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Abstract On the Eastern Tauride Belt, the Creta-
ceous calc-alkaline Karamadazi Granitoid consists of
quartz diorite containing mafic microgranular enclaves
(MME) and leucocratic granite. The quartz diorite
consists of plagioclase (Ang.gs), hornblende, biotite, K-
feldspar, quartz, epidote and titanite. Subrounded
MME in the quartz diorite are holocrystalline, fine-
grained, quartz diorite to diorite in composition, and
display a similar mineral assemblage to their host.
Large crystals in MME and quartz diorite show various
disequilibrium microstructures indicative of hybrid-
ization. Plagioclase crystals exhibit inverse, normal,
and oscillatory zoning with maximum core-to-rim An
content increase up to 38% in the enclave and 40% in
the quartz diorite. Both hornblende and augite exhibit
normal and reverse zoning even in the same sample.
The new field, textural, mineral compositional, and
geochemical evidence leads to the conclusion that
MME could have formed through injection of succes-
sive pulses of basic magma into upward mobile magma
chambers containing cooler, partially crystalline quartz
diorite magma. The quartz diorites show similarity to
high-Al TTG (tonalites-trondhjemites—granodiorites),
with their high Na,O, Sr, LREE, and low Mg#, Cr,
HREE contents, and are suggested to be produced by
extensive interaction between the crustal and mantle-
derived melts through mixing at depth. In contrast,
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leucogranites have geochemical characteristics distinct
from the quartz diorites and MME, and are probably
not involved in MME genesis.
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Introduction

Mafic microgranular enclaves (MME) play a sub-
stantial role in the evolution of granitic magmas, and
have been studied by many authors (e.g., Didier
1973; Chappell et al. 1987; Chen et al. 1989; Dodge
and Kistler 1990; Didier and Barbarin 1991; Barbarin
and Didier 1992; Elburg 1996; Maas et al. 1997). Of
all the enclave varieties present in granitic rocks,
MME have been the most controversial and the
subject of several detailed studies (e.g., Frost and
Mahood 1987; Didier and Barbarin 1991; Michael
1991; Blundy and Sparks 1992; Silva et al. 2000;
Barbarin 2005). They occur as fragments of fine-
grained igneous rocks, generally with ovoid shape
and sharp contacts, representing blobs of coeval
magmas (Didier and Barbarin 1991), and character-
ized by distinctive microstructures commonly inter-
preted as igneous in origin (e.g., Vernon 1990).
‘Mafic’ indicates that these enclaves are darker-col-
ored than their enclosing granitoid (Barbarin 2005).
Petrogenetic hypotheses for the origin of MME fall
into three main categories: (1) settling of early crys-
tals from the host magma or by fragmentation of
early solidified wall-rock facies closely related to the
host magma (e.g., Dodge and Kistler 1990; Dahlquist
2002); (2) globules of a more mafic, generally hybrid
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magma, co-mingled with more felsic host magma
(e.g., Didier 1973; Vernon 1983, 1990; Holden et al.

1987); (3) fragments of recrystallized, refractory  tions.
metamorphic rocks and fragments of melt residues
from the granite source (Chappell et al. 1987; Chen

et al. 1989; White et al. 1999).

Karamadazi Granitoid to determine the origin of the
hybridization process and its petrological implica-

Geological setting and field characteristics

Previous studies of the felsic-mafic Karamadazi

Granitoid reported magma mingling had occurred

(e.g., Kuscu et al. 2001; Boztug et al. 2002), but nei- Himalayan orogenic system.
ther mineral chemistry nor whole-rock geochemistry  continental blocks separated

of the enclave had been investigated. The objective
of this present study is to investigate the micro-
structures, mineral and whole-rock chemistry of the

Fig. 1 Simplified location
map (a) and geological map
(b) of the Central Anatolian
Crystalline Complex, and
geological map (c) of the
Karamadazi area (Kuscu

et al. 2001)
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Inset Map

Turkey is an essential component of the Alpine—
It includes a number of
by suture zones, formed
by the closure of the different branches of the Neo-
Tethyan ocean during the late Cretaceous—Eocene
(Sengor and Yilmaz 1981) (Fig. 1a).
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The intrusion of granitic plutons along the northern
edge of the Taurides, Central Turkey, is attributed to
the closure of the “Inner Tauride Oceanic domain”
(Gorur et al. 1984; Dilek et al. 1999), a branch of Neo-
Tethys. Two subduction zones with opposite vergence
are invoked to account for a double granitic arc, in the
North (Central Anatolian Crystalline Complex; Gon-
cuoglu et al. 1991) and in the South (northern edge of
the Menderes-Tauride platform).

In the northern Taurides, granitic magmatism is
represented by the Karamadazi Granitoid (Gorur et al.
1998; Kuscu et al. 2001), located about 40 km South of
the locality of Kayseri, and by the Horoz granodiorite
(Fig. 1b). Both granitoids are considered to be coge-
netic with similar granitoids from Central Anatolia
(Goncuoglu et al. 1993; Kuscu et al. 2001), whose
tectonic settings are suggested as collisional/post-col-
lisional (Goncuoglu and Tureli 1994; Akiman et al.
1993; Erler and Goncuoglu 1996; Boztug 1998, 2000;
Aydin et al. 1998; Yaliniz et al. 1999) and/or magmatic
arc (Gorur et al. 1984; Kocak 1993; Kocak and Leake
1994; Kadioglu and Gulec 1996).

The Karamadazi Granitoid was reported as being
zoned from East to West, from granite and granodiorite,
to quartz diorite with MME (Oygur et al. 1978; Oygur
1986). Such a regional zoning is not confirmed in the
field. The Karamadazi Granitoid can be separated into
only two main units: quartz diorite with MME to the
west, and felsic granite to the east (Fig. 1c; Kuscu et al.
2001). The granitoid intruded into the Akbas Formation,
a series of low-grade metamorphic carbonates and
orthoquartzite lenses, inducing development of a skarn
zone with iron ore. Skarnization process induced

Fig. 2 Field photographs
showing a small mafic
microgranular enclaves; b the
development of felsic haloes
(hl) between the granitoid
hosts and enclaves; ¢ wispy
schlieren in quartz diorites,
and mafic microgranular
enclaves (MME) with
gradational contact (g).
Plagioclase (pl) and quartz
(gtz) crystals moved into
MME; d heterogeneously
distributed enclaves in the
intermediate rocks. Small pen
represents ~12 cm

alteration of plagioclases and mafic minerals mainly to
epidote and widespread silicification in skarnized plu-
tonic rocks. The leucocratic granites have mostly con-
cordant contacts with country rocks, whereas aplite and
pegmatite dikes cut through the granites.

