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ABSTRACT

We propose a stable inversion method to create geological-
ly constrained instantaneous velocities from a set of sparse,
irregularly picked stacking- or rms-velocity functions in ver-
tical time. The method is primarily designed for building ini-
tial velocity models for curved-ray time migration and initial
macromodels for depth migration and tomography. It is
mainly applicable in regions containing compacted sedi-
ments, in which the velocity gradually increases with depth
and can be laterally varying. Inversion is done in four stages:
establishing a global initial background-velocity trend, ap-
plying an explicit unconstrained inversion, performing a con-
strained least-squares inversion, and finally, fine gridding.
The method can be applied to create a new velocity field �cre-
ate mode� or to update an existing one �update mode�. In the
create mode, initially, the velocity trend is assumed an expo-
nential, asymptotically bounded function, defined locally by
three parameters at each lateral node and calculated from a
reference datum surface. Velocity picks related to nonsedi-
ment rocks, such as salt flanks or basalt boundaries, require
different trend functions and therefore are treated differently.
In the update mode, the velocity trend is a background-veloc-
ity field, normally used for time or depth imaging. The uncon-
strained inversion results in a piecewise-constant, residual
instantaneous velocity with respect to the velocity trend and
is mainly used for regularizing the input data. The con-
strained inversion is performed individually for each rms-ve-
locity function in vertical time, and the lateral and vertical
continuities are controlled by the global velocity-trend func-
tion.Aspecial damping technique suppresses vertical oscilla-
tions of the results. Finally, smoothing and gridding �interpo-
lation� are done for the resulting instantaneous velocity to
generate a regular, fine grid in space and time. This method
leads to a stable and geologically plausible velocity model,
even in cases of noisy input rms-velocity or residual rms-ve-
locity data.
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INTRODUCTION

Durbaum �1954� and Dix �1955� proposed to estimate interval ve-
ocities from picked rms, or stacking, velocities, and corresponding
raveltimes by the well-known formula

Un = �V2,n
2 tn − V2,n−1

2 tn−1

tn − tn−1
, �1�

here Un is the local rms velocity over the time interval �tn = tn

tn−1, which approximates the actual interval velocity Vn
int =

zn/�tn, and �zn is the corresponding depth interval �Hubral and
rey, 1980�. Parameters V2,n−1 and V2,n are rms velocities at the top

nd bottom interfaces of the interval. Note that for any velocity dis-
ribution, Un �Vn

Int and the exact equality takes place only in the case
f a constant velocity on the interval. Equation 1 �Dix transform� is
he standard, unconstrained, explicit velocity inversion in which the
nstantaneous velocity V0,n is assumed piecewise constant,

0,n = Un, with discontinuities at the interfaces. The Dix transform
an easily produce nonrealistic and highly oscillating velocities,
ven for relatively small variations in stacking or rms velocities.

We review several works related to the uncertainty of the classical
ix inversion. In these works, the authors use the term interval ve-

ocity instead of the more accurate term local rms velocity mentioned
bove. To be consistent with the cited works, the term interval veloc-
ty is also used in our review.

Uncertainty of interval velocity estimates was extensively studied
y Hubral �1976�, Hubral and Krey �1980�, Toldi �1985�, Thore et al.
2002�, and other researchers. Hajnal and Sereda �1981� developed
nd analyzed the first-order-difference equation governing the un-
ertainty of the Dix inversion. They demonstrated that the uncertain-
y in the calculated interval velocity increases with depth and is in-
ersely proportional to layer thickness:

�Un

�V2
�

2t

�tn
, �2�

here �Un is the uncertainty of the interval velocity, �V2 is the uncer-
ainty of the rms velocity, t is the total traveltime at the midpoint of
he interval, and �tn is the interval traveltime. The derivation is
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R114 Koren and Ravve
hown in Appendix A. The ratio 2t/�tn is an error-amplification fac-
or: The uncertainty of the interval velocity obtained by the Dix in-
ersion essentially exceeds the uncertainty of the rms velocity �i.e.,
Un��V2�. Ursin �1981� studied the errors of direct and least-
quares inversion schemes that estimate the interval velocity. In par-
icular, he used a linear inverse scheme to determine the velocity
unction parameters in each layer. In this scheme, the difference be-
ween the measured and computed nonzero-offset traveltimes was

inimized in the least-squares sense.
Landa et al. �1991� studied the uncertainties in the interval veloci-

y and depth estimates in a general, layer-stripping approach; they
ccounted for local errors connected to the analyzed velocity layer
nd for global errors connected to the overburden model. The au-
hors showed that the uncertainty in the interval velocity in a given
ayer depends primarily on uncertainties of the stacking velocities
rom the top and the bottom of the layer. There is a negative correla-
ion between the velocity estimates in two successive layers �seeAp-
endix A for details�,

� Un+1

� Un
= −

�zn

�zn+1
. �3�

n other words, if there is a large error in the estimate for the nth lay-
r, the error for the n + 1th layer will be of the opposite sign and will
artly compensate for the previous error. This leads to oscillations in
he vertical velocity profile.

Seismic imaging is based on iterative improvement of the velocity
eld to obtain flat image gathers and a final image, which should also
gree with the local geological assumptions. The seismic imaging
olution is not unique. Many combinations of instantaneous velocity
odels can generate flat image gathers. It is therefore essential to

onstrain any inverted velocity field by the geologic rules relevant to
he area of investigation. There is always a trade-off between the re-
uirement for accuracy �fitting the data exactly� and the need for sta-
ility. Both the accuracy and the stability of the instantaneous veloc-
ty estimation are critical for seismic imaging, for which the Dix
ransform is normally used to obtain initial velocity models. There-
ore, a number of implicit approaches have been developed such that
single erroneous value of stacking velocity does not easily corrupt

he entire inversion. These methods are generally called constrained
elocity inversion �Oldenburg et al., 1984; DuBose, 1988; Harlan,
999; Zhang and Wang, 2003; Ren et al., 2004; Valenciano et al.,
004�.

Vertical rms- �stacking-� velocity analysis is routinely used for ve-
ocity model building. The set of rms-velocity values picked along
he vertical time axis at a given lateral location is stored as an rms-
elocity function. From here forth, we refer to this set of values as an
ms-velocity vertical function.

Harlan’s �1999� algorithm finds a global solution for a set of verti-
al functions by applying the least-squares fit. A few noisy data
oints are largely ignored when contradicted by many neighboring
alues. Damping is applied to avoid unnecessary sharpness in the es-
imated instantaneous velocities. Ferguson and Stewart �1955� de-
eloped a linearization technique for a constrained inversion of P-S
eismic data to give an S instantaneous-velocity estimate.

Several ray-based layer-stripping methods for velocity model de-
ermination had been studied. Gjoystdal and Ursin �1981� proposed
velocity-inversion approach using picked reflection times. Landa

t al. �1988� described a method for determining velocity-depth
odel parameters by maximizing the coherency of the input traces
easured along the calculated reflection time trajectories �coheren-
y inversion� by applying the simplex method. A similar approach
as applied by Sorin and Hanyga �1996�. To speed up the iterative
rocedure for the seismic inversion with a poor initial guess, Druzhi-
in and Hanyga �1998� proposed a high-order perturbation method.
his technique becomes an attractive alternative to iterative least-
quares inversion to replace the linearization procedures when they
ecome inconsistent.

A constrained instantaneous velocity is important as input for
eismic inversion, which is a highly nonlinear problem. It is com-
only solved iteratively by applying linear methods, such as seismic

omography �e.g., Goldin, 1986�. Global tomography methods have
een studied by many researchers. In these methods, traveltime er-
ors along reflected rays are minimized to simultaneously find veloc-
ty-depth model parameters �Bishop et al., 1985; Williamson, 1990;
tork, 1992; Kosloff et al., 1996�. The ray tracing in the tomography
equires instantaneous velocity, and the success of the tomography
epends strongly on the initial instantaneous velocity field, which is
sually obtained by simplistic approximations.

Curved-ray time migration is now a standard procedure for time
maging. It requires an initial instantaneous velocity for 1D ray trac-
ng. The initial instantaneous velocity is normally obtained by in-
erse Dix transform from picked rms velocities. It is essential to ob-
ain a stable, geologically constrained inverted velocity with mini-

um oscillations.
In this study, we propose a stable and fast computational scheme

or a constrained velocity inversion. The method can be applied to
reate a new velocity field �create mode� and to update an existing
ne �update mode�. An important feature of the method is a charac-
eristic velocity-trend function �background-guiding velocity mod-
l�, initially approximated by a monotonously increasing and
symptotically bounded velocity function. In addition, the proposed
ethod can be applied to update background velocities that are used

n prestack seismic migrations �Deregowski, 1990�. In this case, re-
idual rms velocities are picked along the migrated image gathers,
nd they can be used, along with the background velocity, as the in-
ut for our constrained inversion. Here, the external background in-
tantaneous velocity is used twice; it is a reference velocity and also
trend function for the inversion. We compute the rms velocity from

he reference background instantaneous velocity and add the residu-
l rms velocity to get the input for the inversion.

The velocity inversion is decoupled into two stages: explicit un-
onstrained and implicit constrained inversion. In the unconstrained
nversion, we assume a piecewise-constant, residual instantaneous
elocity that should be added to the background velocity. The residu-
ls are constant values within the intervals between two successive
icked points. To find the residuals, we assume that the uncon-
trained, inverted instantaneous velocity matches the input rms ve-
ocity exactly. We then use the unconstrained inverted velocities to
egularize the input data on a uniform, coarse time grid, which is
eeded for the global constrained inversion.

