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Summary A stochastic model of the microstructure of rainfall is used to derive explicit
expressions for the magnitude of the sampling fluctuations in rainfall properties estimated from
raindrop size measurements in stationary rainfall. The model is a marked point process, in
which the points represent the drop centers, assumed to be uniformly distributed in space. This
assumption, which is supported both by theoretical and by empirical evidence, implies that dur-
ing periods of stationary rainfall the number of drops in a sample volume follows a Poisson dis-
tribution. The marks represent the drop sizes, assumed to be distributed independent of their
positions according to some general drop size distribution.

Within this framework, it is shownanalytically howthe samplingdistribution of theestimatorof
any bulk rainfall variable (such as liquid water content, rain rate, or radar reflectivity) in station-
ary rainfall converges froma strongly skeweddistribution to a (symmetrical) Gaussian distribution
with increasing sample size. The relevant parameter controlling this evolution is the average num-
ber of drops in the sample ns. For a given sample size, the skewness of the sampling distribution is
found to bemore pronounced for higher ordermoments of the drop size distribution. For instance,
the sampling distribution of the normalized mean diameter becomes nearly Gaussian for ns > 10,
while the sampling distribution of the normalized rain rate remains skewed for ns � 500.
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Additionally, it is shown analytically that, as a result of the mentioned skewness, the median
Q50 as an estimator of a bulk rainfall variable always underestimates its population value Qp in
stationary rainfall. The ratio of the former to the latter is found to be
Q 50=Q p ¼ 1� b=ns þ Oðn�2s Þ, where b is a constant depending on the drop size distribution.
For bulk rainfall variables this constant is positive and therefore the median always underesti-
mates the population value. This provides a theoretical confirmation and explanation of previ-
ously published simulation results.Finally, relationships between the expected number of
raindrops in the sample ns and the rain rate are established for different parametric forms of
the raindrop size distribution. These relationships are first compared to experimental results
and then used to provide examples of sampling distributions of bulk rainfall variables (in this
case rain rate) for different values of the average rain rate and different integration times
of the disdrometric device involved (in this case a Joss–Waldvogel disdrometer). The practical
relevance of these results is (1) that they provide exact solutions to the sampling problem dur-
ing (relatively rare) periods of stationary rainfall (e.g., drizzle), and (2) that they provide a
lower bound to the magnitude of the sampling problem in the general situation where sampling
fluctuations and natural variability co-exist.

�c 2005 Elsevier B.V. All rights reserved.
Introduction

There are many different types of instruments available to
estimate raindrop size distributions. Besides the intrinsic
interest these measurements have from a meteorological
point of view, they also serve to establish relationships be-
tween different bulk rainfall variables such as the liquid
water content W, the rain rate R, and the radar reflectivity
factor Z, hereafter simply referred to as ‘‘reflectivity’’ (see
Jameson and Kostinski, 2001b, for a recent discussion of
some fundamental issues involved in Z–R relations). Rela-
tionships determined in this way are a crucial step in algo-
rithms to translate weather radar measurements aloft into
rain rate estimates at the ground (e.g., Battan, 1973). Dur-
ing a rainfall event, bulk variables change as a consequence
of natural event evolution (often referred to as ‘‘natural
variability’’), but also because disdrometric instruments
have limited sampling volumes (referred to as ‘‘sampling
fluctuations’’). In other words, apart from specific instru-
mental uncertainties (such as deadtime effects), observed
fluctuations must be due ‘both to statistical sampling errors
and to real fine-scale physical variations which are not read-
ily separable from the statistical ones’ (Gertzman and Atlas,
1977). Although it is in principle not possible to distinguish
between both types of variation (as argued by Jameson
and Kostinski, 2001c), a better knowledge of the magnitude
of the variability associated with sampling problems alone,
that is of the fluctuations in bulk rainfall variables in the ab-
sence of natural variability, would certainly provide a step
in the right direction. The objective of this paper is to pro-
vide a mathematical framework to quantify such fluctua-
tions analytically. This will provide a lower bound to the
magnitude of sampling problems in the general situation
where sampling fluctuations and natural variability co-exist.

The aim behind the various studies that have been de-
voted to sampling fluctuations in disdrometric measure-
ments is precisely the one just mentioned, namely to try
to separate between natural variability and sampling fluctu-
ations (Gertzman and Atlas, 1977). In this study, we analyze
sampling fluctuations by modelling rainfall as a so-called
marked point process, which is possibly the simplest model
that is able to account for the discrete raindrop structure of
rainfall (Smith, 1993). The mathematical description of the
model is reviewed in detail in the following section. The ba-
sic model hypotheses are spatial homogeneity and the ab-
sence of drop interaction. This corresponds to the
assumption of stationary (steady) rainfall, where all natural
variability is absent and only sampling fluctuations are pres-
ent (see Jameson and Kostinski, 2002 for a recent discussion
of the conditions for ‘‘steady rain’’). Besides having an
intrinsic interest in that the steady rain hypothesis provides
a lower bound to sampling problems in general, as explained
above, it will be shown in the following section that periods
of prolonged quasi-steady rain do indeed occur in nature.
This shows that our derivations are not merely an academic
exercise. Our statistical framework not only allows a unifi-
cation of previous theoretical studies on sampling fluctua-
tions in rainfall observations (e.g., Cornford, 1967, 1968;
Joss and Waldvogel, 1969; Gertzman and Atlas, 1977), but
also provides analytical results that were known previously
only from Monte-Carlo simulations on the basis of the
marked point process model (Smith et al., 1993). Among
the most important results we obtain are (1) the exact
behavior, in stationary rainfall, of the sampling distribution
of the estimator of any bulk rainfall property (such as liquid
water content, rain rate, or radar reflectivity) as the sample
size increases, and (2) the dependence of the median esti-
mate of such a bulk rainfall variable from a disdrometric
measurement on the corresponding sample size, again in
stationary rainfall.

Our results apply to any disdrometric instrument. Never-
theless, a distinction between two types of devices must be
considered because the interpretation of the sampling vol-
ume is different in each case. The first type of device is that
with a constant sampling volume Vs independent of drop
diameter. This type of apparatus can be looked at as making
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an instantaneous image (a ‘‘snapshot’’) of a particular rain-
fall volume. Consequently, it is directly suited to estimate
concentrations (such as the liquid water content W and
the reflectivity Z). The second type of device, on the other
hand, detects drops arriving a particular sampling surface.
This type is therefore directly suited to estimate fluxes
(such as the rain rate R). In this case, the effective sampling
volume depends on the size of the raindrops because for a
given sampling time (that is the time that the surface is ex-
posed to the rainfall) drops with greater velocities explore a
greater volume than those moving slower (Gertzman and At-
las, 1977). For both types of instruments, the relevant quan-
tity that characterizes the sampling fluctuations is the
average number of drops in the sampling volume (1st type)
or the average number of drops arriving at the sampling sur-
face during the sampling interval (2nd type). It is important
to mention here that the drop concentration measured by
both instruments is not the same, although they are related,
as will be shown in ‘‘Statistical model’’.