An open pit, iron mine at the center of the Kara-
madazi Granitoid (Fig. 1¢) presents excellent exposure
to study the hybridization of mafic microgranular
MME. Rounded MME are mostly 15-120 mm in
diameter (Fig. 2a), but range from a few millimeters to
0.5 m in size. MME usually display a fine-grained
margin against the host rock (Fig. 2a, d). Locally, some
felsic haloes develop in the granitoid hosts near the
contact with the enclaves (Fig. 2b), indicating an
interaction between mafic (enclave) and surrounding
felsic (granitic) magma. The geometry of the enclave—
host contact changes from sharp/crenulate to diffuse/
veined over a distance of a few centimeters. Smaller
MME tend to be finer grained and more isotropic than
larger ones. The disaggregation of some MME yields
heterogeneous hybrid rocks containing wispy schlieren
and clots of fine-grained mafic material (Fig. 2¢, d).
Locally, MME are highly concentrated (clusters, >30%
of the whole rock) and in such cases, the matrix typi-
cally shows irregular leucocratic patches (Fig. 2d).

Petrography and mineral chemistry
Methods

Fifty petrographic thin sections were examined under
the microscope to determine composition and texture,
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16 of which were analyzed by point counting. Polished
sections (25 x 46 mm) of representative rock samples
were made at the thin-section Laboratory of Geological
Engineering Department, Karadeniz Technical University
(Trabzon). Polished slides were coated with carbon
and then analyzed at the Electron Microprobe Labo-
ratory of McGill University, Montreal, Québec, Canada.
Mineral analyses were carried out on a JEOL JSM35
Electron Microprobe running Link QX2000 energy
dispersive analytical software. Electron beam condition
was 15 keV and 15 nA. Fe** contents in amphiboles
and pyroxenes were calculated according to Droop
(1987).

General petrography

Quartz diorites (Fig. 3) consist of plagioclase (45-65
vol%), hornblende (13-35%), biotite (2-12%), K-
feldspar (1-20%), quartz (3-21%), and accessory epi-
dote, titanite, magnetite, calcite and apatite (Table 1).
MME are holocrystalline and have the same mineral
assemblage as their quartz diorite host. MME consist
of plagioclase (40-62%), hornblende (20-36%), biotite
(1-15%), K-feldspar (0-15%), clinopyroxene (0-15%),
quartz (0-15%), and accessory epidote, titanite, mag-
netite, calcite and apatite. MME are equigranular, fine-
grained (Fig. 4a, b) and occasionally porphyritic.

Qtz
1
2 3 4 \5
Aa
A
A | |
.EI
| |
/ 7 / 8 \ 9 X\HIO
Kfs Plag

Fig. 3 Modal compositions in a Qtz—Kfs—Plag ternary diagram:
granites (filled triangles), enclaves (open square), quartz diorites
(filled square). Simplified fields of plutonic rocks after Le Maitre
et al. (1989): I quartz-rich granitoid, 2 alkali feldspar granite, 3
granite, 4 granodiorite, 5 tonalite, 6 alkali feldspar syenite, 7
syenite, 8 monzonite, 9 monzodiorite/monzogabbro, 10 diorite—
gabro. Main trends of plutonic rocks series (grey arrows) after
Lameyre and Bonin (1991): A strongly alkaline, B mildly
alkaline, C monzonitic, D calc-alkaline
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Poikilitic textures mostly show subhedral biotite and
hornblende engulfed by plagioclase (Fig. 5a) or alkali
feldspar. Titanites are mostly anhedral with interstitial
habit in quartz diorite and MME, and appear to result
from subsolidus recrystallization involving hornblende
and biotite (Fig. 5b). Acicular apatite, 0.3 mm in
maximum length, is a common feature of mafic melt
globules trapped in silicic magma and often cited as
evidence of quenching (Wyllie et al. 1962) (Fig. 5c).
The increase of felsic mineral components, generally as
megacrysts and leading to lighter colors, is inferred to
reflect the intensity of hybridization. Interaction be-
tween mafic (enclave) and surrounding felsic (granitic)
magma is clearly viewed in the host rocks between
close MME, where amphibole crystals develop so as to
define linear fabric. The leucogranites are made up of
medium-coarse grained plagioclase (23-34%), K-feld-
spar (22-32%), quartz (23-38%), biotite (1-12%),
+ actinolitic hornblende (0-8%) with accessory apatite,
titanite, zircon, and allanite.

Plagioclase

In the quartz diorites, plagioclase occurs both as large
euhedral crystals (up to 6 x 2.5 mm) and as small
subhedral crystals (= 0.6 x 0.6 mm). Compositions
range from Anjs; to Angs in the cores to Ang to Ansy in
the rims (Table 2; Fig. 6). Both plagioclase types ex-
hibit normal, inverse or oscillatory zoning (Figs. 7, 8)
and embayment. This is commonly interpreted as
resulting from magma mingling in silicic-intermediate
rocks (Stamatelopoulou-Seymour et al. 1990; Stimac
and Pearce 1992). The large euhedral grains are not
abundant but are homogeneously distributed in the
rock. These grains form laths with an aspect ratio ca.
1:1.5 and commonly host inclusions of subhedral bio-
tite and anhedral, brown hornblendes. In the MME,
plagioclase crystals are smaller or of equal size than
those in the host granite. Their composition ranges
from Anz—Angg in the cores to Anyp—Anss in the rims
(Table 3), which indicates that the rims of plagioclase
in MME are notably more calcic than the ones in the
host. In both rock types, plagioclase sporadically forms
rims around hornblende grains. Compositional dis-
similarities of plagioclase phenocrysts in quartz diorite
to those of enclave imply that MME were mostly not
equilibrated with their hosts.

