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Abstract

This study proposes a characterization of the temporal relations between soil moisture and precipitation at a very short time-

scale, i.e. from 1 h to 2 weeks. The analysis is based on seven soil moisture time series from time domain transmission (TDT)

probes positioned along a 90-m transect, and monitored at a 20-min rate in the shallow soil layer (5–25 cm), and on

precipitation observed every 15 min. Wavelet analysis is proposed for the characterization of the temporal relationships

between soil moisture and precipitation. The normalized local wavelet spectrum of soil moisture reveals power features related

to the precipitation events in the short scales, and residing in the long scales. The variance activity depicted in the wavelet power

spectra of precipitation and soil moisture is organized in preferential bands of wavelet scales: 1–48 h, 48 h to 1 week, and 1–2

weeks. For the 1–48 h scale, soil moisture is linked to precipitation occurrence, intensity and duration, while for the 48 h to 1

week scale soil moisture relates to the periodicity of the rainfall events, and for the 1–2 weeks scale to the duration of the dry

spells. Additionally, a distance–time wavelet analysis was conducted to simultaneously assess spatial and temporal variabilities

for each of the three predefined bands. The spatial analysis showed many similarities between series along the transect that were

attributable to soil homogeneity. The averaging of the variance showed that 93% of the concentration of the precipitation

variance was at the 1–48 h scale, while most of the soil moisture variation (85%) was accounted for at the 48 h to 2 weeks scale.

Disparity between the short duration of precipitation system and the extension of the soil moistening process is due to the

transfer of energy from precipitation to soil moistening.
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1. Introduction

Near surface soil moisture variations influence the

ecosystem response to changes in the physical
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environment over a large range of spatial and

temporal scales, particularly the partitioning of

available energy at ground surface into sensible and

latent heat. Such partitioning drives not only vertical

fluxes of energy and moisture, but also nearly

horizontal fluxes of moisture, namely, runoff. Vari-

ations in drought, flood, and surface temperature are

linked to soil moisture dynamics, a determinant
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parameter in climate modelling. A negative water

balance at some key period during plant growth may

affect potential crop yields. Soil water content is an

essential parameter for crop growth and yield

forecasting in deterministic models, as well as for

monitoring water stress detection and irrigation

management.

How soil moisture responds to atmospheric forcing

factors varies in time and space. Available obser-

vation networks of soil moisture have been examined

by Vinnikov et al. (1996); Entin et al. (2000) to

evaluate scale effects. They partitioned the variance

into two components: a fine scale, influenced by soils,

topography, and vegetation, and a large scale driven

by climate. Besides a few large databases, systematic

observations of soil moisture content are scarce

(Georgakakos and Baumer, 1996), especially because

gravimetric techniques, neutron probe, and time

domain reflectometry or transmission are labour

intensive and therefore cannot be reasonably

implemented to routinely monitor extended areas.

As a result, ground measurements usually provide

data that are easily calibrated, but only cover small

areas with few repetitions (weekly time steps in the

best cases), hence limiting the accessible scale of

temporal variability to an intra-seasonal time step at

the shortest.

The analysis conducted in this work follows and

extends that of Wu et al. (2002); Lauzon et al. (2004),

focusing on temporal characterization of soil moisture

time series and on the linkage between soil moisture

and supporting data such as precipitation. Wu et al.

(2002) quantified, using observations for a 16-year

period across the state of Illinois (10-day time step),

the low-pass filter climatology of soil hydrology in

terms of amplitude damping, phase shifting, and

increasing persistence with soil depth. Their analysis

confirmed that the annual to seasonal cycles are the

leading modes of variation for the soil moisture

profile. At a finer temporal scale, based on a 3.5-year

period for the Orgeval watershed in France (12-h time

step), Lauzon et al. (2004) showed that soil moisture

accounted for the annual cycle present in the observed

flows (in that region precipitation shows no annual

cycle). The links between precipitation events, the

short-term behaviour of soil moisture and the inflow

regime was also established. A distinctive element of

the present study is its database, which contains soil
moisture observations taken at a 20-min time step and

rainfall observation taken at a 15-min time step, hence

allowing the study of temporal variability at very short

time scales.

