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S U M M A R Y
We use geodetic observations of the Earth to constrain anelasticity in the Earth’s mantle at
periods between 12 hr and 18.6 yr. The observations include satellite laser ranging (SLR)
measurements of 12 hr and 18.6 yr tides in the J 2 component of the gravity field; space-
based observations of tidal variations in the Earth’s rotation rate; and optical and space-based
measurements of the Chandler Wobble period and damping. These geophysical signals are
mostly sensitive to the lower mantle. The results suggest the dissipative process could consist
of a single absorption band that extends across seismic periods out at least as far as ∼20 yr.
The results also require values of the anelastic parameter Q that are smaller than those required
by seismic observations. We interpret this as evidence that Q in the lower mantle is frequency
dependent. The frequency dependence suggested by the geodetic observations is reasonably
consistent with laboratory measurements, though those measurements have only been done
on rocks at upper mantle conditions. After fitting and removing the 18.6 yr tide from the SLR
J 2 results, we find that the 1998–2002 anomaly present in the original J 2 observations is no
longer a singular anomaly in the J 2 residuals, but becomes one of a series of maxima in a
quasi-decadal oscillation.

Key words: Earth rotation, Earth tides, J 2 anomaly, mantle anelasticity.

1 I N T RO D U C T I O N

There is a large body of evidence suggesting that energy is dissipated when the Earth’s mantle is deformed. The mechanisms responsible for
this dissipation are not well understood, and are almost certain to be different in different frequency regimes and for different stress levels. The
dissipation occurs almost entirely in shear energy. Dissipation of bulk energy (associated with changes in volume) appears to be negligible
for most applications.

The most detailed evidence of this anelastic behaviour comes from seismic data, ranging from the attenuation of 1 s body waves to the
decay of seismic-free oscillations at periods of up to tens of minutes. Seismic dissipation is usually represented in terms of a quality factor,
Q, defined so that during the deformation the fraction of energy lost per cycle is 2π /Q. Seismic observations show that Q in the mantle tends
to decrease (i.e. the dissipation tends to increase), as the radius increases from the core–mantle boundary up through the low-velocity zone.
Q then increases dramatically at the top of the low-velocity zone, at about 80 km depth. This radial dependence is illustrated in Fig. 1, using
Q values from the PREM seismic earth model (Dziewonski & Anderson 1981),

The seismic evidence suggests that Q is only weakly dependent on frequency across the seismic frequency band. In fact, the PREM Q
estimates, like those from most other global seismic models, were derived under the assumption that Q is independent of frequency. A more
general method of parametrizing the frequency dependence across the seismic band is

Q(ω) = Q0

(
ω

ω0

)α

, (1)

where ω is the frequency, Q0 is the value of Q at some reference seismic frequency ω0, and the unknown parameter α depends on the details of
the physical process causing the dissipation. Note that a value of α = 0 represents a frequency-independent Q. The parametrization in eq. (1) is
partly just an ad hoc way to represent a slowly varying function of frequency. However, it is also the frequency-domain equivalent of Lomnitz’
law of creep as generalized by Jeffreys (1976), and so is consistent with laboratory experiments on rocks. Most laboratory measurements of
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Figure 1. The depth dependence of Q from the seismic model PREM (Dziewonski & Anderson 1981).

Q at seismic and ultraseismic periods, conclude that for rocks at upper mantle pressures and temperatures, α is between 0.15 and 0.40 (see,
for example, Gribb & Cooper 1998). This is in direct conflict with the assumption of a frequency-independent Q that is often made when
constructing global models such as PREM. There is recent seismic evidence suggesting that Q actually does vary with frequency in the upper
mantle. However, even in those studies the results for α, usually between 0 and 0.15 (see, for example, Sobolev et al. 1996; Warren & Shearer
2000), tend to be smaller than the laboratory values. Lower mantle results for α are harder to determine, both in the laboratory and for the
real earth.

In any real material, Q−1 (ω) must vanish at both large and small frequencies, implying that eq. (1) cannot be valid for all values
of ω. The extension of the Q model to all frequencies, and the transformation of that model into a shear modulus perturbation, requires
discussion.

In the Earth’s mantle, dissipation is commonly believed to be caused by an absorption band process (for a summary, see Anderson 1989),
meaning that the dissipation occurs at relaxation times spread continuously over some time interval, the ‘absorption band’ (we will also use
the term ‘absorption band’ to refer to the frequency band corresponding to periods within this time interval). The mathematical distribution
of relaxation strengths can be chosen so that for forcing at periods within the absorption band the frequency dependence of Q has the form,
eq. (1). In this case both the forcing frequency, ω, and the reference frequency, ω0, must correspond to periods within the absorption band. In
this period range, and for Q � 1, it can be shown (see, for example, Dahlen & Tromp 1998, eqs 6.111–6.114 combined with 6.23) that the
shear modulus, μ, has the form μ = μ0 + δ μ, where

δμ(ω) = μ0

Q0

[
2

πα

{
1 −

(
ω0

ω

)α}
+ i

(
ω0

ω

)α ]
= μ0

Q0
[ fr (ω) + i fi (ω)], (2)

and μ0 is the real part of the shear modulus at frequency ω0. The imaginary part of eq. (2) represents dissipation, and the frequency dependence
of the real part represents dispersion. Dispersion causes an apparent decrease in μ when the frequency decreases, implying that deformation is
larger at longer periods. Dispersion is a necessary by-product of a dissipative mechanism, and is present even when Q is frequency independent,
as can be inferred by taking the α → 0 limit of eq. (2):

δμ(ω) = μ0

[
2

π
ln

(
ω

ω0

)
+ i

]
1

Q0
. (3)

The stress–strain relation for an isotropic solid requires the specification of a second rheological constant (besides μ), which we choose
to be the Lamé parameter λ. The effects of anelasticity on λ are determined by the requirement that the bulk dissipation is zero. In that case
the bulk modulus, κ = λ + 2

3 μ, is real and frequency independent. Thus δλ = − 2
3 δμ.

At forcing periods outside the absorption band, eqs (1) and (2) are no longer valid. Let τ m and τ M be the lower and upper bounds of the
absorption band. Suppose the resonance strengths are distributed as shown in (6.111) of Dahlen & Tromp (1998), chosen so that eq. (1) is valid
at forcing frequencies within the absorption band. We have computed the resulting integrals (6.66)–(6.67) of Dahlen and Tromp numerically,
to obtain μ(ω) at frequencies both inside and outside the absorption band. A few representative results are displayed in Fig. 2, showing fr and
fi for several values of τ M . In each case the band’s lower bound, τ m , is taken as 1 s, and α = 0.25.