Hornblende

Hornblende in quartz diorite samples often shows
conversion to the brown biotite along its cleavage, and
forms both phenocrysts (5.1 x 1.8 mm) and matrix
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Table 1 Modal compositions (%) of the Karamadazi Granitoid (1,000 points are counted for each sample)

Quartz diorite Enclaves

Granite

Sample no. 26 38 40 43 47 34e 36e

38¢  40e 43¢ 44e  49e 57 60 62 65

Quartz 32 96 214 151 172 4.59 0.2
Orthoclase 0.9 2.5 9.3 199 33 0.1 5.0
Plagioclase 545 650 521 450 60.7 6147 544
Biotite 20 117 35 32 3.8 8.9 1.7
Hornblende  35.0 99 131 150 137 224 28.6
Augite 0.0 0.0 0.0 0.0 0.0 0.0 6.1
Zircon 0.0 0.0 0.0 0.0 0.4 0.9 0.0
Magnetite 0.8 0.3 0.0 0.8 0.8 1.6 0.0
Epidote 1.9 0.0 0.3 0.2 0.0 0.0 1.2
Calcite 0.0 0.0 0.0 0.0 0.0 0.0 1.3
titanite 1.2 0.9 0.2 0.4 0.0 0.0 1.1
Apatite 0.4 0.0 0.0 0.3 0.0 0.0 0.3

Tourmaline 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total

10.2 43 9.7 14.6 468 384 346 352 228

5.1 0.0 14.6 0.0 8.64 287 323 224 317
483 613 383 443 6165 251 232 278 342
14.8 9.1 9.7 32 1.42 6.7 73 119 12
19.7 241 258 358 187 0.0 0.0 0.0 8.1

Fig. 4 Photos of a
hornblende (4b) injected into
quartz diorite and mafic
microgranular enclaves
(MME) (e). Plagioclase (p/)
xenocrysts lay across the
enclave contacts. b Small
enclave, with composition
close to its host rocks

crystals (2-0.8 mm). Hornblende in enclave samples
also forms in two grain sizes: (a) coarse-grained (3 X
0.75 mm) and (b) fine-grained (0.3 x 0.18 mm). In
general, both varieties of hornblende are subhedral,
and it is common to observe assemblages with biotite,
epidote, and titanite. The coarse-grained hornblende
often shows transition to biotite along its cleavage
(Fig. 5b), and is sometimes granulated along its edge,
and enclosed by plagioclase. Remnants of clinopyrox-
ene are commonly found in the core of poikilitic
hornblendes.

In the IMA-approved nomenclature (Leake et al.
1997), hornblende is classified as predominantly
magnesio-hornblende and minor actinolite (Fig. 9a). In
comparison with hornblende of the host rock, hornb-
lendes of MME are slightly richer in Si (Tables 4, 5),
though they almost overlap on the classification dia-
gram of Leake et al. (1997) (Fig. 9a). Hornblende
phenocrysts show reverse zoning in terms of decreasing
Mg/(Mg + Fe*"), indicating disequilibrium crystalliza-
tion with magma (Fig. 9b). Both reverse and normal

zoning in the hornblendes of MME also exist in the
same sample.

Pyroxene

Pyroxene is found only in enclave samples, and gen-
erally shows conversion to amphibole around its edges.
Pyroxene is augite in composition (Table 6; Fig. 10),
exhibiting normal and/or reverse chemical zonation,
and can coexist with biotite in the same sample. The
reverse zoning of pyroxene may indicate an open sys-
tem behavior (Bloomfield and Arculus 1989). The
clinopyroxene relicts engulfed by hornblende in the
MME seems to reflect non-equilibrium conditions
involving reaction of clinopyroxene with its surrounds.

Biotite
Biotite is observed both as phenocrysts with/without

inclusions of hornblende or as inclusions within the
hornblende and plagioclase. It is green and brown in
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Fig. 5 Plane-polarized light photomicrographs of typical miner-
als located in the mafic microgranular enclaves (MME);
a poikilitic plagioclase (p/) with hornblende (am) inclusions;
b anhedral titanite (#) crystals developed within coarse-grained
hornblende (am) phenocrystal; ¢ acicular apatite (ap)

color, and frequently bent and/or granulated along the
edges. The biotites of enclave and quartz diorite sam-
ples are rich in TiO, and MgO (Table 6), and plot
within the calc-alkaline field defined by Nachit et al.
(1985) (Fig. 11). FeO/(FeO + MgO) ratio of biotite in
MME is identical with biotite in host granite, suggest-
ing that the biotites could be fully equilibrated with the
host granite. In the host quartz diorite, the biotites
have higher TiO, contents of average value of
497 wt%, whereas in the enclave biotite, TiO,
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decreases to average value of 3.54 wt%. This fact is
probably due to simultaneous crystallization of abun-
dant titanite in the MME, lowering the Ti activity
during the hybridization.

Whole-rock geochemistry

A total of 80 rock samples were collected from the
Karamadazi Granitoid, 32 of which, including granites,
quartz diorite and MME, were analyzed for major,
trace, and rare earth elements (Figs. 12, 13, 14, 15, 16,
17, 18). A selection of 15 representative analyses is
given in Table 7. Major and trace elements were ana-
lyzed using inductively coupled plasma emission spec-
trometer from pulps after 0.2 g rock powder were
fused with 1.5 g LiBO,, and then dissolved in 100 mm®
5% HNOs;. Rare earth elements were analyzed using
inductively coupled plasma mass spectrometry from
pulps after 0.25 g rock powder was dissolved with four
acid digestions at ACME Analytical Laboratories Ltd.,
Vancouver, Canada. Analytical uncertainties range
from 0.1 to 0.04% for major elements; from 0.1 to 0.5%
for trace elements; and from 0.01 to 0.5 ppm for rare
earth elements.

On the nomenclature diagram of Debon and Le Fort
(1982), the MME and their host rocks plot in quartz
diorite to gabbro/diorite fields, whereas leucogranites
are found within adamellite and granite fields (Fig. 12),
which is consistent with QAP in Fig. 3. The term
“adamellite” is obsolete and monzogranite is used in-
stead (Le Maitre et al. 1989). Ca-poor composition of
the plagioclase of the MME and particularly their hosts
are mostly less than 50% An, indicating dioritic com-
position. Most MME and quartz diorites plot in the
calc-alkaline field in a K,O versus SiO, diagram
(Fig. 13). The granites display a slightly more potassic
character by plotting within the medium-K field.

