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S U M M A R Y
From basic Fourier theory, a one-component signal can be expressed as a superposition of
sinusoidal oscillations in time, with the Fourier amplitude and phase spectra describing the
contribution of each sinusoid to the total signal. By extension, three-component signals can
be thought of as superpositions of sinusoids oscillating in the x-, y-, and z-directions, which,
when considered one frequency at a time, trace out elliptical motion in three-space. Thus the
total three-component signal can be thought of as a superposition of ellipses. The information
contained in the Fourier spectra of the x-, y-, and z-components of the signal can then be
re-expressed as Fourier spectra of the elements of these ellipses, namely: the lengths of their
semi-major and semi-minor axes, the strike and dip of each ellipse plane, the pitch of the major
axis, and the phase of the particle motion at each frequency. The same type of reasoning can
be used with windowed Fourier transforms (such as the S transform), to give time-varying
spectra of the elliptical elements. These can be used to design signal-adaptive polarization
filters that reject signal components with specific polarization properties. Filters of this type
are not restricted to reducing the whole amplitude of any particular ellipse; for example, the
‘linear’ part of the ellipse can be retained while the ‘circular’ part is rejected. This paper
describes the mathematics behind this technique, and presents three examples: an earthquake
seismogram that is first separated into linear and circular parts, and is later filtered specifically
to remove the Rayleigh wave; and two shot gathers, to which similar Rayleigh-wave filters have
been applied on a trace-by-trace basis.

Key words: particle motion, polarization analysis, polarization filtering, spectral analysis,
time–frequency analysis, wavelets.

1 I N T RO D U C T I O N

In geophysical time series analysis one must often deal with three-

component signals. Some examples are measurements of time-

varying electric and magnetic fields, and three-component seismo-

grams. Since the 1960s, several methods have been advanced to

describe the content of time series of this type, usually with a view

to seismic interpretation and filtering of seismograms based on the

polarization properties of different types of waves (for discussions

of these properties see Aki & Richards 1980; Kanasewich 1981; Lay

& Wallace 1995). Most of these techniques operate entirely in the

time domain (Flinn 1965; Montalbetti & Kanasewich 1970; Vidale

1986; Morozov & Smithson 1996), or entirely in the frequency do-

main (Simons 1968; Samson & Olson 1980). In real seismograms,

though, events that have different frequencies and different polariza-

tion characteristics can occur at the same time; also, any particular

frequency band may at two different times be dominated by events

that do not have the same polarization properties.

This paper presents a method of describing time and fre-

quency variations in the polarization properties of non-stationary

three-component signals. The method makes use of the S trans-

form (Stockwell et al. 1996), a time–frequency spectral localiza-

tion method that is similar to the short-time Fourier transform

(STFT) (Gabor 1946; Cohen 1995) except that its window scales

with frequency, as wavelets do (Grossmann & Morlet 1984; Mallat

1998). The use of a translatable window gives some similarities

with the ‘moving window’ techniques used to analyse surface waves

in the 1970s (Flinn 1965; Montalbetti & Kanasewich 1970); the

scalability of the window, and the provision for both time and fre-

quency dependence of polarization, are reminiscent of the meth-

ods outlined by Jurkevics (1988), Lilly & Park (1995), Anant &

Dowla (1997), Zanandrea et al. (2000), and Claassen (2001). Un-

like these techniques, though, the S-transform method does not

involve covariance matrices or singular-value decomposition. In-

stead, the polarization characteristics of the data are calculated

directly from the complex S transforms of the separate x, y,

and z data components. In this regard there is some conceptual

similarity with the Hilbert transform approach used by Morozov

& Smithson (1996), but with explicit frequency dependence of

polarization.
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The method is easiest to understand if one first considers the dis-

crete Fourier transforms (DFTs) of the different components of the

time series. The f th complex coefficient of the DFT of each individ-

ual component can be thought of as giving the amplitude and phase

of a 1-D sinusoidal oscillation, whose frequency is determined by f .

When the DFTs of all three components are considered together,

their f th complex coefficients give the amplitudes and phases of

three sinusoidal oscillations in the x, y, and z directions, all of

which have the same frequency. This gives elliptically polarized

motion in 3-space. The elements of this ellipse, and of the similar

ellipses constructed at other values of f , can be plotted as func-

tions of frequency to provide a different set of Fourier spectra. The

phase spectrum is retained, but the traditional amplitude spectrum

is replaced with spectra of the semi-major and semi-minor axes of

the ellipse. Also, three new spectra describe the orientation of the

ellipse at each frequency.

The same methodology can be used to give polarization ellipses

that depend on both time and frequency by substituting a time–

frequency distribution, such as the STFT or the S transform, in place

of the DFT. (Here the S transform is preferable to the STFT because

the scalable S-transform window ensures that the same number of

cycles of Fourier sinusoid are used to obtain local polarization prop-

erties at each time and each frequency. This avoids some resolution

problems of the STFT that are due to the fixed width of its win-

dow.) The resulting time–frequency spectra of the elliptical elements

can then be used to design signal-adaptive time–frequency filters

which target parts of the signal that have specific polarization prop-

erties. The filtering operation does not necessarily have to involve re-

ducing the amplitude of the entire ellipse; for example, the ‘circular’

part of the ellipse can be removed while its ‘linear’ part is retained.

This type of approach to polarization analysis and filtering of seis-

mic waves has not been used before.

Readers who are already familiar with time–frequency analy-

sis and who wish to proceed directly to an example without go-

ing through the mathematical details can skip most of Section 2.

It is only necessary to read the definitions of the Fourier-domain

forms of the spectra of the elliptical elements a( f ), . . . , ϕ( f ) at

the start of Section 2.4, and to understand that (as described in

the preceding paragraph) in the actual technique these are replaced

with a[τ̂ , f̂ ], . . . , ϕ[τ̂ , f̂ ], analogous functions of discrete time

and frequency that describe the time evolution of the size, shape,

orientation, and phase of the polarization ellipse at each discrete

frequency.