The constrained inversion is a minimization problem. The invert-
d instantaneous velocity should not only match the given rms ve-
ocity; it should also be close to the trend model. A damping mecha-
ism causes the results to behave in a stable, nonoscillatory fashion.
he damping mechanism can either minimize the jumps of the in-
erted velocity gradient, or make these jumps close to the gradient
umps of the velocity trend. Following a widely used conventional
pproach, we also solve the inversion problem by the least-squares
t. The cost function includes three penalty terms: rms-velocity fit,
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Constrained Dix inversion R115
elocity-trend fit, and damping term. They all may have different
eights in the cost function. The rms weight is responsible for the

ccuracy of the results. The trend weight controls lateral and vertical
ontinuity, and the damping weight affects the stability of the inver-
ion by suppressing the unwanted oscillations. For noisy data, the re-
uirements for accuracy and stability, or continuity, may contradict
ach other. The optimum relation between the weights is a compro-
ise. For a noisy input, the rms-velocity weight is automatically re-

uced to result in a stable and geologically plausible output. Most of
he velocity inversion algorithms, both constrained and uncon-
trained, assume discontinuous, piecewise-constant instantaneous
elocity, and the interval velocities are the degrees of freedom to be
stablished �Dix, 1955; Taner and Koehler, 1969; Hubral and Krey,
980; Grechka et al., 1996; Harlan, 1999; Ren et al., 2004�. In our
ethod, the instantaneous velocity within the compacted sediments

s assumed continuous, and the degrees of freedom are instantaneous
elocities at the interval ends �interfaces�. Because n intervals corre-
pond to n + 1 points, we have an extra degree of freedom compared
o the classical approach. The problem, therefore, is underdeter-

ined, and the additional inversion parameter allows us to control
he results. Between the interfaces, we assume a linear variation of
he instantaneous velocity in depth, which corresponds to an expo-
ential velocity function in time.

The initial trend is an exponentially bounded velocity function
hat asymptotically approaches a predefined limit at large depth
Ravve and Koren, 2004, 2006a, 2006b�. This function is character-
zed by three parameters: the instantaneous velocity, its vertical gra-
ient at the datum surface �topography, sea bottom, or other known
orizon representing the top of the sediment layers�, and the
symptotic value. The parameters of the exponential velocity trend
re established on a coarse lateral grid by global fitting to the rms-
elocity data within predefined radii of influence.

For the inversion, we introduce a coarse, regular time grid with an
rigin at the datum horizon. Inversion is done individually for each
ertical function; this results in the instantaneous-velocity-versus-
ime data at sparse and irregular lateral locations of the vertical func-
ions. Finally, we apply a robust gridding algorithm, which interpo-
ates and extrapolates the velocity field over the nodes of a fine, regu-
ar grid. Gridding is performed successively for slices, and each slice
orresponds to a fixed node of the coarse time grid. Gridding is based
n a minimum curvature method �Briggs, 1974�, slightly modified to
chieve better continuity.

A 2D synthetic data example of a salt body within a set of com-
acted sediments is used to demonstrate the method.Areal field data
et acquired above a fault-shadow area is then considered. The resid-
al rms velocities were automatically picked, resulting in noisy, os-
illating input data for the inversion. We show the ability of the con-
trained inversion to produce a geologically plausible, stable model
rom this type of data.

INITIAL TREND FUNCTION

The velocity-trend model can be given externally from a previous
nalysis or calculated internally from the rms-velocity data. In the
atter case, the velocity-trend model is constructed on a coarse lateral
rid.At each point of the lateral grid, the vertical variations of the in-
tantaneous velocity are approximated by a monotonously increas-
ng exponential, asymptotically bounded distribution �Ravve and
oren, 2004, 2006a�:
V0
exp�z� = Va + �V · �1 − exp�−

kaz

�V
��, �V = V� − Va,

�4�

here Va�x,y� is the instantaneous velocity at the datum level,

a�x,y� is its vertical gradient at the same level, V� is the asymptotic
elocity at the infinite depth, and �V is the instantaneous-velocity
ange �see Figure 1�. We assume that the asymptotic value V� is ap-
roximately known from the physical properties of fully compacted
ediments; however, the two other parameters, Va and ka, are to be es-
ablished. Because the input rms velocities are given in time, we re-
rrange equation 4 to be instantaneous velocity versus one-way
raveltime,

V0
exp�t� =

Va · V�

Va + �V · exp�− kat · V�/�V�
. �5�

he trend parameters at each lateral, coarse-grid point are estab-
ished by a least-squares fit. We request that the rms velocities com-
uted from the exponential velocity-trend function V2

exp should be as
lose as possible to the picked rms-velocity values V2

data. Along the
ertical direction, the rms velocity is defined by

igure 1. Exponential, asymptotically bounded velocity model: �a�
nstantaneous velocity versus depth, �b� instantaneous velocity ver-
us one-way traveltime. The sea bottom depth is 1500 m; the marine
elocity is 1500 m/s. Parameters of the exponential velocity distri-
ution are V = 2200 m/s, k = 0.5 s−1, and V = 5000 m/s.
a a �
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R116 Koren and Ravve
V2�t� =�1

t
· 	

0

t

V0
2�� �d� 
 �W�t�

t
, �6�

here W is a hyperbolic parameter defined as W = �
0

t
V0

2�� �d� . For
he exponential distribution �Ravve and Koren, 2004, 2006a�,

Wexp�t� =
�V · V�

ko
· ln

S

V�

−
Va · �V2

ko
·

� − 1

S
,

� 
 exp�kot · V�/�V�, S 
 Va · � + �V ,

�V = V� − Va. �7�

hus, the rms velocity V2 of the exponential distribution is a function
f the two parameters, Va and ka, and of the time V2

exp�Va,ka,t�.
We introduce a predefined radius of influence R. For any coarse-

rid point, all vertical functions that are laterally within the given ra-
ius, d�R, will affect the trend parameters. However, the vertical
unctions will have different weights. The weight decreases as the
istance between the grid point and the vertical function increases.
he maximum weight is unity and corresponds to a vanishing dis-

ance. We propose the following weighting function:

wij
L = exp�− �dij

2 /R2� for dij � R ,

wij
L = 0 for dij 	 R , �8�

here superscript L means lateral. In this equation, i is the index of
he vertical function, and j is the index of the grid node where the ve-
ocity-trend parameters are being estimated. For the limiting case d

R, we desire a preset weight wL = 
, where 
 is a given small value,
ay one percent, 
 = 10−2. This leads to � = −ln 
 in equation 8. Ob-
iously, a larger radius of influence improves stability but decreases
ccuracy of the inversion results.

In addition to the lateral weights wij
L, there are also vertical weights

n
V. The lateral weights are the same for all points of each specific
ertical function. The vertical weights usually decrease with travel-
ime. The misfit function becomes

igure 2. Redatuming scheme for a land and a marine survey. After
edatuming, the input rms velocity is measured from a reference ho-
izon. This horizon is also the origin of the coarse time grid used in
he constrained inversion.
Aj�Va,ka� =
1

2 �
i=0

Mj−1

wij
L�

n=0

Ni

wn
V
V2

exp�Va,j,ka,j,tin�

− V2,in
data�2 → min, �9�

here the inner sum stands for all Ni + 1 picked nodes of the fixed
ertical function i, and the outer sum accumulates all Mj vertical
unctions within the radius of influence around lateral node j. The
ecessary condition for a local minimum requires that the two partial
erivatives �Aj/�Va and �Aj/�ka vanish. This leads to a nonlinear set
ith two unknown variables, and we solve it by applying an iterative
rocedure. The solution technique is presented inAppendix B. Thus,
he trend parameters Va and ka are computed at each node of the
oarse grid by global fitting of the exponential model to the data. The
op velocity and its gradient are then further interpolated to a fine
rid, and in particular, they are established at the lateral locations of
he vertical functions.

It is important to note that the calculated internal-velocity trend is
eologically adequate only for compacted sediment layers, possibly
or layers with small anomalies. The exponential velocity model
epresents the real physical behavior of the velocity profile, in which
he velocity gradually increases with depth and approaches a limit-
ng value at large depth. Conventional velocity-versus-depth models
linear velocity and classical unbounded exponent �Slotnick, 1936,
959�; linear slowness �Al-Chalabi, 1997a; Faust, 1951, 1953� with
ifferent power indices, parabolic �Houston, 1939; Al-Chalabi,
997b�; etc.� all suffer from the same disadvantage: they are un-
ounded at large depth.Among the family of monotonously increas-
ng and bounded models, we found the exponential asymptotic mod-
l to be the most simple and adequate. In the case of strong velocity
ariations, such as in salt domes, basalts, or high-velocity carbonate
ocks, the velocity trend will bias the results of the inversion in a
rong fashion. Therefore, when the parameters of the internal trend

re being calculated, we filter out the picks on and below the first
trong velocity anomaly and assume that the sediments extend to the
aximum depth considered. The velocity anomalies will be still ap-

roximately found by the inversion. To treat more accurately the ve-
ocity anomalies in the case of rapid velocity change or discontinuity
f the instantaneous velocity or a decreasing-velocity-with-depth
rend, an external background trend is needed. This function is spec-
fied numerically and accounts for the anomalies. It can be obtained
rom a previous run of the proposed inversion or from a more accu-
ate ray-based tomographic inversion. The technique of inversion
ith an external trend function is presented inAppendix H.