Total FeO, has been chosen as the abscissa for the
variation diagrams, because it more effectively dis-
criminates between these granitic and mafic rocks than
SiO, does (Figs. 14, 15). MME, quartz diorites and the
granite display distinct ranges of SiO, contents
(respectively 54-60, 60-63, and 75-78 wt%) (Figs. 13,
14; Table 7). No substantial overlap exists between the
MME and the quartz diorites. A sample from quartz
diorites seems to have anomalous values owing to
analytical error or missampling. A distinct composi-
tional gap in SiO, content (63-75 wt%) occurs
between the quartz diorites and the granites. Most
major elements (with the exception of K,O, Na,O,
SiO,) display positive correlation trends with FeO, and
smaller oxide variability with increasing FeO, content
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enclaves
(MME)

Ab n\ \ \An

Fig. 6 Chemical compositions of plagioclase from the host rock
and enclave

T T T
200 300
distance (mm)

Fig. 7 Back-scatter view of electron image oscillatory zoning in
plagioclase from quartz diorite (top). Zoning pattern (An%
composition) from core to rim in the same plagioclase (botton)

though. K,O has positive and negative correlation
trends for quartz diorites, and enclaves, respectively.
Na,0+K,0 show linear trends in quartz diorites and

@ Springer

rim core

T T
0 50 100 150 200 250
distance (mm)

Fig. 8 Back-scatter view of reverse zoning in plagioclase from
enclave, and zoning pattern (An% composition) in the same
plagioclase

enclaves, suggesting variation is in compositional pro-
portions of feldspars. The trend of Al,Oj versus FeOy
appears positive for leucogranites and not clear for
quartz diorite and MME. Other oxide trends are
mostly linear. The quartz diorites and granites have
mean ASI [aluminum saturation index, molecular
AlLO3/(CaO+Na,0+K,0)] values of 0.84 and 1.05,
respectively, and are therefore metaluminous and
slightly peraluminous. MME have similar ASI values,
0.80, to their hosts.

Trace elements display trends with FeO, content less
well defined than major elements (Fig. 15). Cr, Ni, Co,
Sc, Cu, Sr, and Y tend to be present at higher con-
centrations in the MME and quartz diorites than in
granites (Fig. 15 and Table 7). Rb, U and Th are more
abundant in the granites than in the MME and quartz
diorites. Sr follows Na,O and Rb follows K,O.

The chondrite-normalized rare earth element
(REE) diagrams show that MME and quartz diorites
have broadly similar, slightly concave-upward patterns
(Fig. 16). Some MME have a slight negative Eu
anomaly, indicating plagioclase fractionation. In com-
parison with quartz diorite, they have slightly higher
(La/Lu)y ratios, indicating REE fractionation, and
lower LREE content. The granite REE patterns are
mostly characterized by negative Eu (Ew/Eu* = 0.39—
0.96) anomalies, positive REE fractionation from Eu
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Table 3 Microprobe plagioclase analyses from enclaves

49-1 49-1 43 43

40

Sample 47
no.

vr

c/r

vr

c/r

vr

c/r

vr

c/r

vr

c/r

vr

c/r

57.71 59.75 6149 56.88 60.16 60.59 54.75
26.79 2529 24.15 2695 24.72 24.41 28.50

9.06
6.46

0.18
100.19 99.80 99.92 99.51 99.61 99.59 99.92

56.84
27.32

60.75 5845 62.66 62.44
2473 2591 2320 23.30

60.19 60.19 62.86 57.49 60.23 59.99 61.30 5841 6023 6242 63.43
2545 25.04 23.15 26.60 24.80 24.93 2426 26.01 24.86 2346 22.76

55.00

28.62
11.22

SiO,

Al O3
CaO

6.42 11.38

6.89
7.38
0.47

9.34
6.04
0.30

5.89
8.20
0.20

7.23
7.31
0.22

9.67
6.17
0.15

4.80
8.85
0.10

4.87
8.67
0.14

7.89
6.88
0.22

6.61
7.78

0.18
100.05 99.33 99.54 99.49 100.15

4.24
9.13
0.18

4.97
8.60
0.32

6.84
7.61
0.22

8.00
6.87
0.16

5.97
8.11
0.17

7.03
7.41
0.23

6.73
7.67
0.21

9.19
6.27
0.15

4.65
8.84
0.30

6.87
7.46
0.29

7.10
7.64
0.15

5.16
0.14

7.88
0.29

5.25

0.14
100.23  100.52 99.85 99.79 99.71

NazO
Kzo

99.64 99.59 99.81 99.45 99.76 99.76 99.73

Total
Si

Al

7.738 7.996 8.187 7.682 8.061 8.111 7.407

7.636

8.094 7.873 8349 8.324
3.885 4.114 3.644 3.662

0.944 1.139 0.696 0.685

7.994 8.044 8353 7.741 8.064 8.040 8.169 7.861 8.054 8.304 8.425
2.011

7.416

4235 3989 3.790 4.291 3.905 3.852 4.546

4.327
1.393
1.607
0.026

53.1

3984 3945 3.627 4223 3915 3939 3.812 4.126 3.920 3.680 3.564

4.549
1.621
1.373
0.025
455

1.301 1.037 0.840 1.352 0.989 0.920 1.649

1.678 1.897 2.117 1.583

1.010 0.984 0.662 1.326 0.966 1.009 0.852 1.154 0.980 0.708 0.603

1.967 1.933 2277 1.638 1.990 1.924 2.095 1.793

Ca
Na
K

1.918 2.046 1.352

1.796 2.239 2.288

1.973 2219 2.351

0.031 0.038 0.034 0.051 0.081 0.049 0.024
55.8

0.030 0.037 0.024 0.016

67.4

0.025 0.049 0.051 0.026 0.036 0.039 0.028 0.028 0.038 0.054 0.030

65.5

708 53.0 642 678 447
33.1

63.8

757 765

60.4

762 548 665 647 704 603 660 744 788

65.2

Ab

54.5

30.5

337 332 221 443 323 339 286 388 328 238 202 316 383 235 229 46.0 432 349 281 453

53.7

An

0.8

1.3 1.1 1.7 2.7 1.6

1.0

0.8

0.5

0.8

0.8 1.7 1.7 0.9 12 1.3 0.9 0.9 1.3 1.8 1.0 1.0 1.2

0.8

Or

Abbreviations: c core; ¢/r core to rim; r rim; vr very rim

to La (LREE), and a negative fractionation from Lu to
Eu (HREE).