Note that as the period increases beyond τ M , fr becomes independent of frequency and fi → 0. Since Q is proportional to 1/ fi, this
implies that Q → ∞ at long periods. Note also that for frequencies within the absorption band, both the real and the imaginary parts are
approximately independent of where the outer edge of the band, τ M , is located. Thus, although most seismic observations suggest the seismic
frequency band lies entirely within an absorption band, they provide no information on how much further out the absorption band extends.
One goal of the work described in this paper is to identify the low-frequency limit of the absorption band, by considering long-period geodetic
observations. Fig. 2(b) suggests we do this by seeing whether fi continues to increase with increasing period over our entire range of periods
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Figure 2. Theoretical results illustrating how the real (a) and imaginary (b) parts of the shear modulus might depend on period for an absorption band model of
the dissipative process. The different lines correspond to different models. Each model assumes the same frequency dependence (ω0.25) within the absorption
band, and each assumes the same lower limit (τ m = 1 s) of the absorption band. However, they use different upper limits (τ M ). As examples, the vertical dotted
and solid lines indicate the 1 and 20 yr upper limits, used to find the 1 yr and 20 yr solutions. Note, by comparing results for different τ M ’s, that the results
within an absorption are nearly independent of τ M . Also, note that the imaginary part, which is proportional to 1/Q, tends to decrease to zero at periods in
excess of τ M .

(we will find that it does), or whether fi reaches a maximum at some period and then begins to decrease as the period increases further. A
second goal is to use the same geodetic observations to determine whether the frequency dependence of Q(ω) within the band is consistent
with eq. (1) and, if so, to estimate α.

There have been numerous attempts to use geodetic observations to extend anelastic estimates down to subseismic frequencies. These
include studies of the period and damping of the 14 month Chandler Wobble (CW) (e.g. Anderson & Minster 1979; Smith & Dahlen 1981),
the amplitudes and phase of the 18.6 yr gravity tide and the phase of the M 2 (12 hr) gravity tide (see Eanes 1995; Ray et al. 2001, respectively);
and the amplitude and phases of the fortnightly (Mf ) and monthly (Mm) tidal variations in the Earth’s rotation rate (e.g. Dickman & Nam 1998;
Defraigne & Smits 1999). In this paper we derive improved results for the tidal variations in rotation rate, construct 18.6 yr tidal estimates
based on longer satellite gravity time-series than were available to Eanes (1995), and combine these new results with published results for M 2

and the CW to examine the effects of anelasticity at frequencies between the seismic upper bound of 1 Hz and the 18.6 yr tidal frequency of
∼2 × 10−9 Hz.

2 I N C L U D I N G A N E L A S T I C I T Y I N G E O P H Y S I C A L M O D E L S

Anelasticity affects these geophysical processes because it plays a role in determining the mantle’s deformation in response to applied forces.
Mantle deformation is clearly of direct relevance for Earth tides, which are the deformational response of the Earth to the luni–solar tidal force.
Its relation to rotation rate arises because deformation generated by the long-period tides changes the Earth’s moment of inertia, which requires
changes in the rotation rate to conserve angular momentum. In each of these cases (i.e. tidal deformation and tidal variations in rotation rate),
the observed signal can be separated into terms that are either in phase or out of phase with the tidal force. The in-phase amplitudes provide
constraints on fr in eq. (2), and the out-of-phase amplitudes constrain fi.
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The CW is a free precession of the Earth’s rotation axis relative to the mantle. Its eigenfrequency is partially affected by how the
mantle deforms in response to the accompanying variations in centrifugal force. Thus, mantle anelasticity plays a role here too. The CW
eigenfrequency is complex, with a real part that is related to the CW period, and an imaginary part related to the damping time. Observations
of the period thus constrain fr, and observations of the damping help determine fi.

As a specific example of how the geodetic measurements can be used to constrain anelasticity, consider satellite laser ranging (SLR)
measurements of the M 2 and 18.6 yr gravity tides. Let V (r, θ , φ) be the tidal potential, where r, θ , and φ are the radius, colatitude, and
eastward longitude, respectively. Let ω represent the frequency of either the M 2 or the 18.6 yr tide. The contribution to V at that frequency
has the form (see Cartwright & Tayler 1971):

V = Re

[
H m

2 (ω)
r 2

a2
Y2

m(θ, φ)eiωt

]
, (4)

where Y 2
m is the complex spherical harmonic of degree 2 and order m (m = 2 for M 2 and m = 0 for the 18.6 yr tide), H m

2 (ω) represents the
amplitude of the tidal force at this frequency, a is the Earth’s radius, and Re denotes the real part.

For a spherically symmetric, non-rotating earth, the body tide deformation induced by eq. (4) causes a perturbation, �V , in the Earth’s
external gravitational potential that can be described using the same spherical harmonic:

�V = Re

[
k(ω) H m

2 (ω)
a3

r 3
Y2

m(θ, φ)eiωt

]
. (5)

Here, k(ω) is the gravitational Love number at the frequency ω, and is complex for an anelastic earth. SLR observations can be used to recover
tidal amplitudes and phases for this single Y 2

m term, and so can be used to constrain k(ω).
We must model the effects of anelasticity on k. For an anelastic earth, k is complex: the anelastic contribution to the real part of k

depends on fr in eq. (2), and the contribution to the imaginary part depends on fi. The fact that fr is dispersive causes the real part of k to be
frequency dependent, which leads to frequency dependence for the in-phase component of �V . If α �= 0, then the imaginary part of k depends
on frequency as well, through the frequency dependence of Q.

We assume δμ is small, and use a first-order expansion to estimate the anelastic perturbation of the Love number k (Smith & Dahlen
1981; Wahr & Bergen 1986):

δk(ω) =
∫

mantle

(
∂k(ω)

∂μ(r )

)
κ

δμ(r ) dr, (6)

with δμ given by eq. (2). The partial derivative in the integrand in eq. (6) is evaluated using μ(r ) = μ0(r ) in the equations of motion. Since
we are assuming no bulk dissipation, we keep the bulk modulus constant when we take the partial derivative (indicated by the subscript κ

after the partial derivative). In most theoretical formulations, including ours, the Lamé parameter λ is used instead of the bulk modulus. In
that case the integrand is replaced with:(

∂k(ω)

∂μ(r )

)
κ

=
(

∂k(ω)

∂μ(r )

)
λ

− 2

3

(
∂k(ω)

∂λ(r )

)
μ

, (7)

where the subscripts λ and μ indicate that those constants are fixed when finding the derivatives.
Our goal is to learn about δμ. The problem is severely underconstrained, even given our assumption of a spherically symmetric earth.