One property that has been assumed frequently is the
Gaussianity (normality) of the probability density of the
rainfall variable estimators obtained from disdrometric
data (e.g., Joss and Waldvogel, 1969; Gertzman and Atlas,
1977). In the (symmetric) Gaussian case, the coefficient of
variation (the ratio between the standard deviation and
the mean value) completely determines the relative error
due to sampling uncertainties. However, it is well known
that for small sampling volumes, even during stationary
rainfall, the probability density function shows an amount
of asymmetry (e.g., Smith et al., 1993). In this paper, we
show analytically how the distribution of the estimator of
any bulk rainfall variable obtained from a disdrometric
measurement converges to a Gaussian distribution when
the average number of drops sampled approaches infinity.
Although one might have anticipated this result on the ba-
sis of the central limit theorem, it has to the best of our
knowledge never been demonstrated before in this con-
text. This may be due to the relatively advanced level of
statistics involved in the problem. As opposed to standard
sampling situations, where the number of samples is known
(e.g., Kendall and Stuart, 1979), in the case of raindrop
sampling we deal with a situation where the number of
samples itself is a random variable. This gives rise to so-
called random sums of random variables (Cramér, 1946).
The expansion employed is particularly useful to obtain
the dependence of the median of the estimator as a func-
tion of the average number of drops sampled. The paper
by Smith et al. (1993) has stimulated us to calculate this
dependence. The simulation results of that paper show
that the skewness of the sampling distributions for small
samples produces an underestimation of the bulk rainfall
properties. Our calculations provide a theoretical confir-
mation of these results.
Statistical model

Poisson hypothesis

In most precipitation studies, raindrop populations have
been characterized by the drop size distribution N(D) only.
This quantity gives the average number of drops per unit vol-
ume of air and per unit diameter [L�4] (see Porrà et al., 1998;
Jameson and Kostinski, 2001c for fundamental discussions on
the interpretation of the concept of a raindrop size distribu-
tion). It is an average because both the number of drops in a
volume and their diameters fluctuate. Hence, any descrip-
tion of rainfall at the level of raindrops has to include two
types of fluctuations: the statistics of the distribution of
drops in space and the distribution of their sizes.

We assume that drops are distributed uniformly (in a sta-
tistical sense, that is ‘as uniformly as randomness allows’) in
a given volume or, equivalently, that the number of drops is
distributed according to a Poisson distribution. This is the
simplest model that is possible. The Poisson homogeneity
hypothesis forms the basis of many previous studies dealing
with sampling fluctuations in rainfall observations (e.g.,
Cornford, 1967, 1968; Joss and Waldvogel, 1969; de Bruin,
1977; Gertzman and Atlas, 1977; Stow and Jones, 1981;
Wirth et al., 1983; Wong and Chidambaram, 1985; Chandr-
asekar and Bringi, 1987; Hosking and Stow, 1987; Chandr-
asekar and Gori, 1991; Smith et al., 1993; Bardsley, 1995).
There exist traces of empirical evidence for the Poisson
homogeneity hypothesis during stationary rainfall. For in-
stance, Kostinski and Jameson (1997) find indications for
Poisson behavior during ‘a time of unusually constant flux’.
Uijlenhoet et al. (1999) find that ‘for moderate rain rates
the arrival rate fluctuations of the raindrops which contrib-
ute most to rain rate and radar reflectivity factor behave
according to Poisson statistics [in stationary rainfall]’.

As additional empirical evidence for the Poisson hypoth-
esis in stationary rainfall, Figs. 1 and 2 present the results of
a re-analysis of the dataset of Uijlenhoet et al. (1999). This
dataset, which has been kindly provided to us by Mr. R.J.
Moore (Centre for Ecology and Hydrology, UK), has been col-
lected as part of the NERC (National Environment Research
Council) Special Topic HYREX, a hydrological radar experi-
ment organized in the United Kingdom, at the Bridge Farm
Orchard site on 14 February 1995 (Moore et al., 2000).
The dataset concerns a 35 min period of roughly uncorre-
lated fluctuations around a constant mean rain rate of about
3.5 mm h�1, containing 210 consecutive 10 s raindrop size
distributions (comprising a total of 6281 raindrops). The
raindrop counts, collected using a 50 cm2 Paired-Pulse Opti-
cal Disdrometer (Illingworth and Stevens, 1987), are distrib-
uted among 16 diameter intervals of 0.21 mm width. The
average wind speed during the event amounted approxi-
mately 3 m s�1. The empirical frequency function calcu-
lated from the 210 observations has been compared for
each raindrop diameter interval with the theoretical fre-
quency function expected for a Poisson distribution with
the same mean. Fig. 1 shows the results for the first 6 inter-
vals, corresponding to diameters from 0.51 to 1.77 mm (Uij-
lenhoet, 1999). This analysis demonstrates that the Poisson
hypothesis is closely obeyed for all diameter intervals ex-
cept the first three, which show significant deviations from
the Poisson distribution based on the values of the disper-
sion index (see Eq. (3)) and the v2 goodness-of-fit statistic.
The fit with the Poisson frequency function becomes nearly
perfect for the last diameter intervals (which are not shown
here as they provide little extra information). Fig. 2 shows
the corresponding empirical autocorrelation functions,
which indicate that the raindrop counts in each of the diam-
eter intervals exhibit nearly no temporal correlation, as
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Figure 1 Empirical (crosses) and theoretical Poisson (circles, Eq. (2)) frequency functions of raindrop counts for diameters
between 0.51 and 1.77 mm (24 degrees of freedom). Error bars indicate 95% confidence limits. Also indicated are the average
number of raindrops per 10 s interval, the Poisson dispersion index (see Eq. (3)) and the v2 goodness-of-fit statistic (adapted from
Uijlenhoet et al., 1999).
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would be the expected for a homogeneous Poisson process
(only some first-order, that is 10 s, autocorrelations show
significant deviations from zero). As such, the analyzed
dataset can be considered to represent more than half an
hour of quasi-Poissonian rainfall.

Although this example shows that rainfall observations
may occasionally behave according to Poisson statistics dur-
ing rare periods of exceptional stationarity, it now becomes
more and more clear that rainfall exhibits pronounced spa-
tial and temporal drop clustering. Since the homogeneous
Poisson process is not able to cope with these types of clus-
tering, a more versatile description of raindrop statistics is
needed. There exist basically two approaches to tackling
this problem. The first consists of generalizing the restric-
tive homogeneous Poisson process (which has a constant
mean) to a Poisson process with a randomly varying mean,
that is a so-called doubly stochastic Poisson process or
Cox process (e.g., Cox and Isham, 1980 for a summary of
the properties of this type of stochastic point process). This
approach was pioneered by Sasyo (1965) and has more re-
cently been used by Smith (1993). It has been put in an en-
tirely new perspective in a recent series of articles
(Kostinski and Jameson, 1997, 1999; Jameson and Kostinski,
1998, 1999, 2000; Jameson et al., 1999). An alternative ap-
proach is to abandon the Poisson process framework alto-
gether and replace it with a (multi-)fractal approach.
Examples of the latter are a box counting analysis of the
spatial distribution of raindrops (Lovejoy and Schertzer,
1990) and fractal analyses of the temporal distribution of
raindrop arrivals (Zawadzki, 1995; Lavergnat and Golé,
1998). It should be noted that the statistical significance
of the empirical support in favor of the (multi-)fractal
hypothesis provided by Lovejoy and Schertzer (1990) has re-
cently been put into question by several authors (Jameson
and Kostinski, 1998; Gabella et al., 2001; Jameson and
Kostinski, 2001a; Gabella and Perona, 2001). In fact, spatial
distributions of raindrops measured using stereo-photogra-
phy indicate that the (multi-)fractal character of rain, if
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Figure 2 Empirical autocorrelation functions of 10 s raindrop counts for diameters between 0.51 and 1.77 mm (solid lines)
together with approximate 95% confidence limits (dashed lines). Also indicated are the first order autocorrelation coefficient and the
scale of fluctuation (which can be interpreted as a decorrelation time), calculated as the integral under the autocorrelation function
(Vanmarcke, 1983).
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present at all, is more clearly detectable in the spatial dis-
tribution of the liquid (rain)water content than in the spa-
tial distribution of the drops per se – which has been
found to be relatively homogeneous (Desaulniers-Soucy
et al., 2001; Lovejoy et al., 2003). The main difference be-
tween the two approaches is that doubly stochastic Poisson
process models tend to produce clustering of raindrops on
certain distinct, predefined spatial and/or temporal scales,
whereas (multi-)fractal processes are associated with clus-
tering of raindrops on all scales. Although the evidence in
support of the former has recently been more convincing
than that in support of the latter, it seems that the discus-
sion between the two has not yet come to a definite conclu-
sion. Fabry (1996) argues that gravitational mixing
(associated with the differential fall speeds of the rain-
drops) tends to lead to homogeneous rainfall at the smallest
spatial scales, whereas (fractal) scaling regimes exist at lar-
ger scales.
However, Jameson and Kostinski (1998) have recently
made an important point by arguing that ‘evidence of
non-clustering, Poissonian structure conflicts with any
ubiquitous fractal description of rain’. The logical conse-
quence of this is that both their (Kostinski and Jameson,
1997) and our (Uijlenhoet, 1999; Uijlenhoet et al., 1999)
previously mentioned traces of empirical evidence in favor
of a Poissonian structure during conditions of stationary
rainfall provide arguments to reject the (multi-)fractal
hypothesis. This shows that there is no conflict whatsoever
between our approach and that put forward in the previ-
ously mentioned series of articles by Jameson and Kostin-
ski, as one might be tempted to think at first sight. Our
(admittedly more restrictive) homogeneous Poisson pro-
cess framework merely provides a special (limiting) case
of their (more general) doubly stochastic Poisson process
framework. The practical relevance of our results is there-
fore (1) that they provide exact solutions to the sampling
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problem during (relatively rare) periods of stationary rain-
fall (e.g., drizzle), and (2) that they provide a lower
bound to the magnitude of the sampling problem in the
general situation where sampling fluctuations and natural
variability co-exist. In the near future, we intend to gen-
eralize the mathematical framework presented in this pa-
per to be able to cope with non-homogeneous Poisson
processes.
Mathematical formulation

