vi
—_ == 0.n 0,n—1 (D—8)

2 In(Vo,/Vour)

The local rms velocity Ul" on the interval depends only on the veloc-
ities at the interfaces:

2 2
VO,n - VO,n—l

Uit = \W,/At, = .
2 ln( VO,n/VO,n—l)

(D-9)

Equation D-9 can be presented as

Uy = V/MA(VO,n—hVO,n).M 1 Von-1:Von)
= M (V5,15 V00 (D-10)

where M, and M, are the arithmetic and logarithmic average of the
interface velocities, M; = M 4. For two positive numbers A and B,

A+ B B -
M,(A,B) = — s M= B (D-11)
APPENDIX E

SUPPRESSING VERTICAL OSCILLATIONS
(DAMPING TECHNIQUE)

In this appendix, we derive the damping terms for two kinds of
antioscillatory damping mechanisms: an absolute damping and a
damping that follows the velocity trend. For an absolute damping
that suppresses any gradient jumps, the corresponding term in the
cost function is

5 . N-1
V2At
D= = 3w A Ayl = k), (E-1)

n=1

where 7 is the number of the joint, and k,_; and k, are constant gradi-
ents for the intervals above and below the joint, respectively. These
gradients are obtained from equation D-2,

In(Voue1/ Vo) _ In(Vou/Vou1)

> Ky . (E-2
Atn+l Atn ( )

kn+l =

Summation is done over all joints between the interval, i.e., over all
nodes, except the first one and the last one. Factor V2At is a charac-
teristic number to provide proper units. For a uniform, coarse time
grid, equation E-1 simplifies to

——N-1
V2 At Voot Von
D = E Wgamp . hﬂ(%) . (E-3)
2 VO,n

n=1

For a damping mechanism whose gradient jumps follow those of the
trend,

mN—l
D= > E Wf‘,amp At Ay [y = k)
n=1
— (k¢ = Ky (E-4)
For a uniform grid, equation E-4 simplifies to
Al N-1 rendy)2
D= 14 AIE pdamp | |2 Von-1 - Voner (Vow '
2 n=1 " V(2),11 (;;Iliil . V(L)r,?fl
(E-5)

A similar damping technique for the Dix velocity inversion was pro-
posed by DuBose (1988), but he assumed a linear velocity variation
in time between the nodes. In our model, the velocity between the
nodes varies linearly in depth.

APPENDIX F

TECHNIQUE OF CONSTRAINED INVERSION

We compute the derivatives of variation energy with respect to
model parameters and set them to zero (Menke, 1989). The cost
function F, consisting of rms-fit, trend-fit, and damping terms (B, C,
and D, respectively), reaches the minimum value at

oF JB 0C JdD
= + + ZO, n=0,1,...,N.
d VO,n d VO,n d VO,n d VO,n
(F-1)

This is anonlinear setof N + 1 equations. We solve it by the Newton
method. First, we get an initial guess for the inverted instantaneous
velocities V", and then, on each iteration, the corrections are added

to the current values V()(;’,‘),

Ve = v 4 AV, n=0,1,...,N. (F-2)
To get the corrections AV, we solve the linearized set with a penta-
diagonal symmetric matrix:

J = min(N,n+2) &ZF OF

— AV, =— ——. (F-3
)3 Vo 9 Vo, 0. 9 Vo, (F-3)

j = max(0,n-2

Data-misfit and trend-misfit terms of the variation energy are
computed for intervals and result in a tridiagonal Hessian matrix.
Each component of the damping term is computed for a joint, and
thus, the damping mechanism contributes in a pentadiagonal Hes-
sian matrix. One can say that the diagonal components are related to
the nodes, the close off-diagonal components are related to the inter-
vals, and the remote off-diagonal components are related to joints.