There are only a few observations, but there are many possible ways for δμ to vary with frequency and radius. Here we restrict ourselves
to a simple parametrization. We assume there is a single absorption band extending from seismic periods up to periods longer than 18.6 yr.
We assume μ is given by eq. (3) within the seismic frequency band, to be consistent with the evidence that Q(ω) is constant across seismic
frequencies. However, we allow Q(ω) to have the more general form (eq. 2) at frequencies below the seismic band. We use ωm to denote the
frequency above which Q (ω) is independent of frequency, and below which Q (ω) has the ωα frequency dependence. Specifically, we assume

δμ(ω) = μ0

Q0
[ fr (ω) + i fi (ω)]

= μ0

Q0

[
2
π

ln (ω/ω0) + i
2
π

[
ln (ωm/ω0) + 1

α

{
1 − (ωm/ω)α

}] + i (ωm/ω)α
f or ω ≥ ωm

f or ω < ωm

]
.

(8)

Moreover, we assume ω0, ωm , and α in eq. (8) are radially independent, though we do allow μ0 and Q0 to depend on radius. The assumption
that ω0, ωm , and α are independent of r, is equivalent to assuming that the same physical mechanisms are operative at all depths within the
mantle. This is an oversimplification, and it probably tends to bias our recovered values of α toward values appropriate to regions where Q is
small (i.e. where the attenuation is large).

To use eq. (8), we must specify ω0, ωm , and the functions Q0(r ) and μ0(r ). The choice of ω0 has no impact, as long as it is within the
frequency-independent seismic band. Here we assume ω0 = 1 Hz. We consider two values of ωm. Global seismic models, such as PREM, are
usually constructed under the assumption that Q(r) is frequency independent across the entire seismic band, from above 1 Hz (the frequency
of body waves) to 3.09 × 10−4 Hz (the frequency of o S2, the longest-period free oscillation). Thus, for our first (and preferred) value we adopt
ωm = 3.09 × 10−4 Hz. We use the PREM values of Q(r) for Q0(r ), and the 1-Hz PREM values of μ (r) for μ0(r ). To find the derivative in
eq. (7), we also need to specify λ0(r ). For this we use λ0(r ) = κ0(r ) − 2

3 μ0(r ), and assume no bulk dissipation so that κ 0(r ) is the same at all
frequencies. We assume κ 0(r ) is given by its PREM values.
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Constraints on mantle anelasticity from geodetic observations 7

For our second value of ωm we use ωm = 5.0 × 10−3 Hz, corresponding to a period of 200 s. This is the value adopted for the 2003 IERS
standards (McCarthy & Petit 2004). We use the same values of Q0(r ), μ0(r ), and λ0(r ) described in the preceding paragraph.

The assumption that ω0, ωm , and α are independent of r, is equivalent to assuming that fr and fi are independent of radius. In this case,
using eq. (8) in eq. (6) leads to:

δk(ω) = ( fr + i fi )
∫

mantle

(
∂k(ω)

∂μ(r )

)
κ

μ0(r )

Q0(r )
dr. (9)

Or, equivalently:

fr + i fi = δkobs(ω)∫
mantle

(
∂k
∂μ

)
κ

μ0
Q0

dr
, (10)

where δk obs is the anelastic perturbation in the Love number k. We evaluate the integral in eq. (10) using the numerical methods described
in Wahr & Bergen (1986). δk obs is obtained by using observations to estimate the tidal perturbation in the Earth’s gravitational potential �V ,
using eq. (5) to infer k, subtracting the effects of the ocean, and removing the predicted value of k for an elastic earth. The observed tides
thus provide information about fr and fi at the tidal frequencies. Results are similar for the other observations: for example, the rotation rate
variations and the CW period and damping, allowing us to estimate fr + ifi at a number of subseismic frequencies.

3 E F F E C T S O F T H E O C E A N

The interpretation of the observations is complicated by the presence of the ocean. For example, the tidal force not only causes the solid earth
body tide, but also acts on the ocean to cause ocean tides. The ocean tides load the underlying solid earth and deform it, causing load tides.
The ocean + load tides contribute to the observed tidal variations in gravity and rotation rate, and their effects cannot be separated from body
tide effects without independent information. These oceanic contributions are small compared to those from the body tide, but they can be of
the same order as the anelastic body tide effects. Similarly, the presence of the ocean can significantly modify the CW period and damping.
Thus the effects of the ocean must be modelled and removed from the geodetic observations before they can be used to constrain anelasticity.
And we must include the effects of ocean model errors when we compute uncertainties in our anelastic estimates.

3.1 An example

An SLR solution for the Y 2
m component of �V also includes contributions from the ocean + load tide. The spatial dependence of that tide

is more complicated than that shown in eq. (5), involving spherical harmonics of all degrees and orders. However, the ocean + load tidal
contributions to spherical harmonics other than Y 2

m are irrelevant when solving for k(ω). And because the Y 2
m component has a global spatial

scale (wavelength ∼20 000 km), it is one of the easier ocean + load tidal components to accurately model.
The ocean + load tidal contribution to the Y 2

m component of the gravitational potential has the form

�Vload = Re

[
{1 + k ′(ω)} Ĥ m

2 (ω)
a3

r 3
Y2

m(θ, φ)eiωt

]
, (11)

where Ĥ m
2 is the Y 2

m component of the gravitational potential caused by the ocean tide, k′ is the load Love number, and the factor “1” in
(1 + k′) represents the direct gravitational potential of the ocean tide itself. Like k, k′ is affected by anelasticity. SLR is sensitive to the sum
of eqs (5) and (11). The SLR observations thus provide a constraint on the linear combination k + (1 + k′)Ĥ m

2 /H m
2 , which can be used to

place bounds on anelasticity if Ĥ m
2 is adequately known. Ĥ m

2 is typically on the order of a few percent of H m
2 . Thus, the linear combination is

dominated by k, so that it is the body tide that provides most of the anelastic information.
However, knowledge of the ocean tide is still critical. For example, for the 18.6 yr tide Ĥ m

2 /H m
2 ≈ 0.06, k and 1 + k′ are on the order of

0.3 and 0.7 respectively, and anelasticity affects both k and k′ at about the 5–10 per cent level. Thus anelastic contributions to (1 + k′)Ĥ m
2 /H m

2

are only about 6 per cent of the anelastic contributions to k, and so can be ignored. However, taken in its entirety, (1 + k ′)Ĥ m
2 /H m

2 is roughly
twice as large as the anelastic effects on k. So to obtain an estimate of anelasticity accurate to, say, 10 per cent, the Y 0

2 component of the ocean
tide must be known to an accuracy of at least 5 per cent. The conclusions are similar for the other observations considered here.