2 T H E O RY

For purposes of clarity, and to define a number of quantities that are

used later on, we begin by summarizing the basic properties of the

Fourier transform and the S transform.

2.1 Summary of the Fourier transform

If x, a function of a continuous time variable t, and X , a function of a

continuous frequency variable f , constitute a Fourier transform pair,

then the mathematical relationship between x and X is described by

the well known equations

X ( f ) =
∫ ∞

−∞
x(t) exp(−2π ift) dt, (1)

x(t) =
∫ ∞

−∞
X ( f ) exp(+2π ift) df. (2)

In general, X ( f ) is complex-valued. Its content can be expressed in

terms of two real-valued functions, XR( f ) and XI ( f ), the real and

imaginary parts of X ( f ),

X ( f ) = X R( f ) + i X I ( f ). (3)

For our purposes it can safely be assumed that x(t) is real since

x(t) denotes a measurable physical quantity. Given this assumption,

it is not difficult to show that X ( f ) = X∗(− f ) (the asterisk denotes

complex conjugation), which allows us to rearrange eq. (2) to

x(t) = 2

∫ ∞

0

X R( f ) cos(2π ft) − X I ( f ) sin(2π ft) df. (4)

Combining the cosine and sine terms from the integrand of eq. (4)

into a single, phase-shifted cosine term gives an alternative repre-

sentation of x(t),

x(t) = 2

∫ ∞

0

X A( f ) cos[2π ft − X�( f )], (5)

where

X A( f ) =
√

[X R( f )]2 + [X I ( f )]2,

X�( f ) = arctan

(−X I ( f )

X R( f )

)
.

(6)

The quantities XA( f ) and X �( f ) are referred to as the amplitude

and phase spectra of X ( f ). [In eq. (6) and subsequent equations,

‘arctan’ denotes the four-quadrant inverse tangent function when

the argument is a fraction.] The advantage of eq. (5) over eq. (4)

is that the contribution any particular frequency makes to x(t) is

expressed in terms of the properties of a single function of time

[the phase-shifted cosine in the integrand of eq. (5)] instead of the

properties of two different functions [the cosine and sine terms in

the integrand of eq. (4)], which makes eq. (5) preferable for intuitive

interpretation.

2.2 The continuous-time S transform

A disadvantage of the Fourier transform is that x(t) is represented

in terms of infinite sinusoids that have no time localization. Thus

the Fourier transform is poorly suited to describing local spectral

content. To this end, several methods of localizing X ( f ) in time to

produce a time–frequency spectrum X (τ , f ) (here τ denotes the time

of localization) have been published over the last few decades. These

include the STFT and the continuous wavelet transforms (CWTs).

A time–frequency distribution that combines the advantages of the

STFT and CWTs is the S transform (Stockwell et al. 1996), defined

by

X (τ, f ) =
∫ ∞

−∞
x(t)

{ | f |√
2π

exp

[− f 2(τ − t)2

2

]}

× exp(−2π ift) dt. (7)

The analysing window of the S transform is a Gaussian whose

standard deviation is always equal to one wavelength of the Fourier

sinusoid. The scaled, wavelet-like S-transform window gives a mul-

tiresolution analysis that retains the absolute phase reference of the

STFT. Like the Fourier transform, X (τ , f ) has real and imaginary

parts XR(τ , f ) and XI (τ , f ), and amplitude and phase S spectra

XA(τ , f ) and X �(τ , f ), whose definitions are analogous with eqs (3)

and (6). Effectively, XA(τ , f ) and X �(τ , f ) can be thought of as

the local amplitude and phase of the contribution that the frequency

f makes to x(t), as measured within a few Fourier wavelengths of

t = τ .
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An alternative expression of X (τ , f ), obtained from eq. (7) using

the convolution theorem, is (Stockwell et al. 1996):

X (τ, f ) =
∫ ∞

−∞
X (α + f ) exp

(−2π 2α2

f 2

)
exp(2π iατ ) dα. (8)

Here α has the same units as f .

One important property of the S transform is invertibility; it con-

verges to X ( f ) when integrated over all values of τ ,∫ ∞

−∞
X (τ, f ) dτ = X ( f ). (9)

2.3 Three-component functions

Suppose now that x(t) is the x-component of a three-component

vector-valued function of time, r(t), whose y- and z-components

are denoted y(t) and z(t), so that

r(t) = {x(t), y(t), z(t)}. (10)

By analogy with eqs (1)–(4), y(t) and z(t) have Fourier transforms

Y ( f ) and Z( f ), whose real and imaginary parts are YR( f ), YI ( f ),

ZR( f ), and ZI ( f ). From eqs (4) and (10),

r(t) = 2

∫ ∞

0

r f (t) df,

r f (t) = {X R( f ) cos(2π ft) − X I ( f ) sin(2π ft),

YR( f ) cos(2π ft) − YI ( f ) sin(2π ft),

Z R( f ) cos(2π ft) − Z I ( f ) sin(2π ft)}. (11)

Here rf (t) denotes the contribution that the frequency f makes to

r(t). It is also possible to express eq. (10) in terms of XA( f ) and

X �( f ), and the amplitude and phase spectra of Y ( f ) and Z ( f )

[defined by analogy with eqs (5) and (6)] through

r(t) = 2

∫ ∞

0

r f (t) df,

r f (t) = {X A( f ) cos[2π ft − X�( f )],

YA( f ) cos[2π ft − Y�( f )],

Z A( f ) cos[2π ft − Z�( f )]} df. (12)

However, eq. (12) does not provide much advantage for interpre-

tation as compared with eq. (11) because, in eq. (12), the content

of rf (t) is expressed in terms of the properties of three differ-

ent functions (the phase-shifted cosines oscillating in the x, y and

z directions). For intuitive purposes, it is desirable to find a way of

expressing rf (t) in terms of the properties of a single function of

time; this objective is very similar to that which led us to rewrite

eq. (4) as eq. (5).