APPENDIX G

TECHNIQUE OF LATERAL GRIDDING

To map the inverted instantaneous velocity from the lateral loca-
tions of vertical functions into a regular lateral grid, we find a surface
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of minimum curvature and consider elastic bending of a thin, rectan-
gular plate with free edges resting on springs. The specific surface
energy W (per unit area) can be presented as

Dc 2 2

W(x,y) = 7 : (Wxx + Wy_\') - 2(1 - V)(Wxxwyy Wl |
—_— S—
Laplacian squared Gaussian curvature

(G-1)

where w is the normal displacement and v is Poisson’s ratio. Note
that the Gaussian curvature does not contribute to the differential
equation. Assume that the cylindrical stiffness of the plate D = 1.
Let p be the normal load (pressure). The variational approach leads
to the biharmonic equation

9w d*w J*w p
T t2 T oot T = (G-2)
Jdx dx“dy ady D

We do not solve the differential equation directly, but apply the fi-
nite-element method instead. We follow Reddy (1993) and use the
standard elements of classical plate theory, nonconformed (CPTN)
with three degrees of freedom at each node: normal displacement
and its derivatives in x and y. The plate consists of identical rectan-
gular elements, assembled together in a global stiffness matrix. The
global nodes are enumerated so that the index runs fast along the
shorter side of the plate (this may be either x or y) to keep the band-
width of the stiffness matrix minimum.

The elastic springs, with stiffness C;, are attached to the plate at
the locations of vertical functions. They are unstretched when the
displacements under the springs are equal to the given control values
Vo.i.- Actually, this means that external vertical forces are applied at
the location of the spring, and their values are P; = C;V,;. The point
forces are presented by Dirac delta-function 6. The normal pressure
in equation G-2 becomes

N
plx,y) = 2 Ax;,y;) - Ci[VO,i - wlx,y)]. (G-3)
i=1

Note that if the spring is very stiff with respect to the stiftness of the
plate, then the external load is balanced mostly by the spring force,
and the reaction of the plate will be small. This means that in the case
of stiff springs, the displacement under the springs will be almost
equal to the value of the control function V. If the springs are soft,
the solution will be more continuous but less accurate: the resulting
displacements at the control points will differ from the control val-
ues. The proper choice of the weights is an ad hoc operation and re-
quires trial and error. In addition to control points, we have trend val-
ues at all other nodes. They are treated similarly, but trend points
have much lesser weights. To assign stiffness of springs, we choose
the largest translation element on the diagonal of the stiffness matrix
(there are also rotation elements) and consider it as a characteristic
translation stiffness of the plate. All elements of the stiffness matrix
are proportional to the cylindrical stiffness D; therefore, the magni-
tude of D does not matter; one may assume D, = 1. For a fixed D¢,
the solution is almost insensitive to Poisson’s ratio. Once the charac-
teristic translation stiffness is set, we apply two dimensionless fac-
tors: weight of control points (large value) and that of trend points
(small value). It is not necessary to set the control data at the nodes;
the control points may be inside of rectangular elements. In this case,
the scalar load (vertical force) is transformed into 12 components of

the load at the nodes, and the scalar spring stiffness is transformed
into a 12X 12 stiffness matrix. The technique of transform is
straightforward: The elastic energy of the scalar spring and that of
the spring transformed into a matrix should be the same for equal
nodal displacements. The same is true for the work of the external
load presented as a scalar point force or as a vector of forces and mo-
ments. This makes it possible to process nonnodal vertical functions
(atypical case for multiline 2D survey) or to apply the gridding mesh
different from the lateral grid of inversion. In addition, the technique
allows us to install not only translation springs but also rotation
springs, thus to model a control point with given lateral gradients of
the velocity. (In the present study this feature is not in use.)

Because, for all horizontal slices, the vertical locations of control
points coincide and only the values of control data differ, the global
stiffness matrix (that includes both plate and springs) is the same for
all slices, and only the external loads differ. Thus, we have to solve
many times a linear set with the same symmetric positive definite
band matrix and different right-hand sides. We perform only once
the square-root decomposition of the stiffness matrix into the identi-
cal lower and upper triangular matrices. Then we run the backward
substitution for each slice.