Within the homogeneous Poisson model, the density of
drops per unit volume of air NT, [L

�3], is the only parameter
required to characterize the spatial distribution of drops.
The expected number of drops in a sample volume Vs,
[L3], becomes

ns ¼ V sNT; ð1Þ

and the probability that k drops are contained in that vol-
ume is given by the Poisson distribution PnsðkÞ, that is (Mood
et al., 1974),

Probfk drops in V sg ¼ PnsðkÞ ¼
nk
s e
�ns

k!
. ð2Þ

An important property of the homogeneous Poisson process
is that for non-overlapping sample volumes of the same size
Vs, these distributions are independent and identical (Cox
and Isham, 1980). Another property of the Poisson model
is that the mean of number of drops is equal to its variance,
that is,

E½k� ¼ Var½k� ¼ ns. ð3Þ

This property of the Poisson distribution can be used to de-
fine a so-called dispersion index as the ratio of the variance
of the number of drops to the corresponding mean (e.g.,
Cox and Isham, 1980). For a homogeneous Poisson process
this index obviously equals one. Significant deviations from
one observed in real data can then be interpreted as indica-
tions for deviations from homogeneous Poisson behavior
(see Fig. 1).

The distribution of drop diameters will be characterized,
in general, by a probability density function p(D), [L�1],
such that p(D)dD yields the probability that the diameter
of a drop falls in the interval (D,D + dD]. For instance, Mar-
shall and Palmer (1948) suggested that drop diameters fol-
low an exponential distribution. The drop size distribution
N(D) can be written in terms of NT and the distribution of
sizes p(D) as

NðDÞ ¼ NTpðDÞ; ð4Þ

because the drop density NT is the integral of the drop size
distribution (DSD) over all drop diameters. This obvious no-
tion was first employed by Chandrasekar and Bringi (1987)
for the special case of a gamma form for N(D) and by Sem-
pere Torres et al. (1998, see the appendix in that paper) for
the general case of any parametric form for N(D). Porrà
et al. (1998) discuss the fundamental hypotheses on which
Eq. (4) is based. More recently, this product representation
of N(D) has been employed by Kostinski and Jameson (1999)
and by Uijlenhoet (1999).
The model just introduced is a marked point process in
which the point process represents the positions of drops
in the sample volume and the mark associated with a drop
represents its diameter (Smith, 1993). This sample-volume
process can be transformed into an arrival process by con-
sidering the arrival of drops at a given surface during a given
period of time. The connection is established by assuming
(1) that drops fall vertically downward at a terminal velocity
that depends exclusively on their diameter and (2) that
drops do not interact with each other. The absence of inter-
action together with the Poisson distribution of drops in
space implies that the inter arrival times of drops are expo-
nentially distributed (Smith, 1993). Thus, the probability
density function /(t), [T�1], of the interval between the
arrivals at the sampling surface of two consecutive drops
reads

/ðtÞ ¼ kSe�kSt; ð5Þ

where k, [L�2T�1], is the arrival rate and S, [L2], is the sam-
pling surface. The parameter that characterizes the arrival
process is then the mean arrival rate k, which is the ex-
pected number of drops arriving at the sampling surface
per unit area and per unit time. The arrival rate can be com-
puted in terms of the drop size distribution N(D) and the
drop terminal fall velocity v(D) as

k ¼
Z

vðDÞNðDÞdD ¼ NThvi; ð6Þ

where the integral extends over all drop diameters and hvi is
the average terminal velocity of drops in the sample volume

hvi ¼
Z

vðDÞpðDÞdD. ð7Þ

The stochastic process of the arrival of drops at a given sur-
face during a given period of time obtained in this way is
again a marked point process, in which the arrival times
now constitute the point process (in time) and the diameter
of each drop is its corresponding mark. The exponential dis-
tribution (Eq. (5)) completely determines the statistics of
the arrival point process. In fact, this process is also of
the Poisson type because the number of drops arriving at
the sampling surface S during a given period of time t is dis-
tributed according to a Poisson distribution as well. The ex-
pected number of drops ns that will reach the surface during
the period t is given by

ns ¼ kSt ð8Þ

and the probability that k drops reach the surface over that
period of time is also given by Eq. (2), with ns calculated by
Eq. (8).

The probability density of the sizes of drops arriving at
the sampling surface differs from p(D) and will be denoted
by pA(D). The relation between them reads

pAðDÞ ¼
vðDÞ
hvi pðDÞ. ð9Þ

It is now possible to define a raindrop size distribution for
flux processes, which will be denoted by NA(D) to distinguish
it from N(D), such that NA(D)dD represents the expected
number of raindrops with diameters between D and D + dD
arriving at a surface per unit area and per unit time (Uijlen-
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hoet and Stricker, 1999; Uijlenhoet, 2001). In terms of pA(D)
and k, the mean arrival rate, the raindrop size distribution
NA(D) is

NAðDÞ ¼ kpAðDÞ; ð10Þ

which is the flux process equivalent of Eq. (4). Although
there is no reason to privilege one of the two DSD definitions
over the other, the reality is that N(D) is the most widely
used expression. It seems logical to use N(D) when analyzing
processes related to a sample volume (such as measuring ra-
dar reflectivity) and NA(D) when analyzing processes involv-
ing fluxes (such as rain rate measurement).