2.4 Spectra of the elliptical elements

One solution to the problem described in Section 2.3 is to treat the

oscillating amplitudes of the x, y and z Fourier sinusoids of any

particular frequency f as time-dependent vector coordinates of an

ellipse being traced out in 3-space. The elements of this ellipse

uniquely describe the contribution of the f th frequency to the total

signal. These are:

(1) a( f ), the semi-major axis of the ellipse (a( f ) ≥ 0).

(2) b( f ), the semi-minor axis of the ellipse (a( f ) ≥ b( f ) ≥ 0).

(3) I( f ), the inclination of the ellipse to the horizontal (x, y)

plane (0 < I ( f ) < π ). If I ( f ) < π/2, the particle motion is counter-

clockwise as viewed from a position having large displacement in the

positive z-direction; if I ( f ) > π/2, the particle motion is clockwise.

I( f ) can be thought of as the ‘dip’ of the ellipse plane.

(4) �( f ), the azimuth of the ascending node (the point at which

the function crosses the (x, y) plane in the positive z-direction),

measured counter-clockwise from {1, 0, 0} (−π < �( f ) < π ).

�( f ) can be thought of as the ‘strike’ of the ellipse plane.

(5) ω( f ), the angle between the ascending node and the position

of maximum displacement (0 < ω( f ) < π ). ω( f ) can be thought

of as the ‘pitch’ of the major axis of the ellipse.

(6) ϕ( f ), the phase, measured with respect to the time of maxi-

mum displacement (−π < ϕ( f ) < π ).

There are of course two positions of maximum displacement; the

definitions of ω( f ) and ϕ( f ) refer to the position of maximum dis-

placement that has a positive z coordinate. It should be kept in mind

that, although I ( f ), �( f ) and ω( f ) do essentially represent dip,

strike and pitch, their definitions also have to account for clockwise

versus counter-clockwise motion which leads to some differences

from the normal definitions of these quantities.

To obtain the expressions of a( f ), . . . , ϕ( f ) in terms of

XR( f ), . . . , ZI ( f ), it is necessary to derive XR( f ), . . . , ZI ( f ) in

terms of a( f ), . . . , ϕ( f ) and invert the result. This is done by defin-

ing a parametric path, denoted r′(t), that traces out an ellipse in

3-space,

r′(t) = {a( f ) cos[2π ft − ϕ( f )], b( f ) sin[2π ft − ϕ( f )], 0}. (13)

Here f is any frequency, and a( f ), b( f ), ϕ( f ) satisfy the above-

listed constraints. Then an arbitrarily oriented elliptical path rf (t)
can be derived by subjecting r′(t) to three rotations:

(1) a counter-clockwise rotation through ω( f ) about the z-axis,

described by the matrix

P1 =

⎛
⎜⎝

cos ω( f ) − sin ω( f ) 0

sin ω( f ) cos ω( f ) 0

0 0 1

⎞
⎟⎠ ; (14)

(2) a counter-clockwise rotation through I( f ) about the x-axis,

described by the matrix

P2 =

⎛
⎜⎝

1 0 0

0 cos I ( f ) − sin I ( f )

0 sin I ( f ) cos I ( f )

⎞
⎟⎠ ; (15)

and

(3) a counter-clockwise rotation through �( f ) about the z-axis,

described by the matrix

P3 =

⎛
⎜⎝

cos �( f ) − sin �( f ) 0

sin �( f ) cos �( f ) 0

0 0 1

⎞
⎟⎠ . (16)

Then

r f (t) = P3 P2 P1r′(t). (17)
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When the resulting rf (t) is compared with eq. (11), the following

expressions for XR( f ), . . . , ZI ( f ) are obtained:

X R( f ) = a( f ) cos ϕ( f ){ cos ω( f ) cos �( f )

− sin ω( f ) sin �( f ) cos I ( f )}
+b( f ) sin ϕ( f ){ sin ω( f ) cos �( f )

+ cos ω( f ) sin �( f ) cos I ( f )}
X I ( f ) = b( f ) cos ϕ( f ){ sin ω( f ) cos �( f )

+ cos ω( f ) sin �( f ) cos I ( f )}
−a( f ) sin ϕ( f ){ cos ω( f ) cos �( f )

− sin ω( f ) sin �( f ) cos I ( f )}
YR( f ) = a( f ) cos ϕ( f ){ cos ω( f ) sin �( f )

+ sin ω( f ) cos �( f ) cos I ( f )}
+b( f ) sin ϕ( f ){ sin ω( f ) sin �( f )

− cos ω( f ) cos �( f ) cos I ( f )}
YI ( f ) = b( f ) cos ϕ( f ){ sin ω( f ) sin �( f )

− cos ω( f ) cos �( f ) cos I ( f )}
−a( f ) sin ϕ( f ){ cos ω( f ) sin �( f )

+ sin ω( f ) cos �( f ) cos I ( f )}
Z R( f ) = a( f ) cos ϕ( f ) sin ω( f ) sin I ( f )

−b( f ) sin ϕ( f ) cos ω( f ) sin I ( f )

Z I ( f ) = −a( f ) sin ϕ( f ) sin ω( f ) sin I ( f )

−b( f ) cos ϕ( f ) cos ω( f ) sin I ( f ) (18)

Substitution of eq. (18) into eq. (11) gives the contribution of fre-

quency f to r (t) in terms of a( f ), . . . , ϕ( f ). The quantities a( f ), . . . ,

ϕ( f ) are similar to the osculating elements of planetary orbits (Mur-

ray & Dermott 1999), but the properties of the ellipse are different

from a planetary orbit because {0, 0, 0} occurs at the centre of the

ellipse instead of at a focus of the ellipse (also, the particle motion

is harmonic which differs from planetary motion).