The primitive mantle-normalized diagrams (spider-
grams) show consistent patterns within each rock type.
The spidergrams display prominent negative Ba, Nb,
and TiO, anomalies in the granites (Fig. 17). The Pb
anomaly is positive in the granite but negative in the
quartz diorite and MME. All samples have a charac-
teristic negative Nb anomaly, which suggests a sub-
duction component in their genesis (Pearce 1983).

Discussion and petrogenetic approach

The source of MME in granitic plutons has been and is
still a fundamental petrologic question. Various sour-
ces, ranging from early cumulates (e.g., Dodge and
Kistler 1990) to disrupted mafic dikes (e.g., Pitcher
1991), have been established in different plutons. A
major implication of the existence of MME is the po-
tential chemical modification of its granitic host.
Hence, the petrogenesis of a granitic suite cannot be
fully understood without assessing the origin of its
MME.

Quartz diorites (SiO, = 60-63 wt%; Al,O3 = 17—
20 wt%) have many characteristics of adakites; high
Na,O (4.12 wt%), Na,O/K,0 (21.6), Sr (>600 ppm),
LREE (La, mostly >24 ppm), low Y (<17 ppm) and
HREE (Yb<1.85 ppm), and high Sr/Y (>40) with po-
sitive Sr anomalies in Fig. 17c. However, they show
lower Mg# [(molar 100 x MgO/(MgO + FeOy,)) < 0.59],
Ni (~7 ppm), and Cr (~45 ppm) contents (Fig. 18) than
that of adakites, which could be interpreted as
reflecting lack of, or a lower degree of, interaction
between their parental magma and the overlying
mantle wedge. Quartz diorites also differ from adakites
in terms of fluid-mobile trace elements, such as K
(1.6 wt%), Ba (~417 ppm), and Rb (~46 ppm). The
relatively high contents of these elements in quartz
diorites compared with adakites may reflect a sub-
duction zone component in quartz diorite sources,
which is not present in the descending slab source of
adakites (Defant and Drummond 1990, 1993). TTGs
(tonalite-trondhjemite-granodiorite) show chemical
characteristics of adakites, but they are lesss mafic and
can be distinguished from adakites by their relatively
low Ni, Cr (Fig. 18), Mg#, and high Ba, K, Rb. Hence,
geochemical characteristics of the quartz diorites
studied here resemble mostly to high-Al TTGs, which
could be formed by partial melting of a wet mafic
protolith of the lower crust in arc systems (Rapp et al.
1991; Smithies 2000; Prouteau et al. 2001; Condie
2005).

@ Springer
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Magmatic textures, mineralogy, and chemical fea-
tures of MME show that they crystallized from a rel-
atively mafic magma of intermediate composition.
Since MME are metaluminous in composition, and do
not contain peraluminous minerals, they are possibly
not restites and cannot have formed by transformation
of the residues of partial melting of crustal rocks.
Similarity of enclave-host mineralogy/chemistry, and
lack of enclaves with large crystals and cumulate tex-
tures preclude an autolith origin for MME from early
disruption of cumulate layers in the intrusion. Thus,
MME are possibly globules of a more mafic magma,
mingled with host magma. The cogenetic nature of
MME and host granitoids are shown by (a) similar
mineral assemblages and mineral compositions, (b)

@ Springer

Si in formula

existence of strong correlations between major and
trace elements in MME and hosts, although concen-
trations of major and trace elements are different.
Field relationships, for example, the coeval nature of
the enclaves and quartz diorites and the existence of
widespread mafic enclaves (Fig. 2a), clearly propose
magma mixing between mafic and felsic magmas. This
is supported by the occasional presence of textural and
compositional disequilibrium displayed by plagioclase
xenocrysts in the MME. However, several major and
trace elements, such as FeO,, Na,O, K,O, Ba, and Sr
(Figs. 14, 15), show non-linear variations, which are
difficult to interpret in terms of simple linear mixing.
Among these, FeO, versus Ba and Sr (Fig. 15) is of
particular interest, in which Ba and Sr contents vary
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Table 6 Microprobe pyroxene and biotite analyses from the host rock and enclave
Pyroxene Biotite
Enclave Host rock Enclave
Sample no. 49 Sample no. 34-1 45-2 40-4 44-3
c T c T c T c T c c c
SiO, 54.10 53.92 53.52 5348  52.82 54.01 SiO, 3738 3720 3630 3735 3481
TiO, 0.10 0.11 0.20 0.10 0.13 0.13 TiO, 5.08 4855 2915  3.625 4.073
ALO3 0.00 0.00 1.05 0.00 0.00 122 ALO; 13.85 13.82 1434 1431 13.32
Cr,03 0.00 0.00 0.04 0.00 0.02 000  Cr,05 0.00 0.02 0.01 0.00 0.05
Fe,05 1.23 1.28 1.77 1.79 232 1.18 FeOt 15.91 1624 17.57  17.81 17.39
FeO 412 5.87 411 6.10 5.69 3.53 MnO 0.17 0.18 0.25 0.17 0.24
MnO 0.20 0.25 0.23 0.34 0.33 0.18 MgO 14.02 1381 1440 12.84 1315
MgO 15.27 14.29 14.83 1422 13.93 15.32 CaO 0.02 0.00 0.09 0.07 0.00
CaO 24.71 24.09 24.47 23.71 23.85 24.95 Na,O 0.13 0.12 0.03 0.07 0.07
Na,O 0.39 0.50 0.58 0.50 0.57 0.44 K,O 10.16 9.92 8.49  10.14 8.34
K,O 0.02 0.01 0.00 0.00 0.00 0.00 Total 96.76  96.19 9444 9642 9147
Total 100.14  100.31 100.79  100.23  99.66  100.96 Si 5560 5569 5534  5.618  5.505
Si 1.990 1.994 1.958 1.984 1972 1.965 Ti 0.569 0547 0334 0410 0484
Ti 0.003 0.003 0.005 0.003  0.004 0.003 Al 2430 2440 2577 2538 2483
Al 0.000 0.000 0.045 0.000  0.000 0.052 Cr 0.000  0.003  0.002  0.000  0.007
Cr 0.000 0.000 0.001 0.000  0.001 0.000 Fe** 1.980 2.034 2241 2240 2300
Fe’* 0.043 0.043 0.068 0.063  0.089 0.042 Mn 0.022  0.023  0.033  0.022  0.033
Fe** 0.118 0.175 0.107 0176  0.154 0.098 Mg 3108 3.083 3273 2878  3.100
Mn 0.006 0.008 0.007 0.011  0.010 0.006 Ca 0.004 0.000 0.016 0.012  0.000
Mg 0.837 0.787 0.809 0.786  0.775 0.830 Na 0.039  0.035 0.011 0.021  0.023
Ca 0.974 0.954 0.959 0942  0.954 0.973 K 1.929 1.896 1.652 1947 1.684
Na 0.028 0.036 0.041 0.036  0.041 0.031
K 0.001 0.000 0.000 0.000  0.000 0.000
Abbreviations : ¢ core; r rim
Ca 23i206 (WO)
diopside hedenbergite 3.5 | ~
= ! - T~ - alumino-potassic
o 30 | T~ T~
augite ~ _ ~ ~ calc-alkalifie -
<_E 25 L >~ mild\ly alkaline ~ __ g .
alkaline T - - _
clinoenstatite clinoferrosilite 2.0 = - -
Mg,Si,0g (En) Fe »Si,0¢ (Fs) peralkaline - -
L 1 1 L 1 L
Fig. 10 Wo-En-Fs composition plot of pyroxene from enclave 0.0 1.0 2.0 3.0
(after Morimoto 1988). Filled and open circles represent core and Mg