All instruments used to measure raindrop diameters can
be attached naturally to one of the two forms of the rain-
drop size distribution. In general, disdrometric devices be-
long to two types, as was discussed in the ‘‘Introduction’’:
(1) volume integrating instruments and (2) time integrat-
ing devices. The first type of instrument yields the number
of drops and their diameters in a particular sample volume
at a given moment. The raindrop camera (Mueller, 1966;
Smith, 1993), the optical array probe (Knollenberg,
1970), hydrometeor detection and ranging using stereo-
photography (Desaulniers-Soucy et al., 2001; Lovejoy
et al., 2003), and the VPR (vertically pointing Doppler ra-
dar) (Hauser and Amayenc, 1981; Kollias et al., 2002) all
work in this way. These instruments are suited to provide
direct estimates of N(D). The other type of instrument
measures the diameters of raindrops that reach a sampling
surface during a period of time. The flour pans and sieves
method (Laws and Parsons, 1943), the dyed filter (or blot-
ting) paper method (Marshall and Palmer, 1948), the disd-
rometer RD-69 (Joss and Waldvogel, 1967), the optical
spectro-pluviometer (OSP) (Salles et al., 1998), and the
2-D video disdrometer (2DVD) (Kruger and Krajewski,
2002; Bringi et al., 2003), belong to this kind. The drop
size distribution NA(D) can be estimated more easily from
this type of instrument than N(D).

General formalism

In homogeneous rainfall, measured rainfall properties be-
come random variables due to sampling fluctuations. The
aim of disdrometric measurements is to infer these proper-
ties using the appropriate statistical estimator. In general,
the estimator of any bulk rainfall variable Q can be ex-
pressed as

Q ¼
Xn
i¼1

hQ ðDiÞ; ð11Þ

where Di is the diameter of the ith drop measured in a sam-
ple of n drops and hQ is a function describing the contribu-
tion of one drop with a given diameter to Q (e.g., Eq. (12)).
The variable Q is random because n and each Di are random
variables.

We assume that the random variables Di are independent
and identically distributed (iid), and independent of n. The
probability density function of Di depends on the type of de-
vice used to measure the diameter. For volume integrating
instruments (type 1), the diameters Di are distributed
according to the probability density function of raindrop
diameter p(D), defined in Eq. (4), whereas for time integrat-
ing devices (type 2) this density is given by pA(D), Eq. (9).
We have justified in the previous section that the number
of drops sampled n is a Poisson random variable. The mean
of n, ns, depends on the sampling volume Vs, Eq. (1), for
instruments of type 1, or on the sampling interval t and sur-
face S, Eq. (8), for the second type of device.

For example, the liquid water content W of a sample ta-
ken by a drop-camera is measured simply by summing up the
masses of all drops in the sample. The number of drops
counted gives n and the function h is the expression of drop
mass as a function of diameter divided by the sampling vol-
ume Vs. In this example, Q = W and the function hQ reads

hWðDÞ ¼
pqwD

3

6V s
; ð12Þ

where qw [ML�3] is the liquid water density. For given units
of the quantities in Eq. (12) a numerical factor may have to
be included in the definition of hW(D). Given the definition
of hW(D), Eq. (11) reduces to the usual W-estimator

Ws ¼
pqw

6V s

Xn
i¼1

D3
i . ð13Þ

The subscript s means that this quantity provides a sample
estimate of W. The estimators of most common bulk rain-
fall properties obtained from disdrometric measurements
(rain rate, reflectivity and kinetic energy flux density,
among others) can be expressed in the form of Eq. (11)
by using a convenient function hQ (Uijlenhoet and Stricker,
1999).

The aim of this paper is to study the properties of the
random variables Q that follow from the associated proba-
bility density function f(q). The method to study the func-
tion f is based on the hypothesis that the diameters of the
sampled drops are completely independent of each other
and of n. This assumption appears in addition to the
hypothesis of the homogeneous drop distribution in space
used to obtain the Poisson law for the number of drops
sampled. According to these hypotheses, Q is the sum of
a random number n of iid random variables h = h(D). The
probability density of D will be denoted by fd(D); thus
fd(D)dD simply gives the probability that a raindrop has a
diameter that falls in the interval (D,D + dD). As we have
explained in ‘‘Statistical model’’, fd(D) coincides with
p(D) for type 1 instruments and with pA(D) for devices of
type 2. In terms of fd(D), the probability density of h can
be written as

pðhÞ ¼ dD

dh

����
����fdðDÞ; ð14Þ

where the diameter D on the right-hand side has to be taken
as a function of h. We have assumed that h is a monotonous
function of the diameter D, such as in Eq. (12), so that it can
be inverted to provide D(h), otherwise Eq. (14) becomes
more complicated.

As the distribution of raindrop sizes is continuous, the
random variables Q are continuous random variables as
well. However, the probability density function of Q, f(q),
has an atom at q = 0, corresponding to the case where no
drop is detected (n = 0). In other words, there is a finite
probability that the random variable Q takes exactly the va-
lue 0. Therefore, the probability density function (pdf) of Q
will have the form



72 R. Uijlenhoet et al.
fðqÞ ¼ p0dðqÞ þ fcðqÞ. ð15Þ
The first term on the right-hand side, with the Diraq delta
function, accounts for the probability that Q = 0 and p0 gives
the corresponding probability that no drop is detected. The
probability p0 decreases exponentially as e�ns because of
the Poisson distribution assumption – see Eq. (2). For
ns P 10, p0 can be neglected as it is less 5 · 10�3%. The sec-
ond term on the right-hand side gives the continuous part of
f(q), which as we have just shown becomes the unique con-
tribution to f(q) for ns P 10.

Sampling distributions

Appendix A is devoted to the derivation of the characteristic
function (cf) of the general estimator of any bulk rainfall
variable Q (Eq. (11)), that is the Fourier transform of its
pdf f(q) (Eq. (15)). The cf is useful for calculating the mo-
ments and cumulants of the estimator. In Appendix B, the
so-called Edgeworth expansion of f(q) is derived (Eq.
(B.10)). As an example of the utility of the Edgeworth
expansion of the probability density of an estimator Q, we
will analyze the sampling distribution of the estimator of
D1, the first moment of the drop size distribution N(D),
and of R*, the fourth moment of the drop size distribution,
a quantity closely related to the rain rate (Joss and Gori,
1978). We assume that the drop size distribution N(D) corre-
sponds to a Marshall–Palmer exponential distribution (Mar-
shall and Palmer, 1948) without diameter truncation,

NðDÞ ¼ N0 e
�KD; D 2 ð0;1Þ. ð16Þ

From N(D), the probability density function of the drop
diameter, fd(D), and the drop concentration NT are readily
obtained (Uijlenhoet and Stricker, 1999), namely

fdðDÞ ¼ Ke�KD; ð17Þ

and

NT ¼
N0

K
. ð18Þ

The pdf fd(D) coincides with p(D) because we are dealing
with a sample-volume process. The drop concentration
times the sampling volume Vs yields the expected number
of drops in the sample, ns = VsNT, which will be the param-
eter characterizing the sample size.