The inversion of expression (18) to give a( f ), . . . , ϕ( f ) in terms

of XR( f ), . . . , ZI ( f ) requires very long derivations, so only the

results are presented here. For brevity,

A = X 2
R + X 2

I + Y 2
R + Y 2

I + Z 2
R + Z 2

I ,

B = X 2
R − X 2

I + Y 2
R − Y 2

I + Z 2
R − Z 2

I ,

C = −2(X R X I + YRYI + Z R Z I ). (19)

Then

a = 1√
2

√
A +

√
B2 + C2,

b = 1√
2

√
A −

√
B2 + C2,

I = arctan

{[
(Z RYI − Z I YR)2 + (Z R X I − Z I X R)2

]1/2

(YR X I − YI X R)

}
,

� = arctan

{
(Z RYI − Z I YR)

(Z R X I − Z I X R)

}
,

ω = ω0 − π

(
sign(ω0) − 1

2

)
,

where

ω0 = arctan

{
b[Z R cos(ϕ0) − Z I sin(ϕ0)]

−a[Z R sin(ϕ0) + Z I cos(ϕ0)]

}
,

ϕ = ϕ0 + π

(
sign(ω0) − 1

2

)
sign(ϕ0),

where

ϕ0 = 1

2
arctan

(
C

B

)
. (20)

The ( f ) arguments have been deliberately omitted from eqs (19)

and (20) to generalize these expressions; this will be discussed in

the next section.

2.5 Discrete time

In most practical applications r(t) is known only through a sampled

time series r[t̂], defined by

r[t̂] = {x[t̂], y[t̂], z[t̂]}. (21)

Here x[t̂], y[t̂], and z[t̂] are time sampled forms of x(t), y(t) and z(t),
and t̂ denotes an integer time index. (If the sampling interval is T ,

then t = t̂ T .) The discrete version of X ( f ) is the DFT of x[t̂],

X [ f̂ ] =
N−1∑
t̂=0

x[t̂] exp

(−2π i f̂ t̂

N

)
. (22)

Here N denotes the number of samples in the time series, and f̂ is an

integer frequency index ( f = f̂ /N T ). Similar definitions give Y [ f̂ ]

and Z [ f̂ ]. By sampling eq. (8) in frequency, these quantities can be

used to calculate discrete S transforms; that of x[t̂] is (Stockwell

et al. 1996):

X [τ̂ , f̂ ] =
N/2−1∑

α̂=−N/2

X [α̂ + f̂ ] exp

(−2π 2α̂2

f̂ 2

)

× exp

(
2π i α̂τ̂

N

)
. (23)

In eq. (23), τ = τ̂T and α = α̂/N T . Expression (23) is preferable to

the time sampled form of eq. (7) for computational reasons (Pinnegar

& Mansinha 2003). The discrete S transforms of y[t̂] and z[t̂] have

definitions analogous to that of X [τ̂ , f̂ ] and are denoted Y [τ̂ , f̂ ]

and Z [τ̂ , f̂ ]. These quantities may also be expressed in terms of

real and imaginary parts by analogy with eq. (3); for the discrete S
transform of x[t̂],

X [τ̂ , f̂ ] = X R[τ̂ , f̂ ] + i X I [τ̂ , f̂ ]. (24)

Eqs (19) and (20) then provide a convenient way of defining

time–frequency spectra of the elements of the polarization ellipse.

By substituting X R[τ̂ , f̂ ], . . . , Z I [τ̂ , f̂ ] in place of XR( f ), . . . ,

ZI ( f ), the discrete S spectra of the elliptical elements, denoted

a[τ̂ , f̂ ], . . . , ϕ[τ̂ , f̂ ], are obtained.

3 P O L A R I Z AT I O N A N A LY S I S E X A M P L E

For brevity, the [τ̂ , f̂ ] arguments of discrete S spectra are omitted

in this and following sections, except where clarity requires their

inclusion. The arguments of all quantities that are not discrete S
spectra are retained to reduce ambiguity, e.g. X without arguments

represents X [τ̂ , f̂ ] not X ( f ).

Fig. 1 shows a segment of a three-component broadband seismo-

gram of an M = 6.9 earthquake, recorded at the PEMO seismic
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Figure 1. (x) Radial, (y) transverse, and (z) vertical components of a seg-

ment of a three-component earthquake seismogram, recorded at the PEMO

seismic station in Pembroke, Ontario, Canada on 2003 June 23 (see Section 3

for the details), showing the Love and subsequent Rayleigh phases.

station in Pembroke, Ontario, Canada (45.68◦N, 77.25◦W). This

segment was selected because it contains the Love and Rayleigh

phases, which have distinctive polarization properties. The earth-

quake occurred in the Aleutian Islands (51.58◦N, 176.67◦E) at a

depth of 18 km, on 2003 June 23 at 12:12:35 UT. At the PEMO

station the epicentral distance was 7124 km and the azimuth 48.3◦

north of west. The original data had a sampling interval of 0.01 s

and units of velocity (nm/s). This was converted to displacement

by integration of the data followed by linear trend removal via least-

squares fits to the different components. The resulting seismogram

was then decimated to give a new data set with a sampling interval

of 1.5 s. (A Butterworth anti-aliasing filter was applied prior to dec-

imation.) The purpose of the decimation was to reduce the size of

the S-transform matrix for display purposes; at the new sampling

frequency, the Love and Rayleigh phases still have about 10–20 sam-

ples per cycle. The decimated vertical trace gives the z component

of the total motion shown in Fig. 1. The x and y components of

Fig. 1 are radial and transverse traces obtained by rotating the deci-

mated easting and northing traces 48.3◦ counter-clockwise to bring

the positive x-direction into alignment with the expected direction

of wave propagation. The amplitude S spectra of these traces, XA, YA

and ZA, are shown in Figs 2–4. In Fig. 3, the first large amplitude

event (marked A) is the Love wave arrival; in Figs 2 and 4, the
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Figure 2. Amplitude S spectrum X [τ̂ , f̂ ] of the x component of the seis-

mogram of Fig. 1 (shown in the lower plot). The signatures marked C and D

are Rayleigh wave phases.
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Figure 3. Amplitude S spectrum Y [τ̂ , f̂ ] of the y component of the seis-

mogram of Fig. 1 (shown in the lower plot). The signatures marked A and

B are Love wave phases.
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Figure 4. Amplitude S spectrum Z [τ̂ , f̂ ] of the z component of the seis-

mogram of Fig. 1 (shown in the lower plot), showing similarities with Fig. 2

and low vertical amplitude of the Love wave phases from Fig. 3.