REDATUMING

Because the velocity trend starts from a reference horizon, a reda-
um procedure should be performed before calculating the trend. At
he reference horizon, the rms velocity V2

H and the traveltime tH are
pecified. For a marine survey, the rms velocity is normally the water
elocity. We drop out all picked points whose traveltime does not ex-
eed the horizon time. For data points below the horizon, the reda-
um formula is defined by

2,n
new = �V2,n

2 old · tn
old − V2,H

2 · tH

tn
old − tH

, tn
new = tn

old − tH. �10�

he redatum horizon is shown in Figure 2 for land and marine sur-
eys.
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Constrained Dix inversion R117
EXPLICIT, UNCONSTRAINED
VELOCITY INVERSION

The explicit, unconstrained velocity inversion described here fol-
ows the velocity-trend function and is defined by a set of piecewise-
onstant residuals to be found. It differs from the standard, uncon-
trained Dix �1955� inversion, which does not require a trend but
eads to noisy and highly oscillating results.

We distinguish two inversion modes: create and update. In both
ases, the input data are vertical functions of rms velocities at sparse,
rregular, lateral locations. The picked points in the vertical direction
re also sparse. In the create mode, the rms or stacking velocities
2,k
data are picked along unmigrated gathers �or inverse, NMO-migrat-

d gathers�. In the update mode, the picked values are residuals of
he rms velocity �V2,k, and the rms velocities are calculated. First,
he background instantaneous velocity used for the migration is
ransformed to rms velocity versus time. Second, we add the picked
esidual rms velocities in time to the background rms-velocity mod-
l and get the vertical function at the sparse picked points:

V2,k
data = V2,k

trend + �V2,k, �11�

here the rms velocities and residuals are measured from the earth’s
urface. Third, we apply the redatum procedure described above.
ourth, we proceed with the unconstrained inversion described be-

ow in this section. Fifth, we use the unconstrained inversion results
or regularization of the input rms data on a coarse time grid.

The unconstrained velocity inversion is based on an assumption
hat, between two successive picked points, the instantaneous veloc-
ty follows the velocity-trend function with a constant, residual in-
tantaneous velocity,

V0,k
data�t� = V0,k

trend�t� + �V0,k, �12�

here k is the index of the interval between two picked points. The
elocity-trend function in equation 12 can be external or internal.
he unknown residual �V0,k is calculated by equation 13 �see Ap-
endix C for details�

V0,k = ��Uk
data�2 − �Uk

trend�2 + �Vint,k
trend�2 − Vint,k

trend, �13�

here Uk
data and Uk

trend are local rms velocities on the interval k be-
ween two picked points for the input vertical function and the veloc-
ty trend, respectively. Parameter Vint,k

trend is the interval �local average�
elocity of the trend between the picked points. After we obtain the
onstant residuals �V0,k, the instantaneous velocity becomes a
nown function �equation 12�. Note that at the endpoints of the orig-
nal interval tk−1 and tk, the unconstrained inverted velocity fits the
ms data exactly. To calculate the interval �local average� and the lo-
al rms velocity of the trend, we use the trend data on a fine time grid.

CONSTRAINED VELOCITY INVERSION

We perform the inversion for each vertical function individually,
ssuming a locally varying 1D model. Following a conventional ap-
roach, we solve the inversion problem by the least-squares fit �e.g.,
arantola, 1987; Menke, 1989�. The primary drawback of the meth-
d is a lack of robustness, i.e., strong sensitivity to outliers �a small
umber of large errors� in the data set.Another inevitable problem of
he least-squares inversion is nonuniqueness: More than one solu-
ion will satisfy the observation within a prescribed error, and differ-
nt models may satisfy the mean-squares error equally well �e.g.,
ines and Treitel, 1985�. In this study, we exploit the velocity-trend
odel and the damping technique to reduce the sensitivity of inver-

ion to noise. Increase of weights for trend function and damping
echanism will necessarily lead to a smooth, stable, and unique so-

ution and will suppress any anomalous rms-velocity picks. Howev-
r, setting these weights too high will suppress even the reliable data.
n case of an excessive trend weight, the resulting solution will al-
ost coincide with the trend. In the case of an excessive damping
eight, the solution will produce a nearly linear distribution of ve-

ocity versus depth within the whole depth range. The optimum level
f suppression is a trade-off between the desired accuracy and stabil-
ty, which requires an informal, ad hoc choice of the weights through
rial and error �DuBose, 1988�.

egularization in time

Recall that the picked points are irregular not only laterally but
lso in time. We apply regularization in time by introducing a regu-
ar, coarse time grid. This will facilitate the lateral gridding proce-
ure that follows the multiple 1D inversion of the vertical functions.
ridding is performed successively by slices, whereby each slice

orresponds to a fixed time measured from the datum.
At this point, the unconstrained inversion is already performed.

quation 12 represents a continuous function V0
data�t� that matches

xactly the input rms-velocity data at the picked points. In addition,

0
data�t� follows the velocity trend. We apply the standard interpola-

ion formula to obtain the rms velocity V2,n
data at any point n between

he picked points k − 1 and k,

�V2,n
data�2 · tn = �V2,k−1

data �2 · tk−1 + 	
tk−1

tn


V0,k
data�� ��2d� ,

V0,k
data�� � = V0,k

trend�� � + �V0,k, tk−1 � tn � tk. �14�

his interpolation is applied to regularize the input rms velocity for a
niform, coarse time grid.

ost function

To reduce the sensitivity of the inversion to data noise, we con-
truct a cost function that includes three components. The rms-
elocity misfit �data misfit� is only one of them. The two others, the
elocity-trend-model misfit and the antioscillatory damping energy,
mprove the robustness and stability of the method. The optimum
alues of the parameters �instantaneous velocities at the nodes of the
oarse time grid� minimize the cost function F:

�15�

ext, we derive the three components of the cost function in equa-
ion 15, referred to also as a variation-energy function.
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ata misfit

Suppose that the vertical rms-velocity function includes N + 1
qually spaced nodes; thus, there are N intervals. The unknown val-
es are nodal instantaneous velocities: V0,0, V0,1, . . .,V0,N. Conse-
uently, we have N + 1 degrees of freedom to be established. Be-
ween the coarse grid nodes, we assume a linear variation of the in-
tantaneous velocity in depth. Let V0,n−1 and V0,n be the inverted in-
tantaneous velocities at the top and bottom interface of the coarse
nterval �tn = tn − tn−1. For the linear velocity distribution in depth,
he inverted, local rms velocity Un

lin becomes a function of the two in-
erface velocities related to that interval �see Appendix D for
etails�:

Un
lin�V0,n−1,V0,n� = � V0,n

2 − V0,n−1
2

2 ln�V0,n/V0,n−1�
. �16�

he inverted, local rms velocities for the intervals Un
lin should fit the

ocal rms-velocity data Un
data. The data-misfit function is the first

omponent of the variation energy �equation 15�. Assume that in the
ertical direction, the nodes are enumerated from zero, the intervals
re enumerated from unity, and interval n connects nodes n − 1 and
. Summing the data misfit over the intervals, we obtain

B =
1

2�
n=1

N

�tn · wn
rms
Un

lin�V0,n−1,V0,n� − Un
data�2, �17�

here wn
rms are weights of the data misfit on the intervals. These

eights may be data dependent �lesser weights for noisy data and
ice versa�. In the case of a noisy input leading to unstable �oscillat-
ng� results, we reduce the weights of the rms-velocity fit as com-
ared to the weights of the trend function and damping mechanism,
nd we rerun the inversion. Note that only the ratio between the dif-
erent weights is important.

Geophysical inverse problems are generally not well-posed.
any of these problems are overdetermined, i.e., the number of data

oints exceeds the number of model parameters �Lines and Treitel,
984�. Normally, the number of picked traveltimes is the upper limit
or the model parameters that one can safely invert �Vesnaver and
ohm, 2000�. The approach we propose in this study is an exception:

t is an underdetermined problem. We have N + 1 unknown instanta-
eous velocities at the nodes and N observed local rms velocities
data� on the intervals. However, because the data alone leads to an
nderdetermined system, either the trend-misfit term or the damp-
ng-energy term is a must in the cost function. We include both of
hem. The weights of the velocity trend and the damping weight can
ot both be negligibly small as compared to the weights of the data fit
ecause this will lead to an ill-conditioned equation set with an un-
table solution.

rend misfit

The inverted instantaneous-velocity function should be as close
s possible to the velocity trend. The trend-misfit function can be de-
ned as the L2-norm of the difference between the instantaneous ve-

ocity model and the trend model:
C =
1

2�
n=1

N 	
0

�tn

wn
trend
V0,n

lin�� � − V0
trend�tn−1 + � ��2d� → min,

�18�

here summation is done over the intervals and wn
trend is the weight of

he nth vertical interval. Normally, these weights decrease with trav-
ltime. For the linear instantaneous velocity versus depth, velocity
ersus time reads �seeAppendix D�

V0,n
lin�� � = V0,n−1

1−� /�tn · V0,n
� /�tn, 0 � � � �tn. �19�

n the case of an internal �initial� exponential trend, the instanta-
eous velocity V0

trend�t� is given by equation 5. Otherwise, it is an ex-
ernal function specified at the nodes of the fine grid �normally, with
he standard two-way resolution of 4 ms�, and we consider it as a
iven, continuous function of time.

ntioscillatory damping mechanism

The interval velocities obtained by Dix inversion are subjected to
ssential uncertainties. To suppress the unwanted vertical oscilla-
ions of the inverted velocity, we propose a special stabilization tech-
ique, implemented as a damping term in the cost function. Recall
hat the vertical gradient of the inverted velocity is assumed piece-
ise-constant, with the discontinuities of the gradient at the nodal
oints.