The population values of the quantities measured are
computed as moments of the drop size distribution N(D),
Eq. (16). Let us first analyze the first moment D1. The pop-
ulation value of this property, denoted by the subscript p, is

D1;p ¼
Z 1

0

DNðDÞdD ¼ NT

K
¼ ns

KV s
. ð19Þ

The estimator

D1;s ¼
Pn

i¼1Di

V s
ð20Þ

provides a sample estimate of D1 when a population is sam-
pled by observing the drops in some sampling volume Vs.
The ratio of sample to population value has the following
simpler expression:

D1;s

D1;p
¼
Pn

i¼1KDi

ns
. ð21Þ

This ratio will be denoted by g.
We now obtain the sampling distribution of g. Note that g
is an estimator of the class defined in Eq. (11) with the fol-
lowing expression for the function h

hgðDÞ ¼
KD

ns
. ð22Þ

The probability density function of hg is obtained from the
pdf of D, fd(D), and reads (Eq. (14))

pðhÞ ¼ ns e
�nsh. ð23Þ

The sampling distribution of g can be calculated exactly be-
cause the convolution of n exponential densities is a gamma
density of order n. This is an exceptional case which we use
here to test how well the Edgeworth expansion performs.
The exact expression for p(g) is

pðgÞ ¼ e�nsdðgÞ þ nsffiffiffi
g
p e�nsð1þgÞI1ð2ns

ffiffiffi
g
p Þ; ð24Þ

where I1 is the modified Bessel function of order 1 (Abramo-
witz and Stegun, 1972). The term with the Diraq delta func-
tion takes into account the probability that there is no drop
in the sample, and therefore g = 0 (Eq. (15)). As discussed in
‘‘General formalism’’, this term is negligible for ns greater
than 10. When ns goes to infinity, p(g) converges to a Gauss-
ian with mean equal to 1 and standard deviation r equal toffiffiffiffiffiffiffiffiffiffi
2=ns

p
pðgÞ !ns!1

ffiffiffiffiffiffi
ns

4p

r
exp � ns

4
ðg� 1Þ2

h i
. ð25Þ

The mean and the variance were computed from Eqs. (A.11)
and (A.12) after calculating the moments of function h,

hhki ¼
Z 1

0

hkpðhÞdh ¼ k!

nk
s

. ð26Þ

The limiting sampling distribution of g becomes a delta
function at g = 1 because the standard deviation converges
to zero.

Fig. 3 displays the exact pdf of g (solid line, Eq. (24)),
the Edgeworth expansion of it, up to order n�3=2s (dotted
line, Eq. (B.10)), and the Gaussian approximation (long
dashed line, Eq. (25)) for ns = 10. Note that the skewness
of the exact distribution is marked. The Edgeworth expan-
sion (dotted line) reproduces it quite well, whereas the
Gaussian approximation clearly cannot account for this
asymmetry. Note, however, the anomalous behavior of
the Edgeworth expansion in the tails, where it becomes
even negative for g < 0 (Cramér, 1946; Kendall and Stuart,
1977). This fact does not weaken the utility of the series as
an approximation to the actual distribution in the central
region, as becomes evident from the plot. In addition,
the quantile values can also be estimated much better
from this series than from the Gaussian approximation pro-
vided the quantile is not too close to 0 (say 10%) or to 1
(say 90%).

The same figure also shows the exact sampling pdf of g
for ns = 40 (short dashed line). For this sample size, the sam-
pling distribution already becomes nearly Gaussian. The
estimator of g , Eq. (21), is unbiased because its expected
value is 1 regardless of the sample size. The median of
the estimate, however, depends on ns. The discussion of
the properties of the median of an estimator Q is postponed
to the following section.
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Figure 3 The exact sampling probability density function of g
(�), the ratio of the sample to the population value of the first
moment of the raindrop size distribution N(D) (solid line, Eq.
(24)), the Edgeworth series expansion of it up to order n�3=2s

(dotted line, Eq. (B.10)), and the Gaussian approximation (long
dashed line, Eq. (25)) when ns (�), the expected number of
raindrops in the sample, equals 10. In addition, the exact
sampling probability density function of g for ns = 40 (short
dashed line).
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We have explained above that the Edgeworth expansion
is asymptotic and therefore there is no warranty that it will
give a useful approximation for all finite ns. Indeed, prob-
lems (regions with negative values and non-unimodal behav-
ior of the probability density function) appear when the
skewness c of the sampling distribution, as defined by Eq.
(A.14), is too high (c > 1) (Cramér, 1946; Kendall and Stuart,
1977). It follows from Eq. (A.14) that the estimators of the
moments of the drop size distribution show this handicap
more strongly as the order of the moment increases. As an
example, we analyze the case of the 4th order moment,
D4, which will be denoted R* because of its similarity to
the rain rate (Smith et al., 1993).

The ‘‘normalized rain rate’’ ðR�s=R
�
pÞ can be written as an

estimator Q with a function h given by

hðDÞ ¼ K4D4

24ns
. ð27Þ

Using Eq. (A.14), the coefficient of skewness of the estima-
tor of the normalized rain rate, when the drop size distribu-
tion is exponential without truncation, reads

c ¼ 12!

8!3=2
ffiffiffiffiffi
ns

p ¼ 59:16ffiffiffiffiffi
ns

p . ð28Þ

This value implies that the Edgeworth expansion of the
probability density of the estimator of the 4th order normal-
ized moment starts to provide practical results for sample
sizes as large as ns = 59.162 � 3500 (for which c � 1). The
reason for such a big number lies in the tail of the exponen-
tial drop size distribution, which extends to infinity. To ob-
tain more realistic results, it is necessary to impose a
maximum diameter and truncate the exponential fd(D),
Eq. (17). We choose

Dmax ¼
10

K
; ð29Þ

following the study on sampling variability of Smith et al.
(1993). Hence, Dmax is chosen such that KDmax is a constant
(independent of rain rate, for example). In this way, the pdf
of the drop diameters, fd(D), is hardly modified and reads

fdðDÞ ¼
Ke�KD

1�e�10 ; 0 < D < 10=K;

0; otherwise.

(
ð30Þ

Note that the denominator (1 � e�10) is the normalization
factor due to the truncation effect. The moments of the
diameter according to this distribution are much smaller
than those obtained when calculated using the untruncated
exponential function, particularly those of higher orders
(such as R* and Z).

The diameter truncation, Eq. (29), changes the popula-
tion value of R* to

R�p ¼
Z 10=K

0

D4NT
Ke�KD

1� e�10
dD ¼ Cð5; 10Þns

Cð1; 10ÞV sK
4

¼ 23:29ns

V sK
4
; ð31Þ

where C(n,x) represents the incomplete gamma function
(Gradshteyn and Ryzhik, 1980)

Cðn; xÞ ¼
Z x

0

tn�1e�t dt. ð32Þ

It is worth mentioning that if Dmax would be infinitely large
(the untruncated case), the coefficient would be 24 (4!) in-
stead of 23.29, that is a difference of only 3%. The normal-
ization factor 1 � e�10 has been written as C(1,10) in the
expression of R�p. Thus, the normalized rain rate becomes

R�s
R�p
¼
Pn

i¼1K
4D4

i

23:29ns
. ð33Þ

The coefficient of skewness of this estimator is

c ¼ Cð13; 10Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1; 10Þ

p
Cð9; 10Þ3=2 ffiffiffiffiffi

ns
p ¼ 22:63ffiffiffiffiffi

ns
p ; ð34Þ

which is less than half the value obtained when no
truncation was considered, Eq. (28). From the new coeffi-
cient of skewness, it follows that the Edgeworth expan-
sion will yield reasonable results for samples sizes
around ns = 22.632 � 500 or greater (for which c < 1).
Fig. 4 shows the Edgeworth series of the pdf of the nor-
malized rain rate for ns = 500 as a dotted line. When com-
pared with the Gaussian approximation (dashed line), it
becomes clear that the skewness of the estimator cannot
be neglected, not even for a mean sample size as large as
500.