largest amplitudes (marked C on Fig. 2) are the Rayleigh wave ar-

rival. The lower amplitude events marked D and B on Figs 2 and 3

have Love and Rayleigh properties, respectively; these may repre-

sent higher-order phases, or, alternatively, crustal wave packets of

relatively high frequency whose shallow penetration depths have

delayed their arrival times.

Figs 5 and 6 show the semi-major axis and semi-minor axis S
spectra, a and b. Their difference, (a − b), is shown in Fig. 7.

Since the total polarization ellipse can be thought of as a pure linear

motion of amplitude (a − b) that is phase-locked with, and lies

in the plane of, a pure circular motion of amplitude b to which it

is added, Figs 6 and 7 can be considered as circular-motion and

linear-motion S spectra. Thus the very low Love wave amplitude

in Fig. 6 is a consequence of nearly linear particle motion. The

Rayleigh wave signature on Fig. 5 has about 1.5 times the amplitude

of the corresponding signature on Fig. 6, leading to a linear-motion

amplitude on Fig. 7 that is about half that of Fig. 6. Fig. 8 shows the

‘total power’ S spectrum, defined by
√

a2 + b2, or [in the notation

of eq. (19)]
√

A.

The S spectra of the other four elliptical elements (shown in

Figs 9–12) can be difficult to interpret visually because, unlike the S
spectra in Figs 2–7, they do not give any information about where,

on the [τ̂ , f̂ ] plane, the most significant contributions to the total

signal are made. (In this respect they are similar to the Fourier phase
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Figure 5. Semi-major axis S spectrum a[τ̂ , f̂ ] of the seismogram of Fig. 1.

This S spectrum gives the time–frequency dependence of the long axis of

the polarization ellipse. In this figure and Figs 6–12, the trace shown in the

lower plot is the sum of the x and y components of the seismogram; these

have been combined to show both the Love and Rayleigh events in one trace.
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Figure 6. Semi-minor axis S spectrum b[τ̂ , f̂ ] of the seismogram of Fig. 1.

This S spectrum gives the time–frequency dependence of the short axis of the

polarization ellipse, and can be thought of as the spectrum of the ‘circular’

part of the elliptical motion (compare with Fig. 7).

spectra of one-component signals.) To this end, in each of Figs 9–12,

the amplitude at each pixel is denoted by one of two different shades

of the same colour. The brighter shades are assigned to pixels whose

total power (on Fig. 8) is larger than 7 μm; this cut-off value is con-

venient for outlining the main Love and Rayleigh signatures. The

resulting inclination S spectrum I is shown in Fig. 9. For the Rayleigh

wave signature, I ∼ π/2, which demonstrates that the plane of the

time-local polarization ellipse is nearly vertical (not an unexpected

result). The value of I is reasonably stable over the extent of the

Rayleigh wave signature on the [τ̂ , f̂ ] plane; however, on the Love

wave signature, I takes on a large range of values. This happens be-

cause, for nearly linear simple harmonic particle motion, even small

noise contributions can lead to large changes in I (keep in mind that

I is the dip of the ellipse plane, not the plunge of the major axis). In

the extreme case of purely linear motion,

X I

X R
= YI

YR
= Z I

Z R
, (25)

so I , �, and consequently ω are undefined, because terms of the

form ZRYI − ZI YR are equal to 0 in eq. (20). Purely linear motion

is unlikely to be encountered in real seismograms, since noise con-

tamination will always introduce some ellipticity, but this limitation
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Figure 7. Difference of the semi-major axis and semi-minor axis S spectra

a[τ̂ , f̂ ] − b[τ̂ , f̂ ] of the seismogram of Fig. 1. This S spectrum can be

thought of as the spectrum of the ‘linear’ component of the elliptical motion

(compare with Fig. 6).
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Figure 8. Total-power S spectrum

√
a[τ̂ , f̂ ]2 + b[τ̂ , f̂ ]2 of the seismogram

of Fig. 1. This gives an estimate of energy density that takes all three orthog-

onal components of the signal into account.

of the method should be borne in mind when working with synthetic

seismograms.

The azimuth of the ascending node S spectrum, �, is shown in

Fig. 10. As in Fig. 9, the nearly linear particle motion of the Love

wave leads to instability because noise can easily reverse the di-

rection of particle motion from counter-clockwise to clockwise and

vice versa, causing � to suddenly change by ±π . Here � is roughly

π/2 or −π/2, which is not surprising since for Love waves the strike

of the local polarization ellipse should be perpendicular to the di-

rection of wave propagation. On the Rayleigh wave signature, � has

a relatively stable value near zero, which means that the particle is

displaced in the direction of wave propagation when it crosses the

horizontal plane in the positive z-direction. This demonstrates the

retrograde motion of the Rayleigh wave. (These values of � can

be roughly estimated from visual inspection of the time series in

Fig. 1: on the Love wave trains, only y[t̂] has much amplitude; and,

on the Rayleigh wave trains, x[t̂] is positive near the ascending zero

crossings of z[t̂], while y[t̂] has small amplitude by comparison.)