We propose two kinds of damping mechanisms:

Absolute damping mechanism that suppresses any gradient
jumps �usually applied with the internal trend�.
Damping mechanism following trend that allows gradient jumps
similar to the jumps of the trend model �usually applied with the
external trend�. This damping technique keeps a minimum dis-
crepancy between the gradient jumps of the model and the veloc-
ity trend.

echnical details related to damping terms are explained in Appen-
ix E.

nitial guess

To get an initial guess for the velocity function, we apply the un-
onstrained Dix-inversion formula �equation 1� resulting in piece-
ise-constant instantaneous velocities with discontinuities at the in-

erfaces. Recall that interval n stretches between the interfaces n − 1
nd n. To get the velocities V0,n at the interfaces, we average their val-
es above and below the interface:

V0,n =
Un + Un+1

2
. �20�

he exceptions are, of course, the first interface �datum� and the last
nterface, where no averaging is needed.

inimizing the cost function

At the minimum point, all partial derivatives of the variation-
nergy function with respect to the model parameters V0,n vanish.
quation 15 yields a nonlinear set of N + 1 equations with N + 1
ariables: �F/�V = 0. The data-misfit and the trend-misfit terms
0,n
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Constrained Dix inversion R119
resent a sum of items, where each item is related to a definite inter-
al and depends on two nodal velocities at the ends of this interval.
herefore, these terms result in a tridiagonal matrix of second deriv-
tives �Hessian matrix� � 2F/��V0,n�V0,m�. The damping term is a
um of the items, where each item is related to a definite joint and de-
ends on three nodal velocities: that at the joint and two other veloci-
ies at the nodes immediately before and after the joint. This term

akes the resulting Hessian matrix pentadiagonal. We use a special
irect solver for a symmetric pentadiagonal matrix, and the compu-
ations are very fast. The technique of solution for the nonlinear set is
ased on the Newton method and is presented inAppendix F. Two or
hree iterations usually suffice for convergence.

Besides the Newton method, one of the most common algorithms
sed to find local minima in multidimensions is the conjugate-gradi-
nt method �Hestens and Stiefel, 1952� and its variations. The meth-
d was developed for the solution of sparse systems and is widely
sed to solve large geophysical inverse problems �e.g., VanDecar
nd Snieder, 1994; Kosloff et al., 1996�. Its advantage is that the
ethod does not require the knowledge of the Hessian matrix; how-

ver, it requires about N iterations to converge, where N is the
mount of model parameters �Press et al., 1999�. For the problem
hat we solve, the maximum two-way traveltime is usually a few sec-
nds, and the resolution of the coarse time grid is �0.1 s, so that N
ay vary from 60 to 100 per vertical function. The Newton method

equires the Hessian matrix of the variation energy, but this matrix is
ymmetric and either tridiagonal �no damping term in the cost func-
ion� or pentadiagonal �with a damping term�. Thus, the second de-
ivative consists of only two or three vectors �diagonals�; therefore,
e found this approach efficient.

GENERATION OF OUTPUT
ON A REGULAR MESH

As a result of the inversion, the instantaneous velocities are ob-
ained at lateral locations of vertical functions on a regular, coarse
ime grid.Aspecial gridding procedure is needed to get a regular fine
rid of the instantaneous velocities. Because the time grid is the
ame for all vertical functions �with respect to the datum surface�, we
pply the gridding procedure successively for all
ime slices. For each slice, the traveltime is fixed
nd a 2D problem is considered. There is a set of
ontrol points at the locations of vertical func-
ions, and there are also trend values at the other
rid nodes. The weight of trend values is now
ery small, and the weight of control values is
arge but still finite and not extremely large. Larg-
r weight of the control points leads to a better ac-
uracy of the result at the control points, but this
an yield a worse lateral continuity and vice ver-
a. The optimum weight is a compromise.

Different gridding algorithms exist that take
he observed values at the control points to define
he value of a continuous function of the two
pace variables. Bhattacharyya �1969� proposed
o use a bicubic spline interpolation. Briggs
1974� proposed to solve a biharmonic equation
o result in a surface of minimum curvature. Phys-
cally, this surface models static bending of a thin,
lastic plate �Timoshenko and Woinowsky-
rieger, 1968�. Smith and Wessel �1990� intro-

Figure 3. �a� T
25-m interval
velocity inver
stantaneous v
the inverted in
uced a tension term into the minimum-curvature equation to sup-
ress oscillations and to avoid extraneous inflection points.

To find the nodal velocities, we apply a slightly modified Briggs
1974� approach, relaxing the requirement of exact data fit at the ob-
ervation �control� points �e.g., Lancaster and Salkauskas, 1986�.
or this, we consider static bending of a thin, rectangular plate with
ree edges. The plate rests on soft springs �trend points� and stiff
prings �control points�. The springs are unstretched when the bend-
ng displacements at their locations are equal to the given control or
rend values. The weights are rigidities of control and trend springs
elated to the plate stiffness. The springs are not necessarily located
t the nodes. The problem is solved by the finite-element method.
ach node has three degrees of freedom: velocity and its derivatives

n two lateral directions. The stiffness matrix is symmetric and nar-
owband. For 2D single line, a beam with free ends resting on
prings is calculated instead of a plate. The technique of gridding is
xplained inAppendix G.

BACKWARD REDATUMING

After the gridding, we perform backward redatuming. The values
f inverted instantaneous velocities are correct, but time shift is
eeded because the origin of the coarse time grid corresponds to the
aterally varying datum surface. Therefore, the datum time �e.g., sea
ottom in marine data� should be added. Above the datum, the in-
tantaneous velocities are known before the inversion. Finally, we
nterpolate vertically for the fine time grid, assuming linear varia-
ions of the instantaneous velocity in depth between the nodes of the
oarse time grid.

SYNTHETIC EXAMPLE

A synthetic example of the velocity inversion is shown in Figure
. The model consists of a laterally varying sea-bottom profile, thick
ediment layers, and a salt body within. Finite-difference modeling
Tal-Ezer et al., 1987� was used to generate synthetic data of 750
ommon midpoints �CMPs� with a 25-m interval. The true instanta-
eous-velocity model scaled from depth is shown in Figure 3a. Fig-
re 3b and c demonstrate the undamped and damped �with the

stantaneous-velocity model �scaled from depth�, 750 CMPs with a
o-way traveltime range is 5 s. �b� Noisy result of the constrained
no damping involved. The unwanted vertical oscillations of the in-

are present. �c� Stable damped result of velocity inversion. Range of
eous velocity: minimum, 1.5 km/s; maximum, 4.8 km/s.
rue in
. The tw
sion —
elocity
stantan
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R120 Koren and Ravve
eight wdamp = 2� results of the inversion, respectively. The unwant-
d vertical oscillations of the instantaneous velocity are clearly seen
n Figure 3b. The minimum instantaneous velocity is 1.5 km/s, and
he maximum is 4.8 km/s.

A total of 75 rms-velocity vertical functions were automatically
icked and used as input for the inversion, and the instantaneous ve-
ocity was obtained �Figure 3c�. Figure 4a shows the rms-velocity
ection obtained from the inverted instantaneous velocity �by for-
ard Dix transform�. The minimum rms velocity is 1.5 km/s, and

he maximum is 3.6 km/s. The marine �sea bottom� horizon was

igure 4. �a� The rms-velocity section obtained after inversion. Rang
y: minimum, 1.5 km/s; maximum, 3.6 km/s. �b� Semblance, vertic
ult of inversion for CMP#321. The instantaneous velocity is shown b
he rms velocity obtained by forward Dix transform from the inverte
ocity is shown by red dashed line. The pink crosses are rms-velo
ms-velocity scale range is −610 m/s �−2000 ft/s���V2 � + 610
nstantaneous- and rms-velocity scale range is: 1520 m/s �5000 ft/

/s �15000 ft/s�. �c� CMP gather #321. The pink lines along the inp
yperbolae corresponding to the picked rms velocities.

igure 5. Convergence of the constrained Dix inversion. The two-
ay time is measured from the reference datum. Black dots are regu-

arized input rms velocities on the coarse time grid. Green dots show
nternal trend — an exponential, asymptotically bounded velocity
unction. The blue solid line is the initial guess for the constrained
elocity inversion. The black thin line is the result of the inversion
ith the damping weight wdamp = 0.5, and red thick line is the result
ith wdamp = 2.
sed as a redatum surface. Next, we consider a representative verti-
al function �CMP #321� that involves reflections from the salt body.
he dashed vertical line in Figure 4a shows the selected location.
igure 4b shows the results of the inversion for this specific location:

he instantaneous velocity �red solid line� and the rms velocity ob-
ained by forward Dix transform from the inverted instantaneous ve-
ocity �red dashed line�. The pink crosses are rms-velocity picks. The
nverted rms velocity does not necessarily pass through the picked
oints, although it is very close. There is no exact match between the
ms input data and the results. It is only the best fit in a least-squares

sense. Figure 4c shows the CMP gather for that
location. The pink lines along the input CMP
gathers are hyperbolas corresponding to the
picked rms velocities.

Figure 5 illustrates the convergence of the iter-
ative procedure. The green points show the inter-
nal exponential velocity trend. The black points
are the input rms velocities measured from the da-
tum surface �in this case, the sea bottom� and reg-
ularized on a coarse time grid �45 nodes, with
two-way time interval �t = 0.1 s�. The thin blue
line is the initial guess for the instantaneous ve-
locity obtained by the standard Dix inversion
with further averaging of the discontinuities. Two
iterations of the Newton method were needed to
achieve convergence, but the velocities after the
first iteration almost coincide with the final inver-
sion results, and these two lines on the plot look
identical. We see only the final result, shown by
the thin black line. The weight of the data misfit
was 1, the trend weight was 0.25, and the damp-
ing weight was 0.5. The solid red line shows the
solution for an increased damping weight wdamp

= 2. For large traveltimes, between 3 and 4.4 s,
the resulting solution tends toward higher veloci-
ties than those of the initial guess. This is the ef-
fect of the exponential velocity trend, which as-
sumes that the sediment velocity increases with
depth. The user can control this effect and even
switch it off.