It has been shown by simulation (Smith et al., 1993)
that the sampling distribution of the normalized rain rate
closely resembles a lognormal distribution for small sample
sizes. Although we know now that these distributions are
not exactly lognormal, we have plotted in Fig. 4 the log-
normal pdf
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Figure 4 The Edgeworth series expansion of the sampling
probability density function of the normalized rain rate for an
expected sample size ns = 500 (dotted line), the Gaussian
approximation (dashed line) and the lognormal approximation
(solid line, Eq. (35)).
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fapðqÞ ¼
1ffiffiffiffiffiffi
2p
p

rq
exp � 1

2

ln q � l
r

� �2
" #

ð35Þ

with l = �0.04725 and r = 0.3074, which imply the same
mean (1.00) and variance (0.09911) as the normalized rain
rate for ns = 500. Apart from the tail for values less than
0.4, the lognormal approximation (solid line) and the Edge-
worth expansion fit quite well, particularly in the region
around the mode.
The median of Q

We have shown in Appendix A how to calculate the mo-
ments and the cumulants of the estimator Q. In some
cases, the median Q50 is preferred to the mean even
though it is a biased estimator of the population values.
Unfortunately, the computation for the median is not as
simple as that for the mean. Nevertheless, using the Edge-
worth expansion, it is possible to deduce the behavior of
Q50 as a function of ns (see Appendix C). An immediate
consequence of the obtained expression for the median
(Eq. (C.10)) is that Q50 always underestimates the popula-
tion value because hh3i is positive for all rainfall variable
estimators. The normalized ratio between Q50 and hQi
reads

Q 50

hQi ¼ 1� hh3i
3!hh2ihhins

þ Oðn�2s Þ; ð36Þ

where we have taken into account that hQi = nshhi.
Smith et al. (1993) have simulated a raindrop popula-

tion to estimate the ratio between the median and the
mean for several bulk rainfall properties. Our theoretical
result can be compared with their simulations when the
sample size ns is large enough to justify the use of the
Edgeworth expansion. Indeed, we will demonstrate this
convergence for two rainfall variables: the liquid water
content (Eq. (13)) and the rain rate R* defined in the pre-
vious section.

The normalized values of the liquid water content and
of R* are defined, according to Smith et al. (1993), as
follows:

Ws

Wp
¼
Pn

i¼1K
3D3

i

6ns
; ð37Þ

R�s
R�p
¼
Pn

i¼1K
4D4

i

24ns
. ð38Þ

In these expressions, the subscripts s and p denote the sam-
ple and the population values, respectively. Drop diameters
are distributed according to the truncated exponential gi-
ven by Eq. (30). Using this distribution, the population value
of the rain rate R* was already obtained (Eq. (31)). The pop-
ulation value of the liquid water content is obtained by the
same method and reads

Wp ¼ 5:938
pqwns

6V sK
3
. ð39Þ

Note that the ratios given by Eqs. (37) and (38) are not ex-
actly the ratio of sample to population values but the ratio
calculated without taking into account the truncation of the
drop size distribution. This feature makes the expected val-
ues of the normalized ratios, Eqs. (37) and (38), slightly
lower than 1. Precisely, these values are:

Ws

Wp

� �
¼ Cð4; 10Þ

6Cð1; 10Þ ¼ 0:9897; ð40Þ

R�s
R�p

* +
¼ Cð5; 10Þ

24Cð1; 10Þ ¼ 0:9708; ð41Þ

where C(n,x) is the incomplete gamma function defined
previously (Eq. (32)).

In Fig. 5, we compare the simulation values obtained in
(Smith et al., 1993) for ns = 10, 20, 50, 100, 200, 500, and
800 with the theoretical asymptotic expression Eq. (36).
For the liquid water content, the theoretical result (solid
line)

medianðWs=WpÞ ¼ 0:9897� 8:724

ns
þ Oðn�2s Þ ð42Þ

fits the simulation data (squares) very well within the statis-
tical fluctuations when ns > 100. The results are plotted in
dB, defined as

dB value ¼ 10 log½medianðWs=WpÞ�. ð43Þ

In the same plot, the simulation values for the normalized
rain rate are represented as circles together with the theo-
retical calculation

medianðR�s=R
�
pÞ ¼ 0:9708� 25:78

ns
þ Oðn�2s Þ ð44Þ

(short dashed line). The minimum value of ns that makes
this expression agree with the simulation data lies around
200. This value is higher than that for the liquid water con-
tent because the probability density function of the estima-
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Figure 5 Comparison of the simulation values of the ratio
between the median and the mean obtained in Smith et al.
(1993) for ns = 10, 20, 50, 100, 200, 500, and 800 with the
theoretical asymptotic expression (Eq. (36)) for the liquid water
content (simulation data: squares; theoretical result, Eq. (42):
solid line) and the rain rate (simulation data: circles; theoret-
ical result, Eq. (44): short dashed line). The results are plotted
in dB, as defined by Eq. (43).
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Figure 6 The theoretically expected number of drops ns
collected by a RD-69 disdrometer (for which the product of the
sampling surface S times the integrating period t equals
St = 3000 cm2 s) as a function of the rain rate for three families
of raindrop size distributions: Marshall–Palmer (solid line, Eq.
(D.9)); Sekhon–Srivastava (dashed line, Eq. (D.10)); Willis–
Tattelman (dash-dotted line, Eq. (D.12)). Circles with error bars
are experimental data from Switzerland, obtained using a RD-
69 disdrometer (closed circles) and France, obtained using an
optical spectro-pluviometer (OSP, open circles).
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tor of R* is more skewed than the one for W and therefore
the Edgeworth expansion works satisfactorily only for higher
values of ns.
Rain rate dependence of sampling distributions

Up to here, we have discussed sampling variability as a func-
tion of the expected number of drops sampled. However,
for practical purposes one may be interested in the effect
of sampling as a function of rain rate. The study of this
dependence requires the analysis of the relation between
the drop size distribution and rain rate. It is clear that the
number of drops sampled by a disdrometric instrument also
depends on the sampling properties of the device. The smal-
ler these properties are (the sampling volume Vs or the sur-
face S and the integration time t), the bigger the sampling
effects will be. As an application of our general results,
we will analyze the sampling effects on the Joss and Wal-
dvogel disdrometer (RD-69) because it is one of the most
widely used disdrometric instruments.

In Fig. 6, we have plotted the expression of the expected
number of drops ns collected by a RD-69 disdrometer as a
function of the rain rate for the three families of raindrop
size distributions discussed in Appendix D: Marshall–Palmer
(solid line, Eq. (D.9)); Sekhon–Srivastava (dashed line, Eq.
(D.10)); Willis–Tattelman (dash-dotted line, Eq. (D.12)).
The product of the sampling surface S times the integrating
period t plays the role of the sampling volume in a flux mea-
surement device. From the properties of the RD-69 disdrom-
eter, it follows that St = 3000 cm2 s. Fig. 6 shows that there
is significant variability in ns depending on the DSD expres-
sion used to calculate the arrival rate. However, the actual
number of drops detected will usually be less than that cal-
culated theoretically because the latter overestimates the
number of small drops (particularly in the exponential
case). Furthermore, we have assumed that the disdrometer
works as an ideal instrument that is able to detect all drops
captured. In fact, deadtime problems make the RD-69 disd-
rometer to be far from perfect (e.g., Uijlenhoet et al.,
2002). In addition, the disdrometer is less sensitive to drops
of small diameters. As a consequence of these effects, the
theoretical calculations above should only be considered as
a first approximation to the actual number of drops sampled
by a disdrometer.