APPENDIX H

INVERSION WITH EXTERNAL
VELOCITY TREND

As mentioned above, we assume that the inverted instantaneous
velocity varies linearly with depth between the nodes of the coarse
time grid. When the trend function is specified a priori, we accept the
same assumption for the behavior of the trend function between the
nodes. The trend velocity is defined by its nodal values, and the non-
linear deviations of the trend function between the nodes are, so far,
neglected. Thus, both the instantaneous velocity and its trend are lin-
ear in depth (and exponential in time), and this simplifies the compu-
tation of the L,-norm for their difference. Let V,,_;, V;,, be the in-
stantaneous velocities at the upper and lower interfaces of the inter-
val, respectively, and let Ve, Viend be the trend velocities at the
same points. At this time, the inverted velocities are unknown and
the trend values are known. Between the interfaces, the instanta-
neous-velocity function and its trend versus depth and time are,
respectively,

2
. VOJI—I + : VUTn
Zn Zn

_ yl-7/As 7 1AL,
Vo) = Vo, i Vi "

Az, -2

Vo(2) = Inverted velocity versus depth

Inverted velocity versus time
vucnd ~ Azn -z Vtrend Z rend .
0 ) = —— - on-1t 7 Vou Trend velocity versus depth
Az, z
virend(z) = (V}{ef,)l'” Ay (v‘g;"“)” At Trend velocity versus time
0=z=4z, 0=71=A4,,

Depth and time range

(H-1)

The L,-norm shows how close the instantaneous velocity is to its
trend,
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At,

L, = J' [Vo(1) = V5(7r)PdT = J - At,.  (H-2)

Relationships from Appendix D lead to
2 2 d d

- VO,n - VO,n—l _ Z(VLren VO,n - Or,enn—l ) VOn l)

21n(Vo,/Vouet)  In(Vo,/ Vo et) + In(V, vl Vnendﬂ

d 2 d \2

(Vo) = (Vo)

2 (V)

Using notation for the logarithmic average M, we obtain

(H-3)

J=My(Vg, Vit = 2My(VES - Vo, VeSS, - Vo)
+ ML[( rend Orc;nd1 2] (H-4)

The L,-norm includes three counterparts: the logarithmic average of
the inverted velocities squared, the mixed logarithmic average (that
of the products V{iend- v, , and V{§ed- V), and the logarithmic av-
erage of the trend velocities squared. In other words, there is the in-
version counterpart, the mixed counterpart, and the trend counter-
part. The trend counterpart M [ (V§<)2, (V{end)?] is a constant addi-
tion, independent of the inverted velocities, and does not affect the
minimization. Introduce the following notations

M = ML(V(z),n’ Vg,n—l)’

L= ML(Vg,e;?d : Vo,ngfqndl Von-1)- (H-5)

The expressions for the logarithmic average (and its derivatives) can
not be used directly when the interface instantaneous velocities
Vo1 and V;,, become equal (zero divide) or when these velocities
become very close (insufficient accuracy). However, both numera-
tor and denominator are infinitesimal, and the resulting expressions
are finite. The singularity is removable. We expand the ratios into a
Taylor series in the neighborhood of the average velocity V., to intro-
duce the normalized measure A of the gradient on the interval:

Vo1 +V, ~
V=2l 0 A=y VL, A=AV,
2 ! >
(H-6)
The inversion counterpart becomes
M A2 A 114°

T8
o +0(4°%. (H-7)

el T e
vz 12 180
In the formulas for the mixed counterpart L (equation H-5), the re-
movable singularity arises when the two products of the inverted and
trend velocities become equal (or very close): Vi -V,
=~ Vgend. V.. In this case, we use an expansion similar to equation
H-7. Expansions are used when necessary also for derivatives and
second derivatives.

Note that the external trend is usually specified at the nodes of the
fine time grid, but on the inversion stage, we use only the coarse nod-
al values of the trend, neglecting the nonlinearities between these
nodes. However, the nonlinear component of the trend can be sepa-
rated and added to the results of the inversion when performing the
gridding from the coarse time grid to the fine grid.
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