REAL DATA EXAMPLE

The velocity inversion was performed in update mode for real
ata acquired above a fault-shadow region. The data include 270
ertical functions for residual rms velocities �V2

data at 270 CMPs.
igure 6a shows the background-velocity field and the result of the
restack time migration �PSTM�. In Figure 6b, we present the result
f the constrained velocity inversion for the representative CMP
9763. We show the instantaneous-velocity trend V0

trend�t� �black
olid line�; the rms velocity V2

trend�t� transformed from the velocity
rend �black dash line�; the inverted instantaneous velocity V0

inv �tur-
uoise solid line�; the rms of the inverted velocity V2

inv �turquoise
ash line�; the resulting residual rms velocity �V2

inv �pale blue solid
ine�, which is the difference between the rms of the inverted veloci-
y and the rms of the background-velocity trend, �V2

inv = V2
inv

V2
trend; and the input residual rms velocity �V2,k

data �pink crosses�.As
e see, the graph of the resulting residual �V2

inv�t� does not pass ex-
ctly through the picked points �V data but is close to the data.

e rms veloci-
ction, and re-
olid line, and
ntaneous ve-
ks. Residual
+2000 ft/s�.
0,V2��4570
P gathers are
e of th
al fun
y red s
d insta

city pic
m/s �

s�� �V
ut CM
2,k
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Constrained Dix inversion R121
igure 6c shows the PSTM image gather for this location. The pink
ines in Figure 6c represent time moveouts, t0 + �t versus offset h
or the residual rms velocity �V2,k

data picked in Figure 6b:

�t�h� = −
h2

t0 · �V2
trend�3 · �V2

data. �21�

Figure 7a shows the background-velocity trend V0
trend�t� for all

MPs. Figure 7b shows the input residual rms ve-
ocity which was obtained by an automatic pick-
ng procedure �Swan, 2001�. The result of the au-
omatic picking is rather noisy, and the range of
he residual rms velocity is −240 m/s �800 ft/s�

�V2
data�430 m/s �1400 ft/s�. Figure 7c dem-

nstrates the ability of the constrained inversion
o produce a geologically plausible and stable re-
ult even for this type of data. The weight of the
ata �rms velocity� misfit was 1, the weight of the
rend misfit was 0.25, and that of the absolute
amping was 0.5. Figure 7d shows the result of
he unconstrained inversion, which is somewhat
oisy. The color scale on the right side of Figure 7
s related to velocities �Figure 7a, c, and d�. For
he residual rms velocities in Figure 7b, dark blue
orresponds to the minimum value −240 m/s,
hile red corresponds to the maximum value
430 m/s.
This example reflects the attractiveness of the

mplementation of the constrained inversion in a
roduction environment. It enables the use of
oisy, automatic picking output as an input for ve-
ocity updating, without the need for intensive
uman editing. The combination of the automatic
icking and the constrained inversion dramatical-
y reduces the turnaround time of the processing
equence.

INTRINSIC ANISOTROPY

In the inversion procedure, the anisotropy was
gnored, and we call the resulting instantaneous
elocity V0 “isotropic.” Under the assumption of
ertical transverse isotropy �VTI�, the isotropic
nstantaneous velocity V0 is related to the true
ertical anisotropic velocity V0

aniso by

V0
aniso =

V0

�1 + 2�
, �22�

here � is the Thomsen �1986� parameter. Super-
cript “iso” for the isotropic velocity V0 is omit-
ed. To estimate the interval values of the intrinsic
nellipticity �n

int, we use the inverted instanta-
eous velocity V0 and the effective anellipticity
n
eff, picked from the analysis of large-offset
oveout.

Figure 6. �a� B
gion. �b� Resu
solid line is th
ty V2

trend�t� tran
stantaneous v
V2

inv. The pale
are the input r
pink lines are
6b �pink cross

Figure 7. �a� B
traveltime ran
tomatic pickin
Results of the
ble even for a
sults are some
Following Alkhalifah �1997�, the fourth-order average velocity of
he anisotropic medium V4 can be defined as

V4
4�t� =

1

t
	
0

t

V0
4�� � · 
1 + 8� int�t��d� . �23�

ssuming that the intrinsic anellipticity is piecewise-constant on the
ntervals, we obtain

und-velocity field and results of the PSTM over a fault-shadow re-
e inversion for the representative CMP #9763 at the fault. The black
taneous velocity trend V0

trend�t�. Black dashed line is the rms veloci-
ed from the velocity trend. The turquoise solid line is the inverted in-
V0

inv. The turquoise dashed line is the rms of the inverted velocity
lid line is the resulting residual rms velocity �V2

inv. The pink crosses
l rms velocity �V2,k

data. �c� PSTM image gather at CMP #9763. The
ut-versus-offset trends for the residual rms velocity picked in Figure

ound instantaneous-velocity field at the fault shadow. The two-way
s. �b� Residual rms velocity versus time �input data�, obtained by au-
residual rms-velocity range is −240 m/s��V2

Data�430 m/s. �c�
ained velocity inversion. Results are stable and geologically plausi-
put data set. �d� Results of the unconstrained velocity inversion. Re-

oisy.
ackgro
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R122 Koren and Ravve
V4,n
4 · tn = �

i=1
�1 + 8�i

int� · 	
ti−1

V0
4�� �d� ,

�ti = ti − ti−1, tn = �
i=1

n

�ti, t0 = 0. �24�

onsider the last interval n connecting interfaces n − 1 and n. Equa-
ion 24 becomes

4,n
4 · tn − V4,n−1

4 · tn−1 = �1 + 8�n
int� 	

tn−1

tn

V0
4�� �d� . �25�

ntroduce the isotropic nonhyperbolic parameter Hn
iso and the aniso-

ropic nonhyperbolic parameter Hn
aniso over interval n of the aniso-

ropic medium:

Hn
iso = 	

tn−1

tn

V0
4�t�dt ,

Hn
aniso = �1 + 8�n

Int� 	
tn−1

tn

V0
4�t�dt . �26�

quation 25 relates the anisotropic nonhyperbolic parameter to the
ourth-order average velocity V4,n of the anisotropic medium:

Hn
aniso = V4,n

4 · tn − V4,n−1
4 · tn−1. �27�

t follows from equation 25 that the intrinsic interval anellipticity de-
ends on the isotropic and the anisotropic nonhyperbolic parameters
ver the interval,

n
aniso = �1 + 8�n

int�Hn
iso → �n

int =
Hn

aniso − Hn
iso

8Hn
iso . �28�

n the anisotropic model, the fourth-order average velocity V4,n and
he rms velocity V2,n are related by the effective anellipticity �n

eff,

V4,n
4 = V2,n

4 · �1 + 8�n
eff � . �29�

ombining equations 27 and 29, we relate the anisotropic nonhyper-
olic parameter to the rms velocities and to the effective anelliptici-
ies at the ends of the interval:

Hn
aniso = V2,n

4 · �1 + 8�n
eff� · tn − V2,n−1

4 · �1 + 8�n−1
eff � · tn−1.

�30�

To suppress random errors, we average the intrinsic anellipticity
ithin the formation subvolumes. We also calculate the standard de-
iation of �n

int for each formation to estimate the reliability of the re-
ults.

Thus, the algorithm is as follows:

Calculate the rms velocities from the inverted instantaneous ve-
locities.
Scan and pick the nodal values of effective anellipticity �n

eff using
the fourth-order moveout equation �Alkhalifah and Tsvankin,
1995�,
tn
2 = t0,n

2 +
x2

V2,n
2 −

2�n
effx4

V2,n
2 
V2,n

2 t0,n
2 + �1 + 2�n

eff�x2�
, �31�

where x is the offset, t0,n is the vertical traveltime, and tn is the
nonvertical traveltime.
Calculate the anisotropic nonhyperbolic parameter Hn

aniso by
equation 30. Note that the nodal values of the rms velocities V2,n

are obtained by forward Dix transform from the inverted instan-
taneous velocity V0,n

inv and correspond to a geologically plausible
model.
Calculate the isotropic parameter Hn

iso by equation 26.
Estimate the intrinsic anellipticity by equation 28.
Average the intrinsic interval anellipticity within the formation.

Equation 28 may be presented in an equivalent form that gives a
etter insight on the relation between the intrinsic, induced, and ef-
ective anellipticities. The induced anellipticity is caused solely by
ertical variations of the instantaneous velocity, without accounting
or the intrinsic anisotropy of the medium. In the isotropic model,
nly the induced counterpart �n

ind is present, and equation 30 comes
o

Hn
iso = V2,n

4 · �1 + 8�n
ind� · tn − V2,n−1

4 · �1 + 8�n−1
ind � · tn−1.

�32�

quation 32 can be considered as a definition of the induced anellip-
icity. At the origin t0 = 0, the induced anellipticity can be assumed
o be zero because at this point the rms velocity and the fourth-order
verage velocity both coincide with the instantaneous velocity. At
ther nodes equation 32 yields

�n
ind =

�
i=1

n

Hi
iso − V2,n

4 · tn

8V2,n
4 · tn

. �33�

he effective anellipticity includes the intrinsic and the induced
omponents, but it is not a simple sum of these components. More-
ver, the induced and the effective anellipticities are nodal values,
ut the intrinsic anellipticity is an interval value.