In addition to the theoretical expressions for ns, we have
included in Fig. 6 two experimental datasets. In one, data
were gathered from May to November 1988 at the Hoengger-
berg in Zurich, Switzerland, by a RD-69 disdrometer. These
have been kindly provided to us by Dr. M. Steiner of Prince-
ton University (Steiner, 1991). This dataset includes about
30,000 1-min raindrop spectra which have been classified
in 35 bins according to the precipitation intensity. For each
rain rate class, the average number of drops detected by the
disdrometer is plotted (closed circles). The deadtime cor-
rection was already applied to the original dataset. The er-
ror bar at each point corresponds to 2 standard deviations
from the mean, which is roughly equal to 2

ffiffiffiffiffi
ns
p

divided by
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the square root of the number of minutes in the class. The
second dataset was collected by an optical spectro-pluviom-
eter (OSP) from September 1992 to November 1993 in Mar-
seille, France, and includes 6429 1-min spectra (Salles,
1995). The sampling surface of this device is 100 cm2. Data
have been organized in the same rain rate classes as in the
first dataset (open circles). The error bars for this second
dataset are larger because the number of minutes regis-
tered is less than for the first dataset. Note that the two
relations based on the exponential DSD parameterization
(solid line and dashed line) significantly overestimate the
actual number of drops detected using both devices. This
can be partly explained by the fact that both the RD-69
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Figure 7 Exact form of the continuous part of the sampling
distribution of rain rate in case the arrival process of raindrops
at a surface obeys a Poisson process and the volumes of the
arriving raindrops are exponentially distributed (functionally
equivalent to Eq. (24)). The rain rate dependence of the arrival
rate (Eq. (D.9)) and the mean volume of the raindrops are those
which follow from a combination of the Marshall and Palmer
(1948) distribution and the Atlas and Ulbrich (1977) raindrop
terminal fall speed parameterization (Uijlenhoet and Stricker,
1999). (a) Mean rain rate is 0.1 mm h�1; (b) mean rain rate is
1 mm h�1; (c) mean rain rate is 10 mm h�1. Dash-dotted line:
integration time is 1 s; dashed line: integration time is 10 s;
solid line: integration time is 60 s. In all cases the sampling
surface is 50 cm2, corresponding to a Joss and Waldvogel (1967)
disdrometer.
and the OSP are known to have problems detecting small
drops. The ‘‘saturation’’ of the RD-69 (closed circles) for
rain rates in excess of 20 mm h�1 is likely due to deadtime
effects, which the applied correction procedure is not able
to account for.

Finally, in Fig. 7 the results of this section (where rela-
tions between ns and R have been established) are combined
with those of ‘‘Sampling distributions’’ (where the sampling
distributions of bulk rainfall variables are derived as a func-
tion of ns). This figure provides examples of (the continuous
part of) the sampling distributions of the rain rate R for dif-
ferent mean (stationary) rainfall rates and different integra-
tion times for a 50 cm2, Joss–Waldvogel RD-69 disdrometer.
The previously noted evolution from skewed sampling distri-
butions for small mean sample sizes to symmetrical (Gauss-
ian) distributions for larger mean sample sizes (in stationary
rainfall) is clearly observed. These results demonstrate that
in many cases a Gaussian sampling distribution will probably
be a reasonable assumption in stationary rainfall. The prac-
tical relevance of our theoretical analysis is (1) that it pro-
vides exact solutions to the sampling problem during
(relatively rare) periods of stationary rainfall (e.g., drizzle),
and (2) that it provides a lower bound to the magnitude of
the sampling problem in the general situation where
sampling fluctuations and natural variability exist side by
side.
Conclusions

Rainfall properties estimated from raindrop size measure-
ments show great variability. Generally speaking, three fac-
tors can explain this variability: (1) climatological factors
(as different kinds of rainfall have different properties),
(2) physical factors (as meteorological conditions change
during rainfall events), and (3) instrumental factors (those
associated with the device used to measure drop diame-
ters). The latter includes any instrument malfunctioning,
device sensitivity, and sample size effect. In this paper,
we have focused on the analysis of the magnitude of the
variability caused by sample size: the so-called sampling
fluctuations. We have restricted our analysis to the special
(limiting) case of stationary (steady) rainfall.

The first step in the analysis of sampling fluctuations in-
volves the choice of a statistical rainfall model that includes
both the statistics of drop positions in space and the distri-
bution of drop sizes. We have chosen a marked point pro-
cess model in which drop centers are assumed to be
uniformly distributed in space as if they were points, which
has been shown to be a plausible assumption during periods
of stationary rainfall. This model implies that the number of
drops in a sample volume is distributed according to a Pois-
son distribution. As far as the drop size distribution is con-
cerned, our calculations apply for a general distribution,
although Marshall and Palmer’s exponential distribution is
used to obtain numerical results.

Within this framework, it is shown how the sampling dis-
tribution of the estimator of any bulk rainfall variable con-
verges to a Gaussian distribution in stationary rainfall. The
relevant parameter controlling this evolution turns out to
be the average number of drops in the sample ns. The skew-
ness of the distribution is more pronounced for higher order
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moments of the drop size distribution. For instance, the
sampling distribution of the normalized mean diameter be-
comes nearly Gaussian for ns greater than 10 while the sam-
pling distribution of the normalized rain rate remains
skewed for ns as large as 500.

A second result of our analysis is the conclusion that the
median as an estimator of a bulk rainfall variable always
underestimates the population value of that bulk variable.
According to our analysis, the ratio between the median
of an estimator of a bulk rainfall variable and its population
value reads Q 50=Q p ¼ 1� b=ns þ Oðn�2s Þ, following Eq. (36),
where b is a constant which depends on the drop size distri-
bution. For positively defined rainfall variables, this con-
stant is positive and therefore the median Q50 always
underestimates the population value Qp. This result pro-
vides a theoretical confirmation and explanation of results
in Smith et al. (1993), who had already obtained this result
via Monte-Carlo simulation.

The practical relevance of the results of this paper lies
in the possibility of estimating the effect of the sample
size associated with a given disdrometric instrument on
a particular rainfall estimator. For instance, it has been
shown that for the disdrometer (RD69) and for the optical
spectro-pluviometer (OSP) the average number of drops
sampled for rain rates below 0.1 mm h�1 is less than 100
and that therefore the corresponding reflectivity esti-
mates will be strongly influenced by sampling fluctuations.
The approximation to the sampling distribution given in
this paper, Eq. (B.10), provides a method to better estab-
lish the accuracy of an estimate of a bulk rainfall variable
obtained from disdrometric measurements. Moreover, the
developed method can be generalized to provide an esti-
mate of the correlation between estimators of different
rainfall variables induced by sampling fluctuations only.
In the near future we intend to generalize the mathemat-
ical framework presented in this paper to be able to cope
with non-homogeneous Poisson processes (and the result-
ing non-stationary rainfall processes). This will allow us
to tackle the sampling problem in the general situation
where sampling fluctuations and natural variability co-
exist.
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Appendix A. Characteristic function

The characteristic function (cf) of Q (Eq. (11)),

f̂ðxÞ ¼
Z 1

�1
eixqfðqÞdq; ðA:1Þ

can generally be computed easier than the probability den-
sity function f(q). Note that by definition f̂ðxÞ is the average
(expectation) of exp(ixq) with respect to f(q) and that con-
sequently it can be written as f̂ðxÞ ¼ hexpðixqÞi. To obtain
the characteristic function f̂ðxÞ, we first expand f(q) as

fðqÞ ¼
X1
k¼0

pðn ¼ kÞfðqjkÞ; ðA:2Þ

using the total probability theorem, or in other words, using
the property that events with different n are mutually
exclusive. The function f(q|k) is the probability density of
Q conditional on the event n = k, that is, given that exactly
k drops have been detected. Hence, f(q|k) is the pdf of the
sum of k independent random variables, that is the convolu-
tion of their individual densities. Since the cf of the convo-
lution of a number of densities equals the product of the cfs
of the individual densities (a special case of a general prop-
erty of the Fourier transform), the cf of f(q|k) can be ex-
pressed in terms of the characteristic functions of the
random variables h as (Kendall and Stuart, 1977)