Wavelet analysis is proposed for the characteriz-

ation of seven soil moisture time series, along a 90-m

transect, and for the identification of temporal

relationships between soil moisture and precipitation.

Wavelet transform departs from Fourier transform in

that it accepts changes in spectral power properties

over time, and can account for both time and spatial

domains. Soil moisture similarities are first explored

through data reduction based on principal component

analysis. Thereafter, spatial differences are investi-

gated through distance–time diagrams for pertinent

wavelet-scale bands.

In Section 2, the context of application is

presented: experimental site, observations, and data

reduction analysis. Section 3 provides a technical

background on wavelet analysis. Section 4 presents

results. A discussion and a conclusion based on the

relevant findings of this work are given in Sections 5

and 6.
2. Context of application

2.1. Experimental site

The experiment was performed in southern Québec,

Canada, on a crop field located at Saint-Ubalde (latitude

468N, longitude 728W). This region has a temperate

climate, a mean temperature of 15 8C, and an average

monthly rainfall of 100 mm in summer. Crop is medium

maturing russet potato (Solanum tuberosumL.), cultivar

Goldrush, that grows from mid-May to mid-September.

The soil is an acid (pHCaCl2;0:01 MZ4.8) Morin sandy

loam (Haplorthod) containing 23 g C kgK1,

65 g clay kg-1, and 212 g silt kgK1. Owing to a rela-

tively permeable soil material and a constant flat slope

of 18 along row direction, the field ensured suitable

drainage conditions.

2.2. Observations

Soil moisture and precipitation were observed

during the growing season from mid-June to August

2003. Soil moisture was monitored 90 m along



A.-C. Parent et al. / Journal of Hydrology 325 (2006) 56–6658
a potato row located in the upper-slope part of the

field. A set of seven equally spaced probes, using time

domain transmission (TDT) technology (e.g. Morari

and Giardini, 2002), were installed in the field to

measure soil moisture content at a 20-min rate. In

TDT, a pulse is emitted from one end of a U-stem and

observed at the other end, measuring the time for a

wave to be transmitted. The higher the water content,

the longer is transmission time. Output is moisture

content expressed as a volumetric percentage. In this

study, seven probes were installed horizontally into

soil between potato plants at a depth of 15 cm, and

equally spaced at 15 m from each other. The probes

measured water content in the 5–25 cm layer, which

corresponds to the detection range of the instruments.

The first 30 cm contains most potatoes roots and

represents a critical zone for plant water availability.
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Fig. 1. Soil moisture times series at 20 min intervals
At this depth, water shortage may cause severe stress

to the plant that can lead to deceiving tuber yields.

Fig. 1 presents the seven soil moisture time series

(8 weeks). Soil moisture ranged from 5 to 25%. The

last three graphs, i.e. the 60–90 m sections on the

transect, showed a one-week data interruption during

the dry spell at the end of June. The missing

information was filled by linear interpolation without

much loss of information. In parallel, meteorological

data were gathered every 15 min from a station in the

experimental field.
2.3. Data reduction

Principal component analysis (PCA) allows for

grouping similar information from several sources of

data (Joliffe, 2002), here soil moisture time series
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obtained from the seven TDT probes. PCA reduces

the dimensionality of the soil moisture dataset while

retaining as much proportion of the variation as

possible. In the present study, a PCA time series of the

first principal component (Fig. 2a) was used to

identify temporal patterns shared by the seven

moisture time series. The first principal component

represented 94% of total variance of the time series,

while the second and third components accounted

only for 3 and 1% of the variance, respectively.