Recall that the resulting rms velocities are obtained by the forward
ix transform from the instantaneous velocity model, which, in turn,
as obtained from the input rms velocities. The resulting rms veloci-

ies are the same for the isotropic model and for the model that takes
nto account Thomsen parameter �. Indeed, on the inverse Dix trans-
orm, we divide the isotropic instantaneous velocity by the factor
1 + 2� to get the true vertical velocity of the anisotropic model.
owever, on the forward Dix transform that follows the inversion,
e multiply the instantaneous velocity by the same factor.
Introducing equations 30 and 32 into equation 28, we obtain

�n
int =

V2,n
4 ��n

eff − �n
ind� · tn − V2,n−1

4 ��n−1
eff − �n−1

ind � · tn−1

V2,n
4 · �1 + 8�n

ind� · tn − V2,n−1
4 · �1 + 8�n−1

ind �·tn−1

.

�34�

s we see, the intrinsic anisotropy is a function of the difference be-
ween the effective and the induced anellipticity. The first Thomsen
nisotropy parameter � is not needed to establish the intrinsic aniso-
ropy. Note that the only noisy component in equation 34 is the effec-
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ive anellipticity �n
eff. The rms velocity V2,n and the induced anellip-

icity �n
ind are obtained solely from the geologically feasible, inverted

nstantaneous-velocity model. Recall that for the intrinsic anelliptic-
ty, subscript n means the number of the interval, whereas for the ef-
ective and induced anellipticities, n means the node number.

Parameter �n
int is related to the Thomsen parameters � and �,

�n
int =

� − �

1 + 2�
, � = �n

int + � + 2�n
int� . �35�

sually, parameter � is obtained by correlating seismic traces in the
icinity of the wells to the sonic logs �or from check shots�,

� =
1

2
· � �V0

iso�2 from seismic

�V0
aniso�2 from well

− 1� , �36�

nd this makes it possible to estimate � by equation 35.

LIMITATIONS OF THE METHOD

The proposed approach is a local, 1D inversion in a 3D, laterally
arying medium under the assumptions of small offsets and small
ips. Under these assumptions, we obtain a stable and geologically
lausible initial velocity model, which can be an input for more ad-
anced and powerful methods, such as depth tomography. The moti-
ation for this study is to increase the stability of the Dix-based in-
ersion, with a controlled loss of accuracy. In other words, the aim is
o develop a stable and not necessarily accurate approach that gives
n initial estimate for the instantaneous-velocity field from rms-ve-
ocity data. The main idea is to find a geologically constrained, in-

tantaneous-velocity field that best fits rms-velocity data in a least- p
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quares sense. It is an attractive replacement for the standard, con-
entional Dix inversion formula.

CONCLUSIONS

We derived a method to estimate nonoscillatory and geologically
lausible instantaneous velocities from conventional stacking- or
ms-velocity estimates using a combination of geologically credi-
le, internal, analytical trend function and a least-squares fit. A new,
table velocity-inversion algorithm is introduced, especially suit-
ble for compacted-sediment regions, with the ability to handle dif-
erent types of velocity anomalies. The method is extended for using
ny arbitrary, external velocity-trend function and, therefore, can
lso be applied to update background-velocity models with residual
ms velocities or residual moveouts. The input data can be located
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The inverted instantaneous velocity approximately matches the
ransformed input rms velocity �in the least-squares sense� and is
ontrolled by the trend function and the antioscillatory damping
echanism. The damping mechanism keeps unwanted vertical os-

illations small. The constrained inversion can be combined with au-
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he velocity updating. Automatic picking normally results in noisy
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On the basis of the reliable, inverted instantaneous-velocity mod-
l, it becomes possible to determine intrinsic and induced anisotropy
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trend 
 Layer thickness corresponding to velocity of trend in

the unconstrained inversion
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 Second Thomsen anisotropy parameter
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APPENDIX A

UNCERTAINTY OF UNCONSTRAINED
INVERSION

In this appendix, we cite two papers to show that the uncon-
trained Dix inversion may lead to vertical oscillations of the instan-
aneous velocity and to demonstrate that the uncertainties of the rms
elocities are significantly amplified by the inversion, leading to
trong uncertainties of the interval velocity. To be consistent with the
ited works, the term interval velocity is used in this review instead
f the more accurate term local rms velocity derived by the Dix for-
ula.As we mentioned in the Introduction, there is a negative corre-

ation between the velocity estimates in two successive layers �Lan-
a et al., 1991�, which leads to oscillations in the vertical velocity
rofile. Consider the inverted interval velocity from the Dix equa-
ion 1 for the two successive intervals, �tn = tn − tn−1 and �tn+1

tn+1 − tn. Elimination of the rms velocity V2,n at their common in-
erface tn leads to

Un+1 = �V2,n+1
2 tn+1 − V2,n−1

2 tn−1 − Un
2�tn

�tn+1
,

� Un+1

� Un
= −

Un�tn

Un+1�tn+1
� −

Vn
Int�tn

Vn+1
Int �tn+1

= −
�zn

�zn+1
.

�A-1�
ajnal and Sereda �1981� demonstrated that the uncertainty in the
alculated interval velocity increases with depth and is inversely
roportional to layer thickness.According to equation A-1, the inter-
al velocity depends on two traveltimes and two rms velocities at the
nterfaces, and the error of its estimate is

�Un =
� Un

� tn
· �tn +

� Un

� tn−1
· �tn−1 +

� Un

� V2,n
· �V2,n

+
� Un

� V2,n−1
· �V2,n−1

=
V2,n

2 − V2,n−1
2

2�tn
·

tn · �tn−1 − tn−1 · �tn

�Wn · �tn

+
V2,ntn · �V2,n − V2,n−1tn−1 · �V2,n−1

�Wn · �tn

, �A-2�

here Wn 
V2,n
2 tn − V2,n−1

2 tn−1. We call Wn the hyperbolic parameter.
ext, note that

V2,n
2 − V2,n−1

2

2�tn
�

1

2
·

dV2
2

dt
= V2 ·

dV2

dt
. �A-3�

he right side of equation A-3 is estimated at the midpoint of the in-
erval �for the midpoint, the subscript is omitted�. Hajnal and Sereda
1981� assume that the rms velocity varies slowly and neglect the de-
ivative dV2/dt. Furthermore, they consider the worst case, when the
rrors of the rms velocities at the top and bottom interface �V2,n−1 and
V2,n, respectively, have opposite signs �actually, these signs are
nknown�. In this case, the error terms +V2,ntn ·�V2,n and
V2,n−1tn−1 ·�V2,n−1 have the same sign and do not compensate each
ther. Assuming that the absolute value �V2 of these errors is the
ame, the error estimate of the interval velocity becomes
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�Un

�V2
=

V2,ntn + V2,n−1tn−1

�Wn · �tn

�
2V2t

�tn · �Wn/�tn

�
2V2t/�tn

�d�V2
2t�/dt

=
2V2t/�tn

�V2
2 + 2V2t · dV2/dt

�
2t

�tn

=
tn + tn−1

tn − tn−1
. �A-4�

he ratio 2t/�tn is the error amplification factor.

APPENDIX B

SOLUTION TECHNIQUE FOR VELOCITY
TREND PARAMETERS

The resolving set for minimization of the variation energy fol-
ows from equation 9. At the minimum point, these partial deriva-
ives vanish, and the matrix of second derivatives is positive definite:

� Aj

� Va,j
= 0,

� Aj

� ka,j
= 0. �B-1�

ubscript j denotes the lateral location. Apply the Newton iterative
rocedure:

�Va,j
�m+1�

ka,j
�m+1� � = �Va,j

�m�

ka,j
�m� � + ��Va,j

�m�

�ka,j
�m� � , �B-2�

here m is the number of the current iteration, and �Va,j
�m� and �ka,j

�m� are
orrections obtained from the linear set,

�
� 2Aj

� Va,j
2

� 2Aj

� Va,j � ka,j

� 2Aj

� Va,j � ka,j

� 2Aj

� ka,j
2

� · ��Va,j
�m�

�ka,j
�m� � = − �

� Aj

� Va,j

� Aj

� ka,j

� .

�B-3�

he first derivatives of the misfit function are

� Aj

� Va,j
= �

i=0

Mj−1

wij
L�

n=0

Ni

wn
V

�
V2
exp�Va,j,ka,j,tin� − V2,in

data� · � � V2
exp

� Va,j
�

t=tin

,

� Aj

� ka,j
= �

i=0

Mj−1

wij
L�

n=0

Ni

wn
V

�
V2
exp�Va,j,ka,j,tin� − V2,in

data�

· � � V2
exp

� ka,j
�

t=tin

, �B-4�

here V2
exp�Va,j,ka,j,tin� is given by equation 6. The second deriva-

ives of the misfit function are
�2Aj

� Va,j
2 = �

i=0

Mj−1

wij
L�

n=0

Ni

wn
V

���V2
exp − V2,in

data� ·
�2V2

exp

� Va,j
2 + � � V2

exp

� Va,j
�2� ,

�2Aj

� ka,j
2 = �

i=0

Mj−1

wij
L�

n=0

Ni

wn
V

���V2
exp − V2,in

data� ·
�2V2

exp

� ka,j
2 + � � V2

exp

� ka,j
�2� ,

�2Aj

� Va,j � ka,j
= �

i=0

Mj−1

wij
L�

n=0

Ni

wn
V

���V2
exp − V2,in

data� ·
�2V2

exp

� Va,j � ka,j

+
� V2

exp

� Va,j
·

� V2
exp

� ka,j
� . �B-5�

In the proximity of the minimum point, the Hessian matrix H
matrix of the second derivatives� is positive definite, and its deter-
inant can not vanish. However, this may happen on the way to the
inimum, especially if the initial guess is not very close to the solu-