3.2 Ocean models

The anelastic estimates described in this paper require ocean tide models for the M 2, Mf , Mm and 18.6 yr tides, and for the CW pole tide (the
response of the ocean to changes in centrifugal force caused by motion of the rotation axis). There are two general methods of estimating
ocean tides: using altimeter sea surface height measurements, and finding solutions to the differential equations that describe tidal dynamics.
Each method has its characteristic strengths and weaknesses, and many of the most accurate models use a combination of both. Here, we
describe the models used for each of the geodetic observations considered in this paper.

The M 2 ocean tide models and their impact on the M 2 anelastic constraint are described by Ray et al. (2001). They estimated Ĥ 2
2 by

averaging results from four M 2 models that combined Topex/Poseidon (T/P) satellite altimetry and hydrodynamical modelling. One of these
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8 D. Benjamin et al.

Table 1. Observed values and modelled ocean and elastic earth contributions. The M 2

observed value is from Ray et al. (2001), and has had the ocean tide removed. All other
observed values include all solid earth and ocean tide contributions. The Chandler Wobble
results are from Vicente and Wilson 1997 [V & W], Furuya & Chao (1996) [F & C], and
Kuehne et al. (1996) [K]. The 18.6 yr results are from the SLR J 2 values, where: [A]
the atmosphere has been removed; [B] the atmosphere and ocean circulation have been
removed; [C] the atmosphere, ocean circulation, and continental water + snow + ice have
been removed.

Observed Ocean Elastic earth

M 2 ki −0.0011 ± 0.0003 0
Mf UTs (μs) −779 ± 2 −101 ± 5 −656 ± 7

UTc (μs) 48 ± 2 44 ± 5 0
Mm UTs (μs) −838 ± 7 −122 ± 5 −699 ± 7

UTc (μs) 29 ± 7 27 ± 5 0
Chandler Wobble

V & W ωCW
r (c yr−1) 0.843 ± 0.003 −0.063 ± 0.003 0.927 ± 0.003

ωCW
i (c yr−1) 0.0024 { 0.0005 ↔ 0.0057 } −0.001 ± 0.003 0

F & C ωCW
r (c yr−1) 0.842 ± 0.004 −0.063 ± 0.003 0.927 ± 0.003

ωCW
i (c yr−1) 0.0086 { 0.0042 ↔ 0.0120 } −0.001 ± 0.003 0

K ωCW
r (c yr−1) 0.831 ± 0.004 −0.063 ± 0.003 0.927 ± 0.003

18.6 yr tide
A kr 0.380 ± 0.02 0.040 ± 0.002 0.298 ± 0.003

ki −0.028 ± 0.008 0.002 ± 0.002 0
B kr 0.376 ± 0.03 0.040 ± 0.002 0.298 ± 0.003

ki −0.024 ± 0.008 0.002 ± 0.002 0
C kr 0.383 ± 0.02 0.040 ± 0.002 0.298 ± 0.003

ki −0.013 ± 0.007 0.002 ± 0.002 0

was a generalized inverse model that allowed independent assessment of error bars. For the near-resonant ocean responses characteristic of the
M 2 tide, strong constraints from T/P altimeter data are critical for arriving at realistic estimates of Ĥ 2

2 ; unconstrained hydrodynamic models
appear to be too sensitive to errors in bathymetry, dissipation, and other factors (Egbert et al. 2004).

In contrast, some unconstrained hydrodynamic models of the long-period tides Mf and Mm appear adequate for estimating oceanic
perturbations to rotation rate. Estimating the rotation rate is complicated by the need to model the ocean’s contributions not only to the Y 0

2

component of sea surface height, but also to the relative angular momentum carried by tidal currents, so hydrodynamic models are required in
any event. For this study we use the data assimilating tidal modelling system described in Egbert & Erofeeva (2002) to compute solutions to
the shallow water equations forced by the long-period tidal potential, adjusted for effects of body tides, ocean loading, and self-attraction. For
Mf a large suite of model runs were completed for a 1/4-degree global grid, and solutions were compared. These runs include time stepping
the non-linear equations with quadratic bottom friction and all major tidal constituents, and linearized frequency-domain solutions computed
for a range of linear friction parameters. In addition to the forward-model runs, data assimilation experiments were also conducted, fitting T/P
altimeter data to varying degrees, using also a range of prior model error covariance assumptions. For almost all cases tested, the computed
Mf and Mm effects on rotation rate form tight, consistent clusters, each with a total scatter of about 5 μs in Universal Time. We find similar
consistency among these solutions for their effects on polar motion. For polar motion the ocean tide is the primary contributor (Gross et al.
1997), and geodetic observations thus provide a direct oceanic constraint, a subject that merits further discussion elsewhere. For now we take
these results as evidence that the numerical models for long-period tides are reasonably reliable at the large scales relevant to variations in
Earth-rotation parameters, and we use the results from the prior forward model (with no data assimilation) as the ocean corrections given
in Table 1. We adopt the 5-μs scatter observed among these models and inversions as an appropriate estimate of the error in these ocean
corrections.

Direct ocean measurements are somewhat less useful for the CW pole tide and the 18.6 yr tide. The 18.6 yr tide is virtually impossible
to determine using T/P data, given that the altimeter has been in orbit for substantially less than a full tidal cycle, coupled with the fact that
the ocean circulation displays strong variability at decadal timescales. The pole tide is somewhat more accessible. Desai (2002), for example,
used T/P data to determine the Y 1

2 component of the ocean pole tide, and concluded that at this long wavelength the ocean pole tide is within
3 per cent of equilibrium. At short wavelengths the T/P ocean pole tide solution is subject to the same general problems as the 18.6 yr solution:
a relatively short time period and contamination from ocean circulation.