Analysis of individual series was used to identify

moisture differences between locations.
June 15th  July 1st J

0

5

10

15

20

25

Time (date

S
M

o
is

t 
(%

)
P

re
c 

(m
m

)
P

re
c

P
er

io
d

 (
h

)

1

3
6

  12
  24
  48

1 wk
2 wk

S
M

o
is

t
P

er
io

d
 (

h
)

1

3
6

  12
  24
  48

1 wk
2 wk

S
M

o
is

t
P

er
io

d
 (

h
)

June 15th  July 1st J

3
6

  12
  24

  48

1 wk

2 wk

Fig. 2. Window (a) shows the precipitation time series (lower line) and the p

line). Wavelet power spectra of (b) the precipitation time series with Mo

Mexican hat. The shaded contours are at normalized variance of 0.01, 1

confidence for a red noise with a lag-1 coefficient aZ0.58 for (b) and aZ
3. Techniques

Wavelet analyses are frequently used in geophy-

sical applications (e.g. Kumar and Foufoula-Geor-

giou, 1997; Labat et al., 2000) for analysing variance

fluctuations within non-stationary time series. Hydrol-

ogy-related applications include the description of

daily streamflow time series (e.g. Smith et al., 1998;

Labat et al., 2000; Anctil and Tape, 2004), the

analysis of interannual streamflow variability (e.g.

Lafrenière and Sharp, 2003; Anctil and Coulibaly,

2004), and the characterization of soil moisture for
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scales ranging from a few days to a year (Lauzon

et al., 2004). Other wavelet applications include the

analysis of soil properties (Lark and Webster, 1999;

Lark and Webster, 2001), of vegetation density (Cosh

and Brutsaert, 2003) and of topographical relation-

ships with crop yields (Si and Farell, 2004). Wavelet

analysis, in a geophysical context, has been

thoroughly described by Torrence and Compo

(1998); Labat et al. (2000).

The continuous wavelet transform Wn of a discrete

sequence of observations xn is defined as the

convolution of xn with a scaled (related to frequency)

and translated wavelet j(h) that depends on a non-

dimensional time parameterh, as follows:

Wx
nðsÞZ

XNK1

n0Z0

xn’j
*

ðn0KnÞdt

s

� �
; (1)

where n is localized time index, s is wavelet scale, dt

is sampling time interval, N is the number of points in

the time series, and the asterisk indicates the complex

conjugate. Since complex wavelets lead to complex

continuous wavelet transforms, the wavelet power

spectrum, defined as jWn(s)j
2, is a convenient

description of fluctuation in the variance at different

frequencies. Further, power spectrum is normalized

by the variance s2 to give a measure of the power

relative to white noise since expectation value for a

white noise process is s2 at all n and s. By

normalizing, one ensures that the wavelet transform

at each scale s is comparable to each other and to the

transforms of other series (Torrence and Compo,

1998).

In the process of wavelet transforms, a large set of

wavelet functions may be used. To be admissible,

wavelet function must have zero mean and may be

represented in both time and frequency domains

(Farge, 1992). The selection of one wavelet function

depends mainly on data. Other properties are:

orthogonal or not, complex or real, width and shape.

Refer to Torrence and Compo (1998) for more details

on wavelet functions. The most frequently used

wavelets in continuous time geophysical applications

are known as Morlet and Mexican hat (Malamud and

Turcotte, 1999; Labat et al., 2000). The Morlet

wavelet is a complex non-orthogonal wavelet con-

sisting of a plane wave modulated by a Gaussian
function as follows:

j0ðhÞZpK0:25 eiu0h eK0:5h2

; (2)

where u0 is the non-dimensional frequency, here

taken as 6 so as to satisfy the admissibility condition

(Farge, 1992; Torrence and Compo, 1998). The real-

valued Mexican hat wavelet, which is also non-

orthogonal, is defined as a successive derivative of the

Gaussian function that returns a single component as

follows:

j0ðhÞZ
ðK1ÞmC1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð2:5Þ

p
dm

dhm
ðeK0:5h2

Þ; (3)

where the parameter mZ2. All wavelets express a

compromise between their level of temporal and

spectral definitions. The strength of Morlet wavelet

lies in its spectral definition, while that of Mexican hat

wavelet resides in its temporal definition.