ion. Or, even if the determinant does not vanish, it may become too
mall — anyway, convergence of the Newton method is not guaran-
eed for any given initial guess. To overcome this problem, we apply
he following algorithm. Before updating the sought parameters, we
heck whether the value of the cost function at the new point is
maller than its current value. If it is smaller, then we update the pa-
ameters and pass to the next iteration. Otherwise, we try to decrease
he parameter increments by a factor �we use factor 0.7� and check
gain. If it does not help, we apply the steepest descent. We try to
ove in the antigradient direction �with the direction of the gradient

stablished at the current point� and choose the optimal step length.
his length is the ratio of two scalars: the gradient length squared
ver the quadratic norm of the Hessian matrix H and the gradient
ector G:

s =
GT · G

GT · H · G
, ��Va,j

�m�

�ka,j
�m� � = − sG . �B-6�

he superscript T indicates a transposed vector. The vector of pa-
ameter increments is then the opposite of the gradient multiplied by
tep. Again, before making a step, we check whether the cost func-
ion decreases �because it is not guaranteed that the optimal step is
eally an optimum�. If the function decreases, we proceed. If the
unction does not decrease, we decrease the length of the step by fac-
or two and check again. If it still does not decrease, we continue de-
reasing the step. This loop is finite — at some small value of the
tep, the cost function will necessarily decrease in the antigradient
irection. After the antigradient step is done, we immediately return
o Newton minimization. Convergence of the steepest descent is
ery slow, and we use this method only to escape from the ravine
oint, while continuing further with the Newton method �whose
onvergence is fast but not guaranteed�.
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APPENDIX C

TECHNIQUE FOR UNCONSTRAINED INVERSION

In this appendix, we develop the unconstrained inversion proce-
ure that matches the rms-velocity data at the picked points exactly
nd at the same time follows the velocity-trend model. Assume that
n interval k between two successive picked points, the instanta-
eous velocity follows the velocity-trend function with a constant,
esidual instantaneous velocity,

V0,k
data�t� = V0,k

trend�t� + �V0,k. �C-1�

he hyperbolic parameter Wk
data of the data between the picked

oints is calculated as

Wk
data = V2,k

2 tk − V2,k−1
2 tk−1, �C-2�

nd the following relationship holds:

	
k−1

tk


V0,k
data�� ��2d� 
 	

tk−1

tk


 V0,k
trend�� � + �V0,k�2d� = Wk

data.

�C-3�

xpansion of equation C-3 leads to

	
tk−1

tk


V0,k
trend�� ��2d� + 2�V0,k	

tk−1

tk

V0,k
trend�� �d� + �V0,k

2 �tk

= Wk
data, �C-4�

here �tk = tk − tk−1 is the one-way interval traveltime. Equation
-4 can be rearranged in terms of local rms velocity of the trend
k
trend = �Wk

trend/�tk, local rms velocity of the data Uk
data

�Wk
data/�tk, and the interval �local average� velocity of the trend

Int,k
trend = �zk

trend/�tk,

�Uk
trend�2�tk + 2�V0,k · �zk

trend + �V0,k
2 �tk = �Uk

data�2�tk.

�C-5�

ivide all terms by traveltime �tk,

Uk
trend� 2 + 2 �V0,kVint,k

trend + �V0,k
2 = �Uk

data�2. �C-6�

olving quadratic equation C-6, we obtain the residual of the instan-
aneous velocity between the picked points

V0,k = ��Uk
data�2 − �Uk

trend�2 + �Vint,k
trend�2 − Vint,k

trend. �C-7�

n cases when the local rms velocities of the input data and of the
ackground-trend function, Uk

data and Uk
trend are close, the expression

or a small residual �V0,k can be linearized,

�V0,k �
�Uk

data�2 − �Uk
trend�2

2Vint,k
trend =

Wk
data − Wk

trend

2�zk
trend .

�C-8�
APPENDIX D

VELOCITY VERSUS TIME FOR CONSTANT
GRADIENT IN DEPTH

Although the linear velocity distribution in depth �Slotnick,
936� is very common and widely used, we list here the basic rela-
ions for completeness. These relations are used in our inversion al-
orithm.

Derive the law of the instantaneous velocity in time for constant
ertical gradient. We assume a linear distribution of the velocity in
epth:

V0,n
lin �ẑ� =

�zn − ẑ

�zn
· V0,n−1 +

ẑ

�zn
· V0,n, �zn = zn − zn−1,

�D-1�

here V0,n−1 and V0,n are instantaneous velocities at the top and bot-
om interface, respectively; �zn is the interval thickness; and 0� ẑ

�zn is the relative depth measured from the top interface. The one-
ay interval traveltime is

�tn = 	
0

�zn

dẑ

V0,n�ẑ�
=

�zn

V0,n − V0,n−1
· ln

V0,n

V0,n−1

=
ln�V0,n/V0,n−1�

kn
, �D-2�

here

kn =
� V0,n

� ẑ
=

V0,n − V0,n−1

�zn
= const �D-3�

s the vertical gradient. Note that the interval �local average� velocity
ecomes the logarithmic average of the interface velocities,

int,n =
�zn

�tn
=

V0,n − V0,n−1

ln�V0,n/V0,n−1�
�

V0,n−1 + V0,n

2
. �D-4�

n the case of a linear distribution in depth, the interval velocity nev-
r exceeds the average of the interface velocities, and the exact
quality in �D-4� occurs only in the case of constant velocity V0,n

V0,n−1. According to equation D-2, the velocities at the bottom in-
erface and at any intermediate point of the interval are, respectively,

V0,n = V0,n−1 · exp�kn�tn�, V0,n
lin �� � = V0,n−1 · exp�kn� � ,

�D-5�

here � is the one-way traveltime measured from the top interface.
e eliminate the gradient kn from equation set D-5 to get the current

nstantaneous velocity inside the interval versus interface velocities
nd time,

V0,n
lin�� � = V0,n−1

1−� /�tn · V0,n
� /�tn, 0 � � � �tn. �D-6�

he logarithm of the velocity becomes

ln V0,n
lin �� � =

�tn − �

�t
· ln V0,n−1 +

�

�t
· ln V0,n,
n n
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0 � � � �tn. �D-7�

ompare equations D-1 and D-7. Linear interpolation of the instan-
aneous velocity in depth means linear interpolation of its logarithm
n time. Compute the hyperbolic parameter on the interval,

Wn = 	
0

�tn

V0,n
2 �� � d� = 	

0

�tn

V0,n−1
2·�1−� /�tn� · V0,n

2·� /�tnd�

=
�tn

2
·

V0,n
2 − V0,n−1

2

ln�V0,n/V0,n−1�
. �D-8�

he local rms velocity Un
lin on the interval depends only on the veloc-

ties at the interfaces:

Un
lin = �Wn/�tn = � V0,n

2 − V0,n−1
2

2 ln�V0,n/V0,n−1�
. �D-9�

quation D-9 can be presented as

Un
lin = �MA�V0,n−1,V0,n�·ML�V0,n−1,V0,n�

= �ML�V0,n−1
2 ,V0,n

2 � , �D-10�

here MA and ML are the arithmetic and logarithmic average of the
nterface velocities, ML �MA. For two positive numbers A and B,

MA�A,B� =
A + B

2
, ML =

B − A

ln�B/A�
. �D-11�

APPENDIX E

SUPPRESSING VERTICAL OSCILLATIONS
(DAMPING TECHNIQUE)

In this appendix, we derive the damping terms for two kinds of
ntioscillatory damping mechanisms: an absolute damping and a
amping that follows the velocity trend. For an absolute damping
hat suppresses any gradient jumps, the corresponding term in the
ost function is

D =
V2�t

2 �
n=1

N−1

wn
damp · �tn�tn+1�kn+1 − kn�2, �E-1�

here n is the number of the joint, and kn−1 and kn are constant gradi-
nts for the intervals above and below the joint, respectively. These
radients are obtained from equation D-2,

kn+1 =
ln�V0,n+1/V0,n�

�tn+1
, kn =

ln�V0,n/V0,n−1�
�tn

. �E-2�

ummation is done over all joints between the interval, i.e., over all
odes, except the first one and the last one. Factor V 2�t is a charac-
eristic number to provide proper units. For a uniform, coarse time
rid, equation E-1 simplifies to

D =
V2�t

2 �
n=1

N−1

wn
damp · ln2�V0,n−1 · V0,n+1

V2 � . �E-3�

0,n
or a damping mechanism whose gradient jumps follow those of the
rend,

D =
V2�t

2 �
n=1

N−1

wn
damp · �tn�tn+1
�kn+1 − kn�

− �kn+1
trend − kn

trend��2. �E-4�

or a uniform grid, equation E-4 simplifies to

D =
V2�t

2 �
n=1

N−1

wn
damp · ln2�V0,n−1 · V0,n+1

V0,n
2 ·

�V0,n
trend�2

V0,n−1
trend · V0,n+1

trend � .

�E-5�

similar damping technique for the Dix velocity inversion was pro-
osed by DuBose �1988�, but he assumed a linear velocity variation
n time between the nodes. In our model, the velocity between the
odes varies linearly in depth.

APPENDIX F

TECHNIQUE OF CONSTRAINED INVERSION

We compute the derivatives of variation energy with respect to
odel parameters and set them to zero �Menke, 1989�. The cost

unction F, consisting of rms-fit, trend-fit, and damping terms �B, C,
nd D, respectively�, reaches the minimum value at

� F

� V0,n
=

� B

� V0,n
+

� C

� V0,n
+

� D

� V0,n
= 0, n = 0, 1, . . . , N .