rim of the crystals, respectively

substantially for little change in FeOy in quartz diorites.
Dispersion on the diagrams is of paramount evidence
of K-feldspar ‘cumulus’. Small amount of K-feldspars
may induce an increase in Ba and Sr contents in quartz
diorites owing to their high partition coefficients (Kp)
for Ba, [5.37, Lopez-Ruiz and Cebria (1990); 5.9,
Lopez-Moro (2000)], and for Sr (3.87; Lopez-Ruiz and
Cebria 1990). Plagioclase has low Kp for Ba (0.36,
Loépez-Ruiz and Cebria 1990), therefore is unlikely to
cause this enrichment. Accordingly, some samples

Fig. 11 Mg versus Al; atoms (pfu) plot of biotite from the host
rock (filled square) and enclave (open square). Dividing lines and
fields are from Nachit et al. (1985)

from quartz diorite are low in SiO, (>57 wt%) and ASI
(<0.85), indicating a cumulate origin for these samples
(Chappell and White 1992). Slightly high Eu/Eu*
(1.02-1.11) and modally high plagioclase (up to 61%)
contents in these samples may reflect existence of
cumulus plagioclases. Existince of biotite cumulus in
both quartz diorite and MME is suggested by disper-
sion of Rb (Fig. 15). In comparing with their hosts,
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Fig. 12 Distribution of the samples in the nomenclature diagram
for igneous rocks (Debon and Le Fort 1982). Parameters are
expressed as gram-atom x 10,000. Filled triangles, open squares
and filled diamonds represent granites, enclaves, and quartz
diorites, respectively. Abbreviations: gr granite, ad adamellite, gd
granodiorite, fo tonalite, sq quartz syenite, mzq quartz-monzo-
nite, mzdq quartz monzodiorite, dq quartz diorite (quartz
gabbro-quartz anortozite), s syenite, mz monzonite, mzgo
monzogabbro (monzodiorite), go gabbro (diorite-anortozite)

MME are usually enriched in P, Ti, Y, Nb, and HREE.
This could be explained by selective interdiffusion of
these elements into the less polymerized magmas.
These elements were subsequently concentrated in
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Fig. 13 A plot of SiO, versus K,O showing calc-alkaline
character of the granitoids. Dividing lines in K,O versus SiO,
plot is after Peccerillo and Taylor (1976). Open triangles, filled
diamonds and filled squares represent granites, enclaves, and
quartz diorites, respectively
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apatite, titanite, and hornblendes due to their high Kp
for these elements (Lopez-Ruiz and Cebria 1990; Klein
et al. 1997), maintaining their low activity in the melt.
Such low activity in the mafic melt leads to the conti-
nuity of ‘Uphill’ diffusion, as described for K due to
crystallization of biotite by Johnston and Wyllie
(1988). Selective diffusion of these elements may be
attributed to subsolidus reequilibration, which was
supported by crystallization of anhedral titanite in
MME in relation with hornblende, and existence of
compositional zoning in quartz diorite (Fig. 2b), re-
lated to margins of MME. The diffusion may also be an
earlier process under liquidus temperatures as sug-
gested by the igneous habit of apatite (Fig. 5c).

Some evidence of local magma mingling is shown by
the enclave structures. In particular, plagioclase and
quartz crystals lay across the enclave contacts in some
points, and rare, enclave-host gradational contacts lo-
cally occur (Fig. 2¢), indicating that enclaves and their
hosts simultaneously behaved as magmas at some stage
in their histories. Mechanical accretion of early-crys-
tallized phases from granitic host liquid into the mafic
magma batch, carried trace elements with high K and
their major components (e.g., Ca, Na, Sr, and Si, for
feldspar and quartz).

MME and quartz diorites have low Nb/U (~6.01,
~5.606) ratios, similar to those of continental crust (Nb/
U: 6.2; Rudnick and Fountain 1995), but distinct from
those of mid-ocean ridge and oceanic island arc basalts
(Nb/U: 47, Hofmann et al. 1986). Besides, they have
negative Nb anomalies, and are enriched in large ion
lithophile elements (LILEs) and light REEs (Fig. 16).
All these features propose that the parental magmas
have been contaminated by continental crust during
magma ascent.