When, as in the present study, time series from

different locations are available, distance–time dia-

grams may be drawn to assess spatial and temporal

variability in the database. The distance–time dia-

gram, which is composed of scale-averaged wavelet

power spectra at multiple locations, is also frequently

used to provide variance over selected preferential

bands. The scale-averaged wavelet power is defined

as the weighted sum of the wavelet power spectrum

over scale s1 to s2 as follows:

�W2
n Z

djdt

Cd

Xj2
jZj1

jWnðsjÞj

sj
; (4)

where dj is a factor for scale resolution (here chosen as

0.1) and Cd is a reconstruction factor specific to each

wavelet form; CdZ0.776 for Morlet and 3.541 for

Mexican hat.
4. Results
4.1. Temporal analysis

Rainfall observations are illustrated in Fig 2a

(lower line), while the normalized local Morlet

wavelet spectrum of the precipitation time series is

displayed in Fig. 2b. In Fig. 2b, the left axis is

the equivalent Fourier period corresponding to
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the wavelet scale and the bottom axis is time. The

shaded contours are the normalized variance in excess

of 0.01, 1 and 20. The thick contours enclose peaks of

greater than 95% confidence for red noise. In

geophysical applications, the red noise remains an

appropriate background spectrum in estimating a null

hypothesis for the significance of a peak in the

wavelet power spectrum (Torrence and Compo,

1998). A lag-1 coefficient a of 0.58 was calculated

for this series, following the Monte Carlo analysis of

Torrence and Compo (1998) based on the univariate

lag-1 autoregressive process. Since the power spec-

trum associated to a given time series is the result of a

natural process producing noise, one should not

presume that regions outside these 95% confidence

level areas are to be discarded from analysis. The

natural process is still present in those regions, but

influences the power spectrum to a lesser extent

(Nicholls, 2001). The cone of influence described by

Torrence and Compo (1998) is absent from Fig. 2b–d,

because analyses were performed using finite-length

time series (4096 data).

The Morlet power spectrum of precipitation

exhibits intermittent high power peaks located in the

highest frequencies and some horizontally sketched

features at larger scales. The variance distribution

shown in Fig. 2b reveals that activity is organized in

preferential bands of wavelet scales: 1–48 h, 48 h to 1

week, and 1–2 weeks. Any feature beyond 2 weeks

was not considered in this study due to limited

duration of the series (8 weeks). Shorter periods

ranging from 1 to 48 h exhibit narrow peaks related to

precipitation events depicted in Fig. 2a (lower line).

Those peaks characterize the power released by each

significant rainfall event, and their amplitudes are

related to the duration of the event. Features found in

longer periods, i.e. more than 48 h, are outcomes from

precipitation repeatability that results from local

meteorological system periodicity (in the order of 3–

7 days).

Precipitation strongly affects soil moisture at

shallow depth, where variability over time in soil

moisture observations is relatively high, fading out

deeper in the soil profile (Lauzon et al., 2004). At

depths of 1 m or more, variability over time in soil

moisture is rather low, which is characteristic of

the role of soil as a buffer, smoothing off gradually

the soil moisture signal (Wu et al., 2002). The
Morlet power spectrum of soil moisture at Fig. 2c

shows much similarities with the precipitation

Morlet power spectrum (Fig. 2b), confirming their

close relationship. However, the power spectrum of

soil moisture enlightens features that are not shown

in the precipitation power spectrum, particularly at

scales exceeding 1 day (level 20 shaded contours in

Fig. 2c). Power peaks for shorter periods (1–48 h)

were related to the most important precipitation

events, i.e. rainfalls that by their intensity and

durability thoroughly moistened the soil. Since

surface soil is in direct contact within the

atmosphere, major rainfall events are easily

identified on Fig. 2c at July 17th, July 20th, July

24th and August 4th. In the same manner, the dry

spells in June 15–28th, July 6–12th and July 25th

to August 4th, showed up in the soil moisture

power spectrum as loss of energy. For longer

periods (1–2 weeks), features were attributable to

soil rather than precipitation effects. Typically, soil

dries and re-moistens more or less rapidly

depending of its physical characteristics. In a

sandy loam, water drains quickly. Fig. 2c illustrates

this process: high frequency peaks related to

rainfall events are immediately followed by lacks

of energy at low frequencies. A daily pattern is

also identifiable. This pattern is related to daily

temperature fluctuations. During dry spells or for

high moisture conditions, this 24-h periodicity was

not defined.