�F-1�

his is a nonlinear set of N + 1 equations. We solve it by the Newton
ethod. First, we get an initial guess for the inverted instantaneous

elocities V0,n
�0�, and then, on each iteration, the corrections are added

o the current values V0,n
�m�,

V0,n
�m+1� = V0,n

�m� + �V0,n
�m�, n = 0, 1, . . . , N . �F-2�

o get the corrections �V0,n, we solve the linearized set with a penta-
iagonal symmetric matrix:

�
j = max�0,n−2�

j = min�N,n+2�
�2F

� V0,n � V0,j
· �V0,j = −

� F

� V0,n
. �F-3�

Data-misfit and trend-misfit terms of the variation energy are
omputed for intervals and result in a tridiagonal Hessian matrix.
ach component of the damping term is computed for a joint, and

hus, the damping mechanism contributes in a pentadiagonal Hes-
ian matrix. One can say that the diagonal components are related to
he nodes, the close off-diagonal components are related to the inter-
als, and the remote off-diagonal components are related to joints.

APPENDIX G

TECHNIQUE OF LATERAL GRIDDING

To map the inverted instantaneous velocity from the lateral loca-
ions of vertical functions into a regular lateral grid, we find a surface
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f minimum curvature and consider elastic bending of a thin, rectan-
ular plate with free edges resting on springs. The specific surface
nergy W �per unit area� can be presented as

�G-1�
here w is the normal displacement and � is Poisson’s ratio. Note

hat the Gaussian curvature does not contribute to the differential
quation. Assume that the cylindrical stiffness of the plate DC = 1.
et p be the normal load �pressure�. The variational approach leads

o the biharmonic equation

� 4w

� x4 + 2
� 4w

� x2 � y2 +
� 4w

� y4 =
p

DC
. �G-2�

e do not solve the differential equation directly, but apply the fi-
ite-element method instead. We follow Reddy �1993� and use the
tandard elements of classical plate theory, nonconformed �CPTN�
ith three degrees of freedom at each node: normal displacement

nd its derivatives in x and y. The plate consists of identical rectan-
ular elements, assembled together in a global stiffness matrix. The
lobal nodes are enumerated so that the index runs fast along the
horter side of the plate �this may be either x or y� to keep the band-
idth of the stiffness matrix minimum.

The elastic springs, with stiffness Ci, are attached to the plate at
he locations of vertical functions. They are unstretched when the
isplacements under the springs are equal to the given control values
0,i. Actually, this means that external vertical forces are applied at

he location of the spring, and their values are Pi = CiV0,i. The point
orces are presented by Dirac delta-function �. The normal pressure
n equation G-2 becomes

p�x,y� = �
i=1

N

��xi,yi� · Ci
V0,i − w�x,y�� . �G-3�

ote that if the spring is very stiff with respect to the stiffness of the
late, then the external load is balanced mostly by the spring force,
nd the reaction of the plate will be small. This means that in the case
f stiff springs, the displacement under the springs will be almost
qual to the value of the control function V0,i. If the springs are soft,
he solution will be more continuous but less accurate: the resulting
isplacements at the control points will differ from the control val-
es. The proper choice of the weights is an ad hoc operation and re-
uires trial and error. In addition to control points, we have trend val-
es at all other nodes. They are treated similarly, but trend points
ave much lesser weights. To assign stiffness of springs, we choose
he largest translation element on the diagonal of the stiffness matrix
there are also rotation elements� and consider it as a characteristic
ranslation stiffness of the plate. All elements of the stiffness matrix
re proportional to the cylindrical stiffness DC; therefore, the magni-
ude of DC does not matter; one may assume DC = 1. For a fixed DC,
he solution is almost insensitive to Poisson’s ratio. Once the charac-
eristic translation stiffness is set, we apply two dimensionless fac-
ors: weight of control points �large value� and that of trend points
small value�. It is not necessary to set the control data at the nodes;
he control points may be inside of rectangular elements. In this case,
he scalar load �vertical force� is transformed into 12 components of
he load at the nodes, and the scalar spring stiffness is transformed
nto a 12�12 stiffness matrix. The technique of transform is
traightforward: The elastic energy of the scalar spring and that of
he spring transformed into a matrix should be the same for equal
odal displacements. The same is true for the work of the external
oad presented as a scalar point force or as a vector of forces and mo-

ents. This makes it possible to process nonnodal vertical functions
a typical case for multiline 2D survey� or to apply the gridding mesh
ifferent from the lateral grid of inversion. In addition, the technique
llows us to install not only translation springs but also rotation
prings, thus to model a control point with given lateral gradients of
he velocity. �In the present study this feature is not in use.�

Because, for all horizontal slices, the vertical locations of control
oints coincide and only the values of control data differ, the global
tiffness matrix �that includes both plate and springs� is the same for
ll slices, and only the external loads differ. Thus, we have to solve
any times a linear set with the same symmetric positive definite

and matrix and different right-hand sides. We perform only once
he square-root decomposition of the stiffness matrix into the identi-
al lower and upper triangular matrices. Then we run the backward
ubstitution for each slice.

APPENDIX H

INVERSION WITH EXTERNAL
VELOCITY TREND

As mentioned above, we assume that the inverted instantaneous
elocity varies linearly with depth between the nodes of the coarse
ime grid. When the trend function is specified a priori, we accept the
ame assumption for the behavior of the trend function between the
odes. The trend velocity is defined by its nodal values, and the non-
inear deviations of the trend function between the nodes are, so far,
eglected. Thus, both the instantaneous velocity and its trend are lin-
ar in depth �and exponential in time�, and this simplifies the compu-
ation of the L2-norm for their difference. Let V0,n−1, V0,n be the in-
tantaneous velocities at the upper and lower interfaces of the inter-
al, respectively, and let V0,n−1

trend, V0,n
trend be the trend velocities at the

ame points. At this time, the inverted velocities are unknown and
he trend values are known. Between the interfaces, the instanta-
eous-velocity function and its trend versus depth and time are,
espectively,

V0�ẑ� =
�zn − ẑ

�zn

· V0,n−1 +
ẑ

�zn

· V0,n Inverted velocity versus depth

V0�� � = V0,n−1
1−� /�tn · V0,n

� /�tn Inverted velocity versus time

V0
trend�ẑ� =

�zn − ẑ

�zn

· V0,n−1
trend +

ẑ

�z
· V0,n

trend
Trend velocity versus depth

V0
trend�� � = �V0,n−1

trend �1−� /�tn · �V0,n
trend�� /�tn Trend velocity versus time

0 � ẑ � �zn, 0 � � � �tn Depth and time range

�H-1�

he L2-norm shows how close the instantaneous velocity is to its
rend,
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L2 = 	
0

�tn


V0�� � − V0
trend�� ��2d� 
 J · �tn. �H-2�

elationships fromAppendix D lead to

J =
V0,n

2 − V0,n−1
2

2 ln�V0,n/V0,n−1�
−

2�V0,n
trend · V0,n − V0,n−1

trend · V0,n−1�
ln�V0,n/V0,n−1� + ln�V0,n

trend/V0,n−1
trend �

+
�V0,n

trend�2 − �V0,n−1
trend �2

2 ln�V0,n
trend/V0,n−1

trend �
. �H-3�

sing notation for the logarithmic average ML, we obtain

J = ML�V0,n
2 ,V0,n−1

2 � − 2ML�V0,n
trend · V0,n,V0,n−1

trend · V0,n−1�

+ ML
�V0,n
trend�2,�V0,n−1

trend �2� . �H-4�

he L2-norm includes three counterparts: the logarithmic average of
he inverted velocities squared, the mixed logarithmic average �that
f the products V0,n

trend ·V0,n and V0,n−1
trend ·V0,n−1�, and the logarithmic av-

rage of the trend velocities squared. In other words, there is the in-
ersion counterpart, the mixed counterpart, and the trend counter-
art. The trend counterpart ML
�V0,n

trend�2,�V0,n−1
trend�2� is a constant addi-

ion, independent of the inverted velocities, and does not affect the
inimization. Introduce the following notations

M 
 ML�V0,n
2 ,V0,n−1

2 � ,

L 
 ML�V0,n
trend · V0,n,V0,n−1

trend · V0,n−1� . �H-5�

he expressions for the logarithmic average �and its derivatives� can
ot be used directly when the interface instantaneous velocities
0,n−1 and V0,n become equal �zero divide� or when these velocities
ecome very close �insufficient accuracy�. However, both numera-
or and denominator are infinitesimal, and the resulting expressions
re finite. The singularity is removable. We expand the ratios into a
aylor series in the neighborhood of the average velocity Vc, to intro-
uce the normalized measure �̃ of the gradient on the interval:

Vc 

V0,n−1 + V0,n

2
, � 
 V0,n − V0,n−1, �̃ 
 �/Vc.

�H-6�

he inversion counterpart becomes

M

Vc
2 = 1 −

�̃2

12
−

�̃4

180
−

11�̃6

15120
+ O��̃8� . �H-7�

n the formulas for the mixed counterpart L �equation H-5�, the re-
ovable singularity arises when the two products of the inverted and

rend velocities become equal �or very close�: V0,n−1
trend ·V0,n−1

V0,n
trend ·V0,n. In this case, we use an expansion similar to equation

-7. Expansions are used when necessary also for derivatives and
econd derivatives.

Note that the external trend is usually specified at the nodes of the
ne time grid, but on the inversion stage, we use only the coarse nod-
l values of the trend, neglecting the nonlinearities between these
odes. However, the nonlinear component of the trend can be sepa-
ated and added to the results of the inversion when performing the
ridding from the coarse time grid to the fine grid.
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