Since Love wave motion is almost completely horizontal and lin-

ear, its largest displacement from {0, 0, 0} should be close to either

the ascending node or the descending node. Thus the S spectrum of

the argument of maximum, ω, should be either nearly zero, or nearly

π , on the Love wave signature. This can be seen in Fig. 11. For the
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Figure 9. Inclination S spectrum I [τ̂ , f̂ ] of the seismogram of Fig. 1. This

S spectrum gives the time–frequency dependence of the ‘dip’ of the ellipse

plane relative to the horizontal. Brighter colours are used to denote values

of τ̂ and f̂ at which the total power (shown in Fig. 8) is larger than 7 μm.
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Figure 10. Azimuth of ascending node S spectrum �[τ̂ , f̂ ] of the seismo-

gram of Fig. 1. This S spectrum gives the time–frequency dependence of the

‘strike’ of the ellipse plane. Brighter colours are used to denote values of τ̂

and f̂ at which the total power (shown in Fig. 8) is larger than 7 μm.

Rayleigh wave train, ω is almost exactly π/2, which is also not sur-

prising since the long axis of the polarization ellipse of a Rayleigh

wave is normally nearly vertical. The phase S spectrum, ϕ, shown

in Fig. 12, is not well suited for visual interpretation. However, ϕ is

still important because, without the phase information, r[t̂] cannot

be reconstructed from the information in a, b, I , �, and ω.

The seismic trace used above was chosen to illustrate the tech-

nique because of its low noise content. The method is however ac-

tually fairly robust in the presence of moderate amounts of noise.

When Gaussian white noise is added to the data to give a signal-

to-noise ratio (SNR) of approximately 1, the Love and Rayleigh

signatures are still clearly visible on the a and b S spectra, and retain

recognizable (though distorted) polarization properties on the I , �

and ω S spectra.

4 P O L A R I Z AT I O N F I LT E R I N G

4.1 ‘Linear’ and ‘circular’ traces

Through use of the methodology outlined above, r[t̂] can be divided

into two three-component time series that, in some sense, describe

the time evolution of the separate linear and circular parts of the

π/4

π/2

3π/4

Time (s)

F
re

q
u

e
n

c
y
 (

H
z
)

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0 67 133 200 267 333 400 467

0
20

Sample Point NumberA
m

p
lit

u
d

e
 (

n
m

)

Figure 11. Argument of maximum S spectrum ω[τ̂ , f̂ ] of the seismogram

of Fig. 1. This S spectrum gives the time–frequency dependence of the ‘pitch’

of the major axis of the ellipse. Brighter colours are used to denote values

of τ̂ and f̂ at which the total power (shown in Fig. 8) is larger than 7 μm.
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Figure 12. Phase S spectrum ϕ[τ̂ , f̂ ] of the seismogram of Fig. 1. Brighter

colours are used to denote values of τ̂ and f̂ at which the total power (shown

in Fig. 8) is larger than 7 μm.

trace. (Readers who wish to skip the mathematical details of this

can proceed to the example shown in Section 4.2.) This is done by

first returning to continuous time and rewriting eq. (13) so that the

linear and circular parts of the test ellipse are separated from each

other before being rotated, to give

r′(t) = [a( f ) − b( f )]{cos[2π ft − ϕ( f )], 0, 0}
+ b( f ) {cos[2π ft − ϕ( f )], sin[2π ft − ϕ( f )], 0}. (26)

When the approach of eqs (14)–(18) is applied to eq. (26) and the

results considered in the [τ̂ , f̂ ] domain, each of XR, . . . , ZI turns out

to be the sum of two parts that describe the linear and circular parts

of r(t); these are denoted by L and C superscripts. As an example,

X R = X L
R + XC

R , where

X L
R = [a − b] cos ϕ(cos ω cos � − sin ω sin � cos I ),

XC
R = b[cos ϕ(cos ω cos � − sin ω sin � cos I )

+ sin ϕ(sin ω cos � + cos ω sin � cos I )]. (27)

The linear and circular parts of the other quantities from eq. (18)

have similar definitions. The simplest way of evaluating XL
R, . . . , ZC

I

numerically is to calculate a, . . . , ϕ using eqs (19) and (20), then

substitute the results into the expressions of XL
R, . . . , ZC

I .
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The invertibility condition of the discrete S transform, equivalent

to eq. (9) sampled in frequency, is

X [ f̂ ] =
N−1∑
τ̂=0

X [τ̂ , f̂ ], or

=
N−1∑
τ̂=0

X R[τ̂ , f̂ ] + i X I [τ̂ , f̂ ]. (28)

From eqs (27) and (28), linear and circular parts of X [ f̂ ], denoted

X L [ f̂ ] and XC [ f̂ ], can be obtained via

X [ f̂ ] = X L [ f̂ ] + XC [ f̂ ], where

X L [ f̂ ] =
N−1∑
τ̂=0

X L
R[τ̂ , f̂ ] + i X L

I [τ̂ , f̂ ]

XC [ f̂ ] =
N−1∑
τ̂=0

XC
R [τ̂ , f̂ ] + i XC

I [τ̂ , f̂ ]. (29)

The inverse Fourier transforms of X L [ f̂ ] and XC [ f̂ ] give x L [t̂]
and xC [t̂], the linear and circular parts of x[t̂]. Through similar

reasoning, one can obtain the linear and circular parts of y[t̂] and

z[t̂] and, consequently, of r[t̂].