The normalized Mexican hat power wavelet

spectrum of soil moisture wavelet is illustrated in

Fig. 2d. The temporal scale was more detailed

compared to the Morlet wavelet. For instance, soil

moisture ups and downs were differentiated by the

Mexican hat wavelet function. All major rainfall

events produced a pair of power peaks. However, a

weakness of the Mexican hat wavelet function is a

poorer spectral scale definition due to the vertically

lengthened featuring. Also, the definition in high

frequencies is limited by the Fourier period which is

about eight times the sampling interval. In Fig. 2d, no

information is available for scales smaller than 2.66 h

(with a time interval of 0.33 h or 20 min). In contrast,

the Morlet power spectrum, illustrated in Fig. 2c by

enhancing temporal features, provided more details

on the time-scale organization of the data, and thus

can unravel scale structures.
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4.2. Distance–time analysis

The distance–time analysis consists of a scale-

averaged wavelet power for several time series at

multiple locations. In this study, the distance–time

analysis was primarily processed to partition the

variance into preferential bands, but it was also used

to simultaneously assess temporal and spatial

variabilities.

The distance–time diagram of soil moisture time

series over the 90-m transect is given for three

predefined bands, i.e. 1–48 h (Fig. 3a), 48 h to 1 week

(Fig. 4a) and 1–2 weeks (Fig. 5a). Those ranges of

scales were clearly identified in the soil moisture

power spectrum in Fig. 2c as well as in the

precipitation power spectrum in Fig. 2b. The

distance–time diagrams are depicted in two-dimen-

sional contour plots, with 95% confidence computed

using a lag-1 autocorrelation at each site. Alongside

each distance–time diagram shown in Figs. 3–5, the

zonal average plots for soil moisture and precipitation

provided a measure of temporal fluctuations of the

series along the transect. For each band, the middle
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averaging wavelet power of time series (bold line) and

the zonal average calculated using PCA (thin line).

Table 1 presents, for the three predefined ranges of

scales, how soil moisture and precipitation variances

accounted for total variance, and the correlation

coefficient between both variables.

The distance–time diagrams revealed many

similarities between neighbouring series regardless

of scales. Indeed, Figs. 3–5a showed high temporal

variability, but low spatial variability due to

similarities between original time series (Fig. 1).

Although soil water content were homogeneous

along the transect, small differences could be

detected. Therefore, the distance–time diagram

was a powerful tool for conducting a detailed

analysis of spatial heterogeneity. Homogeneity

observed in this study was attributable to homo-

geneous soil texture and density, and to uniform

drainage and practices. Besides, Figs. 3–5b showed

a close correspondence between the scale-averaged

wavelet power computed from the time series and

the one computed from PCA.
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Table 1

For three predefined bands, i.e. 1–48 h, 48 h to 1 week and 1–2

weeks, SMoist and Prec are the proportion of total variance

accounted for by soil and precipitation, respectively

Band Proportion of total variance Correlation

coefficient
SMoist Prec

1–48 h 0.15 0.93 0.18

48 h to 1 week 0.37 0.06 0.66

1–2 weeks 0.48 0.01 0.79

The correlation coefficient is given between soil moisture and

precipitation average variances (Av.Var).