f̂ðxjkÞ ¼
Z 1

�1
eixqfðqjkÞdq ¼ ½ĥðxÞ�k; ðA:3Þ

where

ĥðxÞ ¼
Z 1

�1
eixhpðhÞdh ¼

Z 1

�1
eixhðDÞfdðDÞdD ðA:4Þ

is the cf of h calculated using its probability density, Eq.
(14). If Eq. (A.2) is multiplied by exp(ixq) and integrated
over q from �1 to 1, the following relation between
f̂ðxÞ and f̂ðxjkÞ results:

f̂ðxÞ ¼
X1
k¼0

pðn ¼ kÞf̂ðxjkÞ. ðA:5Þ

Introducing in this expression the assumption that the num-
ber of drops sampled is distributed according to a Poisson
law (Eq. (2)) we obtain the cf of Q

f̂ðxÞ ¼
X1
k¼0

nk
s

k!
e�ns ½ĥðxÞ�k ¼ exp �ns½1� ĥðxÞ�

n o
. ðA:6Þ

From this expression, it is possible to obtain all moments of
Q as functions of the cf ĥ(x), that is, the characteristic
function of the probability density of h, Eq. (14). Indeed,
the rth order moment of the estimator Q,

hQri ¼
Z 1

�1
qrfðqÞdq; ðA:7Þ

can be computed directly from the cf f̂ðxÞ as

hQri ¼ ð�iÞr dr

dxr
f̂ðxÞ

����
x¼0

; ðA:8Þ

as can be seen from Eq. (A.1). In other words, f̂ðxÞ is the
moment generating function of Q (Mood et al., 1974). An
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alternative, in this case more convenient, set of descriptors
of f(q) are the so-called cumulants of the estimator Q,
jr(Q). In general, cumulants of order r are related to mo-
ments of order r and lower (Kendall and Stuart, 1977). Here,
they can be readily computed in terms of the moments of h.
By definition, the natural logarithm of the cf ĥ(x) yields the
cumulant generating function of Q (Mood et al., 1974).
The cumulants are then obtained from Eq. (A.6) according
to

jrðQÞ ¼ ð�iÞr
dr

dxr
ln f̂ðxÞ

����
x¼0
¼ nshhri; ðA:9Þ

where hhri is the rth order moment of h,

hhri ¼
Z 1

�1
hrpðhÞdh ¼

Z 1

�1
hðDÞrfdðDÞdD. ðA:10Þ

Hence, for the Poisson marked point process considered
here, the effect of sample size on the cumulants of the sam-
pling distribution of a bulk rainfall variable Q is entirely con-
tained in the average number of drops in the sample ns,
whereas the effect of the drop size distribution is entirely
contained in the moments of h.

The mean value of Q, lQ, and its variance, r2
Q , are partic-

ular cases of this expression. The mean value of Q is simply
the average value of the random variable h, hhi, times the
average number of drops ns,

lQ ¼
Z 1

�1
qfðqÞdq ¼ nshhi. ðA:11Þ

This result shows that Q is a non-biased estimator of the
properties of the parent population fd(D), which means that
the average of the estimator of a property of the parent
population (Eq. (11)) is equal to the population value. For
instance, given that the population value of the liquid water
content is W0, the average of the estimator (Eq. (13)) is pre-
cisely W0 = pqwNThD3i/6 (from Eqs. (1) and (12)). The vari-
ance equals the second order cumulant and reads

r2
Q ¼ hQ

2i � hQi2 ¼ nshh2i. ðA:12Þ

An important consequence that follows from the expres-
sions of the mean and the variance given above is that the
coefficient of variation of the estimator Q,

CV ¼ rQ

lQ

¼

ffiffiffiffiffiffiffiffiffi
hh2i

q
hhi

1ffiffiffiffiffi
ns

p ; ðA:13Þ

converges to zero as 1=
ffiffiffiffiffi
ns

p
when ns!1. Therefore, the

magnitude of the sampling fluctuations decreases as
1=

ffiffiffiffiffi
ns
p

when the mean sampling size goes to infinity. Joss
and Waldvogel (1969) proved this property for the estima-
tor of the mean number of drops, the rain rate and the
reflectivity and it was generalized to other moments of
the drop size distribution by Gertzman and Atlas (1977).
In these references, it was assumed that the DSD had an
exponential shape whereas we did not make any assump-
tion of this kind.

The coefficient of skewness c of the estimator Q can also
be computed from Eq. (A.9) and reads

c ¼ j3ðQÞ
r3
Q

¼ hh3i
hh2i3=2

1ffiffiffiffiffi
ns

p . ðA:14Þ
This coefficient gives an idea of the asymmetry of the prob-
ability density function of the estimator Q. Hence, f(q) be-
comes symmetrical as ns!1. In Appendix B, we exploit
the behavior of the cumulants of Q to draw some more de-
tailed conclusions about the shape of the pdf of the random
variable Q.
Appendix B. Edgeworth expansion

The probability density of the estimator Q could in principle
be obtained by inverting the characteristic function f̂ðxÞ
(Eq. (A.6)), although this task cannot be carried out explic-
itly in general. Nevertheless, when the sample size in-
creases, it is expected that the estimator Q becomes a
Gaussian random variable. This assumption, implicit in most
analyses of sampling fluctuations, is based on the central
limit theorem (Cramér, 1946).

The analysis of the cumulants of the standardized
variable

z ¼
Q � lQ

rQ
ðB:1Þ

suggests indeed that the probability density function of z, as
the mean sample size ns goes to infinity, converges to the
standard normal pdf

GðzÞ ¼ 1ffiffiffiffiffiffi
2p
p e�z

2=2. ðB:2Þ

It follows from Eq. (B.1) and the definition of the corre-
sponding cf (equivalent to Eq. (A.1)) that the cumulant gen-
erating function of z is related to that of Q according to
�ixlQ=rQ þ ln f̂ðx=rQ Þ. The cumulants of the random vari-
able z now follow directly from subsequent derivatives of
this expression with respect to x (Eq. (A.9)) and read
j1 = 0, j2 = 1, and

jr ¼
jrðQÞ

rr
Q

¼ hhri
hh2ir=2

1

nr=2�1
s

¼ ar
1

nr=2�1
s

ðr P 3Þ; ðB:3Þ

where the coefficients

ar ¼
hhri
hh2ir=2

ðB:4Þ

have been defined for later use (note that j3 = c, Eq.
(A.14)). This result shows that, when ns!1, all cumulants
of z of order greater than 2 converge to zero. Thus, the
cumulant generating function of z becomes, in this limit,
�x2/2, which implies that the characteristic function of z
becomes that of a Gaussian random variable with zero mean
and unit standard deviation

ĜðxÞ ¼
Z 1

�1
eixz 1ffiffiffiffiffiffi

2p
p e�z

2=2 dz ¼ e�x2=2. ðB:5Þ

Consequently, the probability density p(z) of the standard-
ized random variable z is Gaussian and given by Eq. (B.2).
As Q is a linear combination of z, Q = rQz + lQ, the random
variable Q also becomes Gaussian in the limit ns!1.

Nevertheless, for small samples, the distribution of Q
shows the effect of the skewness, given by Eq. (A.14). As
a consequence, the probability density function of Q will
not be Gaussian for finite samples. It is then natural to ask
which are the corrections to the Gaussian shape required
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when ns is finite. The answer to this question is the so-called
Edgeworth expansion (Cramér, 1946; Kendall and Stuart,
1977), which yields an asymptotic development of the pdf
p(z) in powers of the mean sample size ns.

The derivation of the Edgeworth expansion for the esti-
mator Q when the number n of random variables hQ to be
added is not random, Eq. (11), can be found in many refer-
ences (Cramér, 1946; Abramowitz and Stegun, 1