Samples from leucogranites are strongly enriched in
SiO,, Al,O3, K,O (Na,O/K,0 <1), Rb, Th, U, Rb/Sr,
La, and depleted in MgO, MnO, TiO,, Ba, Sr, Nb.
They are characterized by concave upward shape of
the REE patterns, which is consistent with (1) the
amphibole-out boundary not being crossed during
partial melting (Romick et al. 1992) leaving amphibole
as a major restite phase and (2) garnet not a major
fractionating phase. High-SiO, granites also have low
values of Eu/Eu* and Sr/Nd and low abundance of Sr,
which requires significant amount of plagioclase in
their residues during magma segregation, or plagio-
clase fractionation. I-type mineralogical and chemical
features of Karamadazi granitoids (Chappell and
White 1974), such as, for example, lack of muscovite,
high Na,O/K,O ratio and low A/CNK (<1.1) suggest
that they could be derived from quartz diorites or even
less evolved magmas by crystal fractionation. Aplitic
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dike suites on Karamadazi Granitoid most probably
represent such co-magmatic highly differentiated late-
stage melts. However, large volumes of granites rela-
tive to quartz diorite, and absence of samples with
intermediate compositions in the field are not in favor
of this suggestion. A multi-stage process may be re-
quired for the production of felsic granites, beginning
with initial emplacement and/or underplating of man-
tle-derived melts into the crust. However, it is uncer-
tain whether such rocks alone are adequately enriched
in quartz and K and other LILE to be capable of cre-
ating true granitic melts; most experimental evidence
suggests that partial melting of basaltic and other low-
K rocks will produce mainly sodic melts, such as ton-
alites, trondhjemites, and sodic granodiorites (e.g.,
Rutter and Wyllie 1988; Rushmer 1990; Rapp et al.
1991). Crystal fractionation and contamination
processes, which may have operated individually

or together, seem to be required to make these
mantle-derived melts more fertile. The granites display
a small chemical variation, suggesting that they crys-
tallized from a homogeneous magma and that frac-
tional crystallization was minor during magma ascent.
Therefore, leucogranites could be formed by partial
melting of a predominantly intermediate protolith,
coupled contamination, and minor feldspar-dominated
fractionation.

MME, quartz diorites, and leucogranites are gener-
ally enriched in LILEs, and depleted in high-field
strength elements (HFSE) (Fig. 17a, b), which are
typical of arc magmatism (e.g., Parada et al. 1999;
Shaw et al. 1993). An active continental margin setting
conforms to the calc-alkaline character of the quartz
diorite, with lower crust in origin. I favor a scenario in
which intrusion of mantle-derived mafic magmas into
thickened continental crust induced dehydration
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melting of the lower crust rocks with intermediate
compositions and subsequent production of granitic
melts. Mafic magma might melt surrounding crustal
rocks in the lower crust only if it was trapped long
enough to permit thermal exchange (Marsh 1982;
Huppert and Sparks 1988; Annen and Sparks 2002).
Thus, mafic magma that was injected into an open
system in which granitoid magma was already moving
upward did not have enough time to thoroughly mix
with the felsic host and was disrupted into small-scat-
tered blobs in the moving granitoid magma. Therefore,
extensive interaction between the crustal and succes-
sive pulses of mantle-derived melts through mixing
produced hybrid quartz diorite magma at depth.

@ Springer

During ascent and emplacement, mingling continued
and interaction between granitoid and MME involved
thermal, mineral, and chemical transfers. Thermal
diffusion is 100 times more rapid than chemical diffu-
sion; therefore primarily hotter, more mafic magma
batches can attain thermal equilibrium with felsic host
magma prior to chemical equilibrium being reached
(e.g., Sparks and Marshall 1986; Frost and Mahood
1987; Fernandez and Barbarin 1991). The rate of
chemical transfer depends on the chemical contrast,
the physical state of both components, and dynamics of
the system (e.g., Cruden et al. 1995; Snyder and Tait
1995, 1998; Cardoso and Woods 1999; Tepper and
Kuehner 2004).
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Fig. 16 Chondrite-normalized rare earth element patterns of
quartz diorite, granite, and enclave samples. Normalizing values
are from Boynton (1984)

Consequently, hybridization processes involving the
Karamadazi Granitoid could have operated at two
distinct but continuous periods and at different levels
in the crust: (1) thorough mixing at depth-formed
homogeneous magmas that crystallized to quartz di-
orites, probably with some MME; (2) mingling and
local mixing during ascent and emplacement produced
MME. The Karamadazi Granitoid thus may represent
uniform hybrid rocks in which the two original mafic
and felsic components are unknown. Sr and Nd isoto-
pic data indicate that Central Anatolian calc-alkaline
granitoid magmas were initially hybrids, produced
from an enriched mantle source to which a subduction
component had been added, or coupled crustal con-
tamination with fractional crystallization, or both
(Kadioglu et al. 2003; Ilbeyli et al. 2004).

Conclusions

The Karamadazi Granitoid is composed predominantly
of granites and quartz diorites with MME displaying
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Fig. 17 Primitive mantle-normalized spider diagrams of quartz
diorite, granite, and enclave samples. Normalizing values are
from Sun and McDonough (1989)

mineralogical and geochemical characteristics of I-type
granitoids.

MME have xenocrysts with disequilibrium features
indicating hybridization of mafic and felsic magmas: (1)
plagioclases are embayed, and have heterogeneous
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Fig. 18 Cr versus Ni variation plots for quartz diorites. Bound-
aries of tonalites—trondhjemites—granodiorites (77Gs) and adak-
ite fields are from Condie (2005)
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Table 7 Major (wt%), trace, and rare earth element (ppm) analyses of the Karamadazi Granitoid samples