A.-C. Parent et al. / Journal of Hydrology 325 (2006) 56–6664
Fig. 3a illustrates the temporal and spatial

distribution of soil moisture variance for the 1–48 h

band (actually 0.66–49.01 h). Six high power

stretched features were averaged in Fig. 3b. Soil

moisture peaks of variance directly related to

precipitation variance in time scale, but differed in

amplitude; the correlation coefficient was 0.42. For

example, the highest precipitation variance depicted

in Fig. 3c (5.1 mm2, July 17th) did not produce the

highest variance in soil moisture (2%). This peak of

precipitation variance followed a succession of two

rainstorms, totalling 29 mm in 8 h, as shown in

Fig. 2a. Later, in July 20th, a smaller precipitation

average variance (3.1 mm2) produced a larger soil

moisture variance (5%). As shown in Fig. 2a, a

rainstorm totalling 15 mm in 4 h occurred at that date,

and produced a swift soil moistening. Although

surface soil is directly influenced by precipitation,

fluctuations in soil water content must depend on

several factors as the intensity and distribution of

previous and instantaneous rainfall events, the initial

soil water content, the evapotranspiration rate, the soil

drainage capacity, as well as the season and latitude of

the site. In our case, the sequence of rainfalls

combined with a high initial water content was

responsible of the higher variance observed in July

20th. An important aspect to consider in this analysis

is the percentage of total variance expressed by each

band, because it enlightens how soil moisture

responds to rainfall forcing. Although precipitation

remains a process of short duration, the soil

moistening response to precipitation lags behind.

Thus, in each band, the variance released by

precipitation and soil moisture systems should be

different. In the 1–48 h band, the variance of soil

moisture accounted only for 15% of total variance. On
the other hand, 93% of total rainfall variance occurred

in this band. Moreover, 81% was located in the first

1–12 h scales. Those results confirmed that rainfall

has a short duration effect on soil moisture variance,

and that its effects on soil are rather limited at short

time scales.

In the 48 h to 1 week band (actually 49.01–

170.66 h), the distance–time diagram in Fig. 4a

showed again the weak spatial variability between

neighbouring series. In Fig. 4b, the average power of

soil moisture indicated three features explaining about

2% of total variance (June 15th, July 14th to 20th, and

August 4th), each strongly related to the precipitation

average power. In the band 48 h to 1 week, soil

moisture was mainly influenced by the repeatability of

the meteorological systems as indicated by simi-

larities between Fig. 4b and c, and the correlation

coefficient of 0.81. Precipitation showed a smaller

average power in this band compared to the 1–48 h

band, with a maximum peak of only 0.02 mm2. The

variance of precipitation in this band accounted only

for 6% of total variance. On the other hand, the

variance of soil moisture represented 37% of total

variance, higher than at short scales (1–48 h). Hence,

soil moisture was dependent on precipitation repeat-

ability of the order of 3–7 days.

The 1–2 weeks band (actually 170.66–341.33 h) in

Fig. 5 would represent the power features generated

by soil effects (i.e. drying and moistening). The

variance of soil moisture accounted for 48% of total

variance in this band, the highest proportion. One

reason for this result is the slow response of the soil to

a rainfall. After a rainfall event, most of the soil water

apparently drained gradually into deeper soil layers.

Precipitation variance accounted for less than 1% of

total variance. At that range of scales, soil moisture

and precipitation were highly related with a corre-

lation coefficient of 0.89.
5. Discussion

Soil moisture varies differently depending on time

scale. By partitioning total variance into preferential

bands, one can describe how soil moisture relies on

the occurrence, the duration and the periodicity of

precipitation events. In this study, the wavelet power

spectrum of soil moisture showed three distinct ranges
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of scales that were then analysed using distance–time

diagrams. Anctil and Tape (2004) showed a time-

period representation of the precipitation variance that

revealed distinct behaviours as the wavelet period

increases. Wu et al. (2002); Lauzon et al. (2004)

showed that at short scales, soil moisture related

mostly to precipitation, while at larger scales, soil

moisture was driven by the seasonal cycle effect. In

this study, we showed the same effects but at a finer

time scale, which refined the comprehension of the

precipitation and soil moistening processes. For the

1–48 h scales, soil moisture was linked to rainfall

occurrence, intensity and duration, while for the

48 h to 1 week scales, soil moisture was more

associated with the periodicity of rainfall events

compared to the duration of the dry spells for 2 week

scale.

This paper focused on the analysis of soil moisture

and precipitation temporal variabilities at very short

time scales. Our work refined that of Lauzon et al.