We here make the assumption that the 18.6 yr and pole tides are in equilibrium with the tidal potential. This is equivalent to assuming the
barotropic response time of the ocean is much shorter than 18.6 yr and 14 months, respectively. It implies that tidal currents, and the Coriolis
and inertial forces induced by those currents, are negligible. An equilibrium tidal response for periods this long is supported by dynamical
arguments and by the fact that T/P observations show Mf is close to equilibrium and Mm is closer still (see, for example, Carton 1983; Desai
& Wahr 1999; Egbert & Ray 2003), as well as by Desai’s (2002) pole tide results.

We use the self-consistent equilibrium ocean pole tide model from Desai (2002), and a similarly derived long-period self-consistent
equilibrium model for the 18.6 yr ocean tide. In both cases we modify Desai’s model to include effects of mantle anelasticity, as follows. The

C© 2006 The Authors, GJI, 165, 3–16

Journal compilation C© 2006 RAS



Constraints on mantle anelasticity from geodetic observations 9

equilibrium tides are proportional to 1 + k − h, where the body tide Love numbers, k and h, are affected by anelasticity. We estimate those
anelastic effects, which were not included in Desai’s model, using the frequency-dependent anelastic results discussed below (Section 5). We
then rescale Desai’s model to accommodate our new value of 1 + k − h. These anelastic effects are small, perturbing the ocean tide by no
more than 5 per cent; though they do introduce small out-of-phase components.

4 G E O D E T I C O B S E RVAT I O N S

In this paper we find constraints on fr and fi using observations of the M 2 and 18.6 yr Love number k, the Mf and Mm tidal variations in
rotation rate, and the CW period and damping. All numerical results are shown in Tables 1 and 2. Here, we describe the derivation of those
results.

For M 2 we use the results of Ray et al. (2001), who determined the lag in the Earth’s body tide by combining SLR and altimeter tidal
estimates; SLR is sensitive to the Love number k, altimetry is most sensitive to h. They modelled the ocean contributions as described in
the preceding section. Let the phase lag of the body tide Love number k be expressed as arctan (−ki/kr), where ki and kr are the imaginary
and real parts of k. Ray et al. concluded that after removing the effects of the ocean, the phase lag of the M 2 body-tide Love number is
0.204◦ ± 0.047◦. Their error analysis accounted for relatively weak constraints on the lags of the load Love numbers k′ and h′. They did not
attempt to place constraints on the Love number amplitude. However, their results imply that the real and imaginary parts are related by: ki

= − kr × arctan (0.20◦ ± 0.05◦) ≈ kr × (−0.0035 ± 0.0009). We estimate kr by solving the tidal equations of motion using the 1 s PREM
elastic values of μ and λ. We obtain kr = 0.298, implying that ki = −0.00105 ± 0.00027. Since ki = 0 for an elastic earth, we use this value
of ki for the imaginary part of δkobs in eq. (10). Using the numerical methods described by Wahr & Bergen (1986), we find the integral in the
denominator of eq. (10) = −6.18 × 10−4. Thus, we estimate fi = 1.70 for the M 2 tide. The value of fr is unknown in this case, since we have
no observational results for the real part of kr.

For the CW we require observational estimates of the period, TCW , and damping parameter, QCW . These are combined to form the
complex frequency

ωCW = 1

TCW
[1 + i/2QCW ] . (12)

After correcting for the effects of the ocean, and removing the predictions for an elastic earth, the residual value δωCW is used to replace δkobs

in eq. (10). And ωCW is used instead of k in the partial derivative in the denominator.
For TCW and QCW we use three sets of observational results: Furuya & Chao (1996), Kuehne et al. (1996), and a combination of Vicente

& Wilson (1997) and Wilson & Vicente (1990). Furuya & Chao (1996) combined 11 yr of space-based observations with an atmospheric
excitation time-series, to estimate TCW = 433.7 mean solar days and QCW = 49. Kuehne et al. (1996) used a similar analysis to obtain TCW =
439.5 d, but did not determine QCW . Vicente and Wilson applied a maximum likelihood technique to astrometric and space-based observations
from the mid-19th century to the 1990s, to obtain TCW = 433.1 d. They did not solve for QCW . Instead, based on Vicente and Wilson’s
suggestion, we combine Vicente and Wilson’s TCW estimate with an estimate of QCW = 179 based on a similar analysis by Wilson & Vicente
(1990).

To correct for the ocean, we adopt the self-consistent equilibrium tide model described in Section 3.2. To account for the possibility of
errors, caused either by non-equilibrium effects or by errors in the ocean function, Love numbers, or ocean density, we assume an uncertainty
of ±5 per cent of the ocean tide estimate and include that uncertainty in both the real and imaginary parts of ωCW . A 5 per cent uncertainty is
chosen because of Desai’s (2002) results, which imply the long-wavelength components of the pole tide are within 3 per cent of equilibrium.
To estimate and remove ωCW for an elastic earth, we use the 1 s numerical values from PREM, and adjust the resulting estimate of ωCW to
be consistent with the observed value of the Earth’s precession constant as described by Smith & Dahlen (1981). We arbitrarily assume an
uncertainty of 0.003 c yr−1 in the elastic earth prediction; a value equal to 1 per cent of the deformational contribution to ωCW . To obtain
our final uncertainties in fr and fi, we add, in quadrature, the uncertainties for the observations, the ocean corrections, and the elastic earth
predictions.

We represent the Mf and Mm tidal perturbations in rotation rate in terms of in-phase and out-of-phase contributions to Universal Time,
denoted as UTs and UTc, respectively. (By convention, the s and c subscripts refer to sine and cosine of the tidal argument; see Gross 1993.)
We combine these terms into the complex quantity

U T = U Ts + iU Tc, (13)

which is used to replace δk obs in eq. (10), after subtracting the effects of the ocean and an elastic earth.
The Mf and Mm tidal perturbations in rotation rate are estimated from the SPACE2003 time-series of Earth rotation parameters, produced

by Gross (2004) by combining various kinds of space-geodetic measurements. We only use data from 1985 to 2003; earlier data are significantly
noisier and also appear somewhat oversmoothed in the tidal bands of interest here. The SPACE2003 rotation-rate data were subsequently
adjusted to remove the effects of both the atmosphere and the oceans. Atmospheric angular momentum was determined from the NCEP
Reanalysis solutions (Kalnay et al. 1996), which are readily available in the form of excitation functions from the IERS Special Bureau for
Atmospheres (Salstein et al. 1993). Oceanic angular momentum was determined from the ECCO ocean circulation model (Stammer et al.
2002), for which the excitation functions were computed by Gross et al. (2004). Both the AAM and OAM models result in reduced variance
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in the SPACE2003 length-of-day data, a matter discussed in some detail by Gross et al. (2004). To further reduce the variance of the original
time-series, a low-degree polynomial was fit and removed from the data and a high-pass filter was applied (see, for example, Chao et al. 1995).