Quartz diorite Enclaves Granite
Sample 49-1 40 38 36 45 35E 36E 37E 40E 74e 56 58 78 53 68
no.
SiO, 60.5 613 617 62.5 63.0 59.61 5447 57.67 5515 5621 746 762 7629  76.78  77.68
TiO, 0.6 0.6 0.6 0.6 0.6 0.8 0.77 0.75 0.98 0.73 0.1 0.1 0.07 0.08 0.06
AlL,O3 167 169 16.7 17.0 17.2 1733 1639 16.78 18.04 16.59 140 133 1335 1253 122
Fe,O3* 4.2 4.8 5.0 3.7 3.7 6.15 7.11 5.66 6.77 6.72 1.0 0.7 0.74 0.85 0.69
MgO 2.9 2.7 2.8 2.7 2.7 252 553 3.68 409 471 0.1 0.1 0.07 0.07 0.07
MnO 0.1 0.1 0.1 0.1 0.1 0.07 011 0.09 0.09 0.1 0.0 0.0 0.01 0.01 0.02
CaO 5.6 55 5.7 5.0 5.1 542 8.04 6.06 732 7.03 1.1 0.7 0.75 0.61 0.55
Na,O 5.0 4.2 4.2 6.1 5.1 479 4.65 4.83 415 477 3.8 34 35 3.47 3.24
K,O 2.0 2.5 2.2 0.4 1.3 152 0.7 23 202 15 4.6 4.9 4.89 4.57 4.92
P,05 0.2 0.2 0.2 0.2 0.2 033 025 0.21 028 024 00 <01 <.01 <.01 <.01
LOI 2.2 0.9 0.7 1.4 1.0 1.3 1.2 1.7 0.8 1.51 0.6 0.4 03 0.9 0.5
Total 99.8 99.6 99.8 99.7 100.0 99.8 992 99.7 99.7 100 99.8 99.8 99.97  99.87  99.93
Cr 40 20 30 30 30 <10 190 20 <10 60 <10 <10 <10 <10 <10
Ni 5 6 6 6 6 6 10 4 6 8 2 1 2 1 2
Co 10 13 13 8 10 16 24 17 21 19 1 1 1 1 < .5
Sc 12 11 11 11 11 9 24 19 21 23 2 2 2 2 2
Cu 5 5 5 11 7 11 8 82 14 8 1 1 1 1 3
Ga 16 18 17 17 17 18 19 20 19 19 15 13 14 15 14
W 1 1 1 1 1 1 0 1 1 1 0 0 0 2 0
Pb 2 2 2 1 1 1 1 3 2 2 1 2 2 2 1
Zn 14 17 26 11 16 17 11 14 17 12 7 3 4 3 5
Cs 1 1 1 1 1 1 1 1 2 1 2 2 3 2 4
Rb 53 70 54 18 36 41 21 67 69 44 189 198 206 186 237
Sr 1046 939 848 1395 1102 933 908 969 711 942 123 114 124 29 32
Ba 479 715 588 140 352 402 212 385 367 310 337 592 598 31 84
Zr 147 157 156 180 169 114 8 135 116 110 68 38 40 51 55
Hf 4 4 5 5 5 3 3 4 3 3 3 2 2 2 3
Nb 12 14 12 16 14 15 27 22 19 23 19 11 11 23 24
Ta 1 1 1 1 1 1 2 2 1 2 3 1 2 3 2
Th 11 9 10 16 12 11 7 13 8 10 25 28 27 25 21
U 3 2 2 3 3 3 4 4 3 4 6 3 4 7 7
Y 16 15 15 17 16 16 35 23 20 29 11 7 7 7 11
La 277 265 251 25.9 25.6 337 439 347 313 391 219 219 24.1 14.3 9.5
Ce 515 522 497 54.3 52.1 58 983 726 59.5 852 423  36.5 39.9 252 16.2
Pr 5.6 5.4 5.0 5.7 53 586 11.14 7.89 6.19 923 3.7 3.5 3.63 2.18 1.51
Nd 213  20.7 195 21.2 20.4 202 425 295 229 344 10.2 100 9.5 5.8 52
Sm 35 31 2.9 35 32 31 7.6 5 4 6.4 1.5 1.3 1.2 0.9 1
Eu 1.1 1.1 1.0 1.0 1.0 1.04 1.6 1.33 1.2 1.4 0.3 0.3 0.36 0.09 0.15
Gd 3.1 2.8 2.8 3.6 33 283 616 3.79 3.8 5.02 1.0 0.9 1.04 0.44 0.81
Tb 0.5 0.5 04 0.5 0.5 047 099 0.71 0.61 0.82 0.2 0.2 0.18 0.15 0.22
Dy 2.7 2.6 2.4 2.5 2.5 223 559 37 3.09 48 1.4 1.0 1.04 0.8 1.28
Ho 0.5 0.5 0.4 0.6 0.5 046 1.04 0.72 0.65 0.98 0.3 0.2 0.2 0.19 0.3
Er 1.6 1.5 1.3 1.6 1.4 139 324 201 178 29 1.0 0.6 0.68 0.7 1.11
Tm 0.2 0.2 0.2 0.2 0.2 0.2 048 033 025 043 0.2 0.1 0.1 0.13 0.2
Yb 1.4 1.4 12 1.9 1.5 142 318 212 1.68 2.64 1.4 0.9 0.79 1.1 1.72
Lu 0.2 0.2 0.2 03 0.2 021 05 0.36 029 045 0.3 0.1 0.14 0.17 0.26
Na,0+K,O 7.0 6.8 6.4 6.6 6.4 631 535 713 6.17 627 83 8.4 8.39 8.04 8.16
A/CNK 1.08 116 1.16 1.12 1.19 119 1.04 1.05 115 1.05 1.2 1.1 1.14 1.12 1.09
Mgi# 58 52 53 59 59 45 61 56 55 58 21 14 16 14 17

Fe,O5* is total iron as Fe;O3 and LOI is loss on ignition
Mg#: molar 100 x (Mg/Mg + Fe*™)

core and rim compositions; (2) plagioclase crystals
have reverse, normal, and oscillatory zoning. (3)
hornblende and augite crystals have normal and
inverse chemical zoning in terms of Mg/(Mg+Fe?")
ratio.

@ Springer

From the combined textural, geochemical whole-
rock, and chemical mineral data presented herein,
there is concurrent evidence to support a magmatic
origin for the common MME occurring in the Kara-
madazi Granitoid; they are interpreted as products of



Int J Earth Sci (Geol Rundsch) (2006) 95:587-607

605

arrested hybridization of mantle-derived mafic magma
that mingled with partly crystallized quartz diorites
magma. Quartz diorites are high-Al TTG in origin, and
are suggested to be formed by mixing of granitoid
produced by partial melting of lower crust, with MME
magma. The leucogranites have geochemical charac-
teristics distinct from the quartz diorites and their en-
claves, and are suggested to be not involved in
producing MME.
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