(2004) who described the short-term behaviour of soil

moisture at temporal scales ranging from 1 to

512 days. Lauzon et al. (2004) showed the short-

term impacts of precipitation over surface soil

moisture at the 1–16 day scales. By refining the

daily scales to hourly, we established that the short-

term influence of precipitation on soil moisture can be

clarified at the very short hourly scales, i.e. 1–48 h

(93% of total variance) than at larger ones, i.e. 48 h to

1 week and 1–2 weeks (only 7% of total variance). In

contrast with precipitation, soil moisture variance

accounted only for 15% of total variance at hourly

scales; but at larger scales, this contribution increased

substantially (37% of total variance for the 48 h to 1

week band, and 42% for the 1–2 weeks band). This

major difference would result from energy transfer

between the two systems: precipitation and soil re-

moistening. Precipitation generated high power that

was transferred to the soil depending on its drainage

conditions. To some extent, soil operated as a low-

pass filter redistributing the energy collected from

precipitation. This re-allocation of power affected the

variance of soil moisture within a frequency band that

increased with time scale.

Variability of precipitation influenced the temporal

structure and the vertical profile of soil moisture. Wu

et al. (2002) measured soil moisture at different depths

(0–2 m) and showed an increasing large scale effect of
soil moisture with increasing depth. In addition,

Lauzon et al. (2004) reported that coherence is

particularly significant for periods ranging from 1 to

64 days for soil moisture at a depth of 5 cm, because

soil surface was in direct contact with precipitation.

This correlation gradually faded off with depth. In our

analysis, we also established a close correlation

between soil moisture and precipitation at those

scales, i.e. 1–2 weeks, with a correlation coefficient

of 0.89, whereas correlation was weak for the 1–48 h

band.
6. Conclusion

Wavelet analysis proved to be a powerful tool for

analyzing variance fluctuations in non-stationary time

series of rainfall and soil moisture. After reducing

data dimensionality by PCA, the wavelet power

spectra of precipitation and soil moisture were

processed for short time scales, i.e. from 1 h to 2

weeks. Wavelet analysis allowed partitioning the

variance into preferential bands. The time series were

wavelet decomposed into three sub-series using the

power spectra of precipitation and soil moisture, i.e.

1–48 h, 48 h to 1 week, and 1–2 weeks. The

precipitation wavelet spectrum revealed high power

features related to rainfall events. The PCA soil

moisture wavelet spectrum showed similarities with

precipitation, and was synchronized with rainfall

events.

A distance–time wavelet analysis was processed

over the seven time series to compress temporal and

spatial variabilities into a single diagram. Spatial

variability was weak compared to temporal varia-

bility. As expected from the main principal com-

ponent (94% of explained variance), only small

spatial differences were observed between neighbour-

ing series. This homogeneity between series over

distance resulted from uniform soil properties. The

analysis was performed for predefined ranges of

scales in the aim of pointing out the distinct processes

peculiar to the precipitation and soil moistening

systems. At short scales (1–48 h), soil moisture

average variance showed peaks related to precipi-

tation events that were obviously weakly related in

intensity (correlation coefficient of 0.42). Most of the

variance in soil moisture was found at the larger scales
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(85%), i.e. in 48 h to 2 weeks, due to the transfer of

energy from precipitation to soil moisture that

depended on soil properties. In contrast, precipitation

variance concentrated in the 1–48 h range of scales

explained 93% of total variance.

This study presented a high resolution analysis

(20-min rate observation) of the temporal variations in

precipitation and soil re-moistening processes near

soil surface (5–25 cm) using wavelet analysis.

Wavelet power spectra and distance–time diagrams

of soil moisture and precipitation were instrumental in

identifying this process.
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Fauveau for collecting field data. Main wavelet

analysis routines were provided by C. Torrence and

G.P. Compo, available at URL: http://paos.colorado.

edu/research/wavelets/.
References

Anctil, F., Coulibaly, P., 2004. Wavelet analysis of the interannual
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