4.2 Example

A useful shorthard notation is to denote the whole inverse operation

of the S spectra of the elliptical elements, as described in eqs (26)–

(29), by Q, so that

r[t̂] = rL [t̂] + rC [t̂] = Q(a, b, I, �, ω, ϕ),

rL [t̂] = Q(a − b, 0, I, �, ω, ϕ),

rC [t̂] = Q(b, b, I, �, ω, ϕ). (30)

Fig. 13 shows hodograms of the linear part rL [t̂] (black lines) and the

circular part rC [t̂] (grey lines) of the seismogram from Fig. 1. Each

row of hodograms shows a different time segment as viewed from

the positive x-, y-, and z-directions. The first row shows the Love

wave motion in the first part of the time series. In the second row,

Love wave and Rayleigh wave motion are mixed together; the direc-

tion of radial motion changes gradually from horizontal to vertical,

and circular motion increases in amplitude. The third row shows

Rayleigh wave motion near its maximum amplitude, and the fourth

row shows the Rayleigh wave coda. The various segments of these

time series are of course not purely linear or purely circular (if they

were, rL [t̂] could not change direction and rC [t̂] could not change

amplitude) but in most cases are approximately so. One exception is

the view from the position x-direction shown in the second row, in

which the superposition of the linear parts of the Love and Rayleigh

wave motions (which are roughly perpendicular to each other and

have different frequencies at these times) leads to rL [t̂] tracing out

‘figure-of-eight’-like motion. Over short time periods this motion

can appear to be circular, but usually reverses direction before mak-

ing a complete cycle around the origin. This type of behaviour for

rL [t̂] is quite common in multicomponent traces. Similarly, under

the right circumstances the motion of rC [t̂] can take on an epicy-

cloidal appearance that may briefly appear to be linear, but which

usually reverses direction before passing through the origin.

4.3 Time–frequency filtering of Rayleigh waves

The elliptical elements a, . . . , ϕ are also useful in time–frequency

filter design [some previous examples of time–frequency filtering

with the S transform are described in Pinnegar & Eaton (2003) and

Pinnegar (2005)]. In the following example, Rayleigh wave motion

is removed from the earthquake trace by applying a time–frequency

filter whose rejection regions are times and frequencies for which

I ∼ π/2, ω ∼ 0, and b >∼ a/2. Fig. 14 shows the functions F1, F 2

and F 3 that are used to construct the filter, plotted as continuous

functions of their arguments. Their definitions are

F1(I ) = 0,

∣∣∣∣I − π

2

∣∣∣∣ <
π

10

= 1 − cos(10|I − π

2
| − π)

2
,

π

10
≤

∣∣∣∣I − π

2

∣∣∣∣ ≤ π

5

= 1,

∣∣∣∣I − π

2

∣∣∣∣ >
π

5
,

F2(b/a) = 1, b < 0.5a,

= 1 + cos [10π (b/a − 0.5)]

2
, 0.5a ≤ b ≤ 0.6a,

= 0, b > 0.6a

F3(�) = 0, |�| <
π

6
,

= 1 − cos(6|�| − π)

2
,
π

6
≤ |�| ≤ π

3

= 1, |�| <
π

3
.

(31)

Here the cosine tapers of F 1, F 2 and F 3 give the total time–frequency

filter F its frequency-dependent Fourier-domain taper. F is obtained

by substituting the a, b, I , and � S spectra into eq. (31) at all [τ̂ , f̂ ]

positions, with

F[τ̂ , f̂ ] = 1 − {1 − F1(I [τ̂ , f̂ ])}
{

1 − F2

(
b[τ̂ , f̂ ]

a[τ̂ , f̂ ]

)}

× {1 − F3(�[τ̂ , f̂ ])}. (32)

Expression (32) ensures that the only parts of the [τ̂ , f̂ ] plane that are

rejected by F are those that are rejected by all three of F 1, F 2, and F 3.

Fig. 15 shows F1(I [τ̂ , f̂ ]), F2(b[τ̂ , f̂ ]/a[τ̂ , f̂ ]), F3(�[τ̂ , f̂ ]) and

the total filter F for the earthquake trace of Fig. 1. [The ratio b/a,

around which F 2 is designed, is conceptually similar to rectilin-

earity functions used by Montalbetti & Kanasewich (1970), Vidale

(1986), and Jurkevics (1988)]. One way of filtering the trace would

be to simply multiply X , Y and Z by F and invert the result through

use of eq. (28). This actually produces good results, but a more

interesting approach is to assume that each ellipse can be decom-

posed (in analogy with section 4.1) into two parts: a Rayleigh-type

wave motion whose minor axis is equal to that of the original ellipse

and for which a/b = 1.5; and residual linear motion of amplitude

a − 1.5b that is assumed to be unassociated with the Rayleigh wave.

The amount of Rayleigh-type wave motion retained at each [τ̂ , f̂ ]

is determined by F. The resulting filtered trace is denoted rF [t̂]; in

the shorthand notation of eq. (30),

rF [t̂] = Q(a − 1.5b(1 − F), bF, I, �, ω, ϕ). (33)

Fig. 16 shows the filtered earthquake seismogram along with the

original data from Fig. 1 for comparison. The Rayleigh wave has

been almost completely removed from the trace. In most of the

parts of the trace that have experienced large amplitude reduc-

tions, the remaining signal has a frequency that is closer to that

of the Love wave. The exception is the part of the trace from

600 to 700 s where some Rayleigh wave amplitude, related to

the event marked D on Fig. 2, has been retained. For this event,
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Figure 13. Linear (black lines) and circular (grey lines) parts of the seismogram shown in Fig. 1 (denoted rL [t̂] and rC [t̂] in the text), obtained through

polarization filtering. The three columns denote views from the positive x-, y-, and z-directions; the four rows indicate different segments of the seismogram,

showing, in succession, the Love phase, the Love phase coda with concurrent main Rayleigh phase arrival, the main Rayleigh phase after attenuation of the

Love phase, and the Rayleigh phase coda. All displacements shown have units of μm.

I strays farther from π/2 than in the main part of the Rayleigh wave

(see Fig. 9), which allows some of its energy to be passed by the

filter.