The estimated tidal rotation parameters are given in Table 1 in terms of UT perturbations. The standard errors are estimated from the
least-squares covariance, scaled by the spectral density of the time-series residuals surrounding the monthly and fortnightly frequencies. The
residuals at the monthly frequency are significantly larger, which accounts for the relatively larger uncertainty in the Mm estimates. The standard
errors for Mf have been checked in two ways—by computing estimates at nearby non-tidal frequencies and by partitioning the time-series
and studying the scatter in the subset estimates—and the results of both tests are consistent with the quoted Mf error bars of Table 1.

The Mf and Mm ocean tide contributions are described in Section 3.2. The predictions for an elastic earth are computed using the 1 s
PREM parameter values, and an additional uncertainty equal to 1 per cent of the elastic predictions is included in the error estimate. The final
error is the sum, in quadrature, of the observational, ocean tide and elastic earth errors.

4.1 18.6 yr results and the J 2 anomaly

Our SLR solution for the 18.6 yr Love number requires an expanded discussion. Partly this is because the 18.6 yr tide has the longest period
of any process we consider in this paper, and thus it exerts the most leverage on our conclusions. And partly it is because the residuals from
the fitting process have implications for interpreting the non-tidal signal in the SLR data.

The coefficient of the Y 0
2 gravity field component is denoted as J 2. Since the 18.6 yr solid earth tide perturbs this component, its effects

appear in J 2. We estimate the 18.6 yr Love number k by fitting to two sets of ≈monthly J 2 values derived from SLR data. One set was provided
by Chris Cox (personal communication, 2005), and runs from early 1979 to the fall of 2004 (for a description of an earlier version of this data
set, see Cox & Chao 2002). The second set was provided by M.K. Cheng (personal communication, 2004) and runs from early 1979 to the
beginning of 2004 (Cheng & Tapley 2004). We refer to these J 2 data sets as CC and CT, respectively.

Before sending us the CC values, Cox had removed atmospheric effects using NCEP pressure values and assuming an inverted barometer
(IB) response of the oceans. The atmosphere had not been removed from the CT values. To make the two sets compatible, we also subtract
the NCEP + IB atmosphere from CT.

Both Cox and Cheng had removed a nominal 18.6 yr tide model: in-phase and out-of-phase solid earth contributions consistent with the
2003 IERS standards (McCarthy & Petit 2004), plus a self-consistent equilibrium ocean tide. Cox and Cheng used different numerical values
for the equilibrium ocean tide; so we modified both sets of results to be consistent with Desai’s (2002) equilibrium values (see above). The
IERS standards assume an anelastic earth, with the same general framework as described in eq. (8), using ω0 = 1 Hz, ωm = 5.0 × 10−3 Hz, and
α = 0.15. These anelastic assumptions in the IERS standards are based on earlier comparisons with CW and tidal rotation rate observations,
and are independent of any 18.6 yr observations.

Fig. 3 compares the CC and CT results, after simultaneously fitting and removing a constant, a trend and seasonal (i.e. annual and
semi-annual) terms, and smoothing the residuals with a 24 month boxcar averaging function. The formal errors provided with the data are
used in this and all other fits to the J 2 values. There are clear systematic trends remaining in the residuals shown in Fig. 3, that presumably
include some combination of long-period gravity signals from the oceans and the water + snow + ice stored on land, errors in the IERS
18.6 yr tidal model, and SLR processing effects. Processing effects clearly remain in one or the other or both of these two sets of residuals,
since they exhibit differences. Both data sets do show a common peak from 1998 to about 2002. This anomaly was noticed by Cox & Chao
(2002), and has since been interpreted as being at least partly due to the combined effects of the ocean and mountain glaciers (Dickey et al.
2002).

1980 1985 1990 1995 2000 2005
Date

-1

0

1

2

3

J
2
 x

 1
0

1
0

CC

CT

Figure 3. Compares the CC and CT J 2 results. Both data sets have had the effects of the atmosphere + IB ocean removed. An 18.6 yr tide has also been
removed, using the solid earth values recommended in the 2003 IERS standards, plus ocean tide values consistent with an equilibrium tide. A linear trend and
seasonal terms have been fit and removed from each data set, and the residuals have been smoothed with a 24 month boxcar function.

C© 2006 The Authors, GJI, 165, 3–16

Journal compilation C© 2006 RAS



Constraints on mantle anelasticity from geodetic observations 11

1980 1985 1990 1995 2000 2005
Date

-2

-1

0

1

2

3

J
2
 x

 1
0

1
0

18.6-year tide model removed:

elastic solid Earth and equil ocn

IERS solid Earth and equil ocn
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Figure 4. Shows the CC J 2 results, after fitting and removing a linear trend and seasonal terms, and smoothing the residuals. The different lines correspond
to removing different models of the 18.6 yr tide before performing this fit.

As noted by Cox et al. (2004), this 1998–2002 feature could affect any estimate of the 18.6 yr tide obtained by fitting to the J 2 data. On
the other hand, it could also be partly an artefact of a mismodelled 18.6 yr tide. This, in fact, is suggested by Fig. 4, which shows smoothed
CC residuals after fitting and removing a trend and seasonal terms, for various assumptions about the 18.6 yr tide. The dashed line shows
results after adding back (prior to the fit) the IERS 18.6 yr solid earth model that had been removed during processing, and then removing the
18.6 yr predictions for an elastic earth. So the dashed residuals include the effects of all anelastic contributions to the 18.6 yr tide. Note that
those residuals are dominated by a quasi-periodic term that fits about 1.5 cycles into the ≈25 yr data span, which is reasonably consistent with
an 18.6 yr variation. The dashed-dotted line shows the results with the IERS corrections removed prior to the fit—or the same CC residuals
shown in Fig. 3. Note that although the apparent 18.6 yr term is reduced, it is still reasonably prominent; suggesting that the IERS model does
not adequately represent the effects of anelasticity.

The solid line in Fig. 4 shows the residuals after simultaneously fitting and removing in-phase and out-of-phase 18.6 yr terms, along
with the trend and seasonal terms. Note that the residuals have changed dramatically so that the 1998–2002 feature is no longer an isolated
anomaly, but is just one of a series of maxima in a quasi-decadal oscillation. We have no definitive explanation for this oscillation, but it seems
plausible that there could well be a quasi-periodicity of this sort caused by the same types of processes considered by Dickey et al. (2002).

Thus we tentatively assume that the 18.6 yr terms we obtain by fitting to the CC and CT values, are true tidal terms. We attempt to
improve the fit by simultaneously including a 10 yr term in the fitting process, since the Fig. 4 residuals seem to include such a term. The
impact of this additional term on our 18.6 yr solution, however, is minimal.

To test for convergence of our 18.6 yr solutions, we perform these fits for a variety of time intervals, each beginning in 1979 but ending
at times that vary between 1996 and the end of the time-series. We do this for both CC and CT, and scale our results so that they directly
correspond to perturbations of the Love number k. In each case we add back the IERS 18.6 yr model that had been initially removed from the
data. We do not add back the equilibrium ocean tide results. We interpret the final results as the Love number k for the solid, anelastic earth.

Fig. 5 shows our results along with our estimate of the uncertainty in the fitting process. The Fig. 5 uncertainty estimates do not include
the uncertainty in the ocean tide or elastic earth models. Results are shown for both the CC and CT models, and for both the real (panel a) and
imaginary (panel b) parts of the Love number. Note that the solutions using data up to 2001 and later appear to have converged reasonably
well, and to values that depart significantly from the elastic values (the horizontal lines in each panel). The values, though, still appear to be
wandering around by an amount larger than the uncertainties in the solutions. Furthermore, although CC and CT give imaginary parts of k
that are in reasonable agreement, they give significantly different real parts. This is probably the consequence of the long-period differences
between CC and CT apparent in Fig. 3.

To account for all these differences, we choose a range for our final adopted value of k, so that it encompasses the maximum and minimum
of all CC and CT fits for endpoints from 2001 onwards. We choose the midpoint of that interval as our preferred value. (We adopt this method
of choosing a preferred value because, when combined with symmetric error bars, it provides a convenient way to represent the range of
possible values.) We obtain kr = 0.339 ± 0.02 and ki = −0.028 ± 0.008, shown as the diamonds in Fig. 5. These numbers represent a 10–15
per cent increase in the Love number over that expected for an elastic earth (see the last column in Table 1).

There is the danger that our fit results could be absorbing the effects of long-period, non-tidal surface mass variability. Our Fig. 5 check
for convergence is intended as a partial assessment of that contamination, and our inclusion of a 10 yr periodic term in the final fit is an attempt
to reduce that problem. Still, the fact that the SLR data span only ≈1.5 cycles of the 18.6 yr term, requires extra caution.

Thus we repeat our fits, but after first removing an estimate of the J 2 contributions from ocean circulation, as estimated using the
ECCO ocean general circulation model (Stammer et al. 2002) and provided by S. Marcus and J. Dickey (personal communication, 2005).
The 18.6 yr results in this case become kr = 0.335 ± 0.03 and ki = −0.024 ± 0.008; so there is no significant impact on kr, and only
a marginally significant impact on ki. Results obtained by removing alternative ECCO ocean values provided by E. Leuliette (personal
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Figure 5. Shows the real (a) and imaginary (b) parts of the 18.6 yr body tide Love number k, obtained by fitting to subsets of CC’s and CT’s SLR J 2 data set.
Each subset uses SLR data between the beginning of 1979 and a variable ending date, as specified on the x-axis. Each set of results is represented by a central
line indicating the best-fitting value, bracketed above and below by secondary lines indicating the 1-σ uncertainty from the fitting process. We summarize
these results by adopting the overall values and uncertainties denoted by the diamonds and accompanying error bars. The elastic predictions are shown as the
horizontal lines.

communication, 2005) are similar. We find that when we compute the variance of the J 2 residuals after fitting and removing a trend and 18.6 yr
and seasonal terms, the residual variance is reduced by about 30 per cent in the case where the ocean circulation effects are first removed.
This provides confidence in the ocean circulation estimates, and suggests we place more faith in the kr = 0.335 and ki = − 0.024 values.

We also repeat the fits, after first removing not only the ECCO ocean circulation estimates, but also estimates of the J 2 contributions
from continental glaciers and land water + snow storage as provided by S. Marcus and J. Dickey (personal communication, 2005). The Love
number results in this case become, kr = 0.340 ± 0.02 and ki = −0.013 ± 0.007, which are about the same as the results from the original
data set. We find, though, that the removal of the continental water + snow + ice estimates results in a ≈10 per cent increase in the post-fit
variance, suggesting that those corrections may not be as reliable as the ECCO ocean corrections.

Table 1 includes the Love number results for all three cases (using the J 2 values as given, removing the ocean circulation effects, and also
removing the continental water + snow + ice effects). Table 2 shows the corresponding results for fr and fi, and their uncertainties. Those
uncertainties are the quadrature sum of the three error types indicated in Table 1: the observational errors, an uncertainty of 5 per cent in the
equilibrium ocean tide correction, and a 1 per cent uncertainty in the elastic solid earth correction.

5 I M P L I C AT I O N S F O R A N E L A S T I C I T Y

The Table 2 results for fr and fi are shown as a function of frequency in Fig. 6. Also shown are predictions from eq. (8) for a few values of α,
assuming ω0 = 1 Hz and ωm = 3.09 × 10−4 Hz. For an elastic earth, fr and fi would both equal 0.

The observations clearly require anelasticity. They also strongly support the hypotheses that Q decreases with increasing period (compare
the observations with the constant-Q predictions). It appears as though the results for fi are still increasing with increasing period out at least
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Table 2. Shows the values of fr and fi for
each observation. The notation denoting the
different Chandler Wobble and 18.6 yr tidal
results, is the same as in Table 1.

fr fi

M 2 NA 1.7 ± 0.4
Mf −16 ± 6 3 ± 4
Mm −12 ± 9 2 ± 6
Chandler Wobble

V & W −24 ± 6 4 {−2 ↔ 8}
F & C −25 ± 6 11 {5 ↔ 17}
K −38 ± 6 NA

18.6 yr tide
A −69 ± 35 49 ± 14
B −61 ± 47 42 ± 14
C −70 ± 39 24 ± 13
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Figure 6. Compares our various observational results for fr (a) and fi (b), with predictions from eq. (10) for five anelastic models. Each model assumes
ωm = 3.09 × 10−4 Hz, but is characterized by a different value of α. Inset (c) is an expanded picture of the M 2 fi value.

as far as 18.6 yr. This is consistent with a single absorption band that extends from seismic periods out at least as far as ≈20 yr or so (see
Fig. 2, and the discussion in Section 1). The results are all reasonably consistent with a single value of α of between about 0.20 and 0.30.

The observations considered in this paper are far more sensitive to the lower mantle (i.e. to depths below 660 km) than to the upper
mantle. We find the contribution of the lower mantle to the integral in eq. (9) is about 10 times larger than the contribution from the upper
mantle. Thus, if we allowed the upper and lower mantles to have different values for ( fr + ifi), the observations would be about 10 times more
sensitive to the lower mantle value than to the upper mantle value. Thus, the results shown in Fig. 6 and the conclusions drawn from those
results should be interpreted as mostly representative of the lower mantle.
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Figure 7. Similar to Fig. 6, but assumes ωm = 5.0 × 10−3 Hz.

Our choice of ωm = 3.09 × 10−4 Hz is relatively arbitrary. To consider the effects of this choice, we recompute the predictions from
eq. (8), using the value ωm = 5.0 × 10−3 Hz adopted for the IERS standards (McCarthy & Petit 2004). Fig. 7 compares these new predictions
with the observations. The new results do not alter our conclusion that Q decreases with increasing period, or that the observations are
consistent with a single absorption band. The observations, in general, appear to require somewhat smaller values of α, somewhere within
the range of 0.15 (the value adopted for the IERS standards) and 0.25. Note, though, that for this new choice of ωm , it becomes harder to
reconcile all the observations using a single value of α. The M 2 fi result, for example, appears to require a significantly smaller value of α

than does the 18.6 yr fi result.

6 D I S C U S S I O N

We have used geodetic observations to constrain mantle anelasticity at periods between 12 hr and 18.6 yr. Our results are ≈10 times more
sensitive to the lower mantle than to the upper mantle, and so our constraints should mostly be interpreted as constraints on lower mantle
anelasticity.

Our primary goal is to help provide information about whether the physical mechanisms responsible for anelasticity at seismic periods
could also be dominant at these longer periods. It should be clear from the outset that we cannot provide a definitive answer to this question,
given the small number of observations at our disposal compared to the many ways in which anelasticity could depend on frequency and
radius. The issue is further complicated by the fact that anelastic mechanisms could conceivably depend on the stress amplitude, which we
are not including in our parametrization. The stresses generated during our geodetic disturbances are far larger than typical seismic stresses.
Stress amplitudes are on the order of 6 × 104 Pa for the M 2 tide, 3 × 103 to 6 × 103 Pa for the Mf , Mm, and 18.6 yr tides, and 2 × 102 Pa for
the CW. To compare with seismic stresses, note that the stress amplitude associated with the 0 S2 free oscillation, which has a radial structure
that closely resembles that of the tidal and CW deformations, was on the order of only 1 Pa following the magnitude 8.3, 1994 Bolivian
earthquake, the largest deep earthquake ever recorded.

The most striking implication of our analysis is that despite the differences in frequency and stress, models that use seismic Q values are
in fairly good agreement with all our geodetic observations. It seems reasonable to expect that the seismic anelastic mechanisms would still
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be operative at periods somewhat outside the seismic band. What this first implication suggests is that these mechanisms could be operative
out at least as far as 18.6 yr, and that they are not likely to depend strongly on the stress amplitude.

A second implication is that within our range of geodetic periods, fi (proportional to Q−1) increases steadily with increasing period. This
has two, somewhat contradictory, implications. The fact that this steady increase appears to continue out to at least 18.6 yr, suggests that not
only might seismic mechanisms still be operative at 18.6 yr, but that those mechanisms might be organized into a single absorption band that
extends across the seismic band and out to at least ≈20 yr or longer. On the other hand, the fact that the geodetic Q’s are frequency dependent
at all, appears to put them at odds with the usual seismic assumption that lower mantle Q is frequency independent across the seismic band.
This difference, though, is not necessarily incompatible with the assumption of a single seismic–geodetic absorption band, since there are no
a priori constraints that we know of on how Q should vary with frequency across an absorption band.

A third implication is that across the geodetic band the variation of Q with frequency is reasonably well represented by an ωα dependence.
This is a common parametrization of Q that is consistent with laboratory experiments. We find the geodetic observations can be fit reasonably
well with a value of α within the range 0.15 to 0.30. This range, though, depends on our choice of ωm, the frequency below which the
constant-Q seismic results begin varying with frequency. For our preferred choice of ωm = 3.09 × 10−4 Hz, which is the frequency of the
longest-period seismic-free oscillation, the approximate range of α is 0.20 to 0.30. For ωm = 5.0 × 10−3 Hz, the value adopted for the IERS
standards, the range is reduced slightly to 0.15–0.25; though the use of an ωm this large makes it difficult to reconcile both the M 2 and 18.6
yr observations with a single value of α. If, instead, we chose ωm to be smaller than ωm = 3.09 × 10−4 Hz, the preferred values of α become
larger than 0.20–0.30. If ωm is chosen to be smaller than about 5 × 10−5 Hz ≈1 cycle 6 hr−1, no value of α could provide an acceptable fit to
both the M 2 and 18.6 yr observations.

Interestingly, although our preferred range for α across the geodetic band differs from the usual seismic assumption of α = 0 in the lower
mantle, it is in reasonable agreement with the laboratory estimates of α ≈ 0.15–0.40 inferred from experiments on rocks at upper mantle
conditions and seismic periods (see, for example, Gribb & Cooper 1998). This agreement may be spurious, since our results are most sensitive
to Q in the lower mantle. On the other hand, the fact that our α values are more consistent with those from laboratory experiments than
from seismic observations, could conceivably reflect a dependence of Q on stress amplitude. Like geodetic stress levels, laboratory stresses
(typically on the order of 104 to 106 Pa) are much larger than seismic stress amplitudes.

One of the important constraints in this study is provided by our fit of an 18.6 yr tidal term to the monthly SLR J 2 values. As a by-product
of our analysis, we find that when we fit and remove an 18.6 yr term from the J 2 values, the 1998–2002 anomaly changes character, becoming
only one of a series of maxima in a quasi-decadal oscillation. We have no immediate explanation of the likely cause of this oscillation, though
it could well be due to the sorts of environmental processes (oceans, continental water + snow + ice) considered by Dickey et al. (2002).
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