Although the elliptical elements a, . . . , ϕ are useful for designing

time–frequency filters, they are not the only quantities on which

filters can be based. For example, a filter could be designed to reject

specific values of the altitude θ and azimuth ζ (i.e. the plunge and

trend) of the major axis of the polarization ellipse. These can be

obtained from

sin(θ ) = sin(I ) sin(ω),

tan(ζ ) = tan(�) + tan(ω) tan(I )

1 − tan(�) cos(I ) tan(�)
.

(34)

4.4 Trace-by-trace filtering of shot gathers

Fig. 17(a) shows the vertical component of a three-component shot

gather to which automatic gain correction (AGC) has been applied.

For this data set the sampling interval is 2 ms and the receiver interval

5 m. AGC was applied by dividing each uncorrected {x[t̂], y[t̂], z[t̂]}
trace in the gather by its estimated instantaneous amplitude, using

{xc[t̂], yc[t̂], zc[t̂]} = {x[t̂], y[t̂], z[t̂]}√
|x̃[t̂]|2 + |ỹ[t̂]|2 + |z̃[t̂]|2 � g(t)

. (35)

Here xc[t̂], yc[t̂], zc[t̂] are the components of the trace after AGC,

and x̃[t̂], ỹ[t̂], z̃[t̂] are complex analytic signals obtained from

x[t̂], y[t̂], z[t̂] and their Hilbert transforms. (Thus the data shown
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Figure 14. Response of (a) F1, (b) F2, and (c) F3 elliptical element-based

filters; their definitions appear in expression (31).
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Figure 15. Time–frequency filters obtained by substituting the data values

from the time–frequency spectra shown in Figs 5, 6, 9, and 10 into the filters

shown in Fig. 14, to give (a) F1(I [τ̂ , f̂ ]), (b) F2(b[τ̂ , f̂ ]/a[τ̂ , f̂ ]), and (c)

F3(�[τ̂ , f̂ ]). (d) Total time–frequency filter F[τ̂ , f̂ ] thus obtained from

eq. (32). This filter targets the parts of Fig. 1 that have Rayleigh-type wave

motion.

in Fig. 17 is dimensionless; the original data had units of velocity.)

The g[t̂] function is a Gaussian with a standard deviation of 100

ms, that is convolved with the modulus of {x̃[t̂], ỹ[t̂], z̃[t̂]} to give a

smoothed signal envelope (here � denotes convolution). Fig. 17(b)

shows the same shot gather after trace-by-trace filtering using the

technique and filters described in the previous subsection, and sub-

sequent AGC. Almost all of the Rayleigh wave motion has been

removed from the gather.

As a second example, Fig. 18(a) shows the vertical component of

a three-component shot gather, acquired by the CREWES Project at

the University of Calgary over the Encana Corp. Blackfoot oilfield

area in Alberta, Canada. For this data set the sampling interval is

again 2 ms but the receiver interval is 60 m. The only change in the

filter design is a translation of F 3 that centres its rejection region

around � = π/6, to accommodate the ground roll characteristics

of this particular shot gather. As in the previous example, AGC

was applied to each trace after filtering. From visual inspection

of Fig. 18(b) we can see that much of the Rayleigh ground roll

has been removed from the shot gather, although some has been

retained (particularly at larger offsets). Hodograms of specific trace
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Figure 16. (x) Radial, (y) transverse, and (z) vertical components of the data

in Fig. 1 before (grey lines) and after (black lines) application of the filter of

Fig. 15(d), showing selective removal of the Rayleigh phases.
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Figure 17. (a) Automatic gain corrected shot gather (see Section 4.4 for the

details). (b) The same shot gather after the filters shown in Fig. 14 have been

applied to each trace before gain correction. Most of the Rayleigh-phase

ground roll has been removed from the gather.

segments from Fig. 18(a) appear in Figs 19(a)–(c), which show the

trace at 300 m offset from t = 0.6 to 1 s; the trace at 360 m offset

from t = 0.8 to 1.2 s; and the trace at 420 m offset from t = 1 to

1.3 s. The start and end times of these segments, which show the

complexity of the particle motion for this data set, have been chosen

so that each contains the largest amplitude of the Rayleigh wave.

Figs 19(d)–(f) show the same three trace segments after filtering.

The filter performs best in the trace segment of Figs 19(b) and (e)

but also removes some ground roll from the other two segments.

5 C O N C L U S I O N S

I have presented a method that uses the S transform of Stockwell

et al. (1996) to produce time–frequency spectra of the polarization

characteristics of three-component seismic signals: the semi-major

and semi-minor axes of the polarization ellipse, the strike and dip

of the ellipse plane, the pitch of the major axis, and the phase of the

particle motion. These spectra can be used to divide the whole sig-

nal into ‘linear’ and ‘circular’ parts, and to construct signal-adaptive

time–frequency filters that target specific types of particle motion

such as the Rayleigh wave. The method has potential utility in
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Figure 18. (a) Automatic gain corrected shot gather from the Blackfoot

region of Alberta, Canada (see section 4.4 for the details). (b) The same shot

gather after filters similar to those shown in Fig. 14 have been applied to

each trace before gain correction (the only difference is that the centre of

the rejection region of F3 from Fig. 14(c) has been translated to � = π/6).

Much of the Rayleigh-phase ground roll has been removed from the gather.
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Figure 19. Hodograms of trace segments from: Fig. 18(a) at (a) 300 m

offset, from 0.6 to 1 s; (b) 360 m offset, from 0.8 to 1.2 s; (c) 420 m offset,

from 1 to 1.3 s; and (d–f) from Fig. 18(b) at the same three times and offsets.

In each hodogram the projection of the particle motion onto the x − y plane

is shown in grey as a ‘shadow’ beneath the main trace, to give a better idea

of the total motion in 3-space. The filter performs best at 360 m offset, but

removes some ground roll from all three traces.

earthquake and exploration seismology, and any other application

that involves analysis of three-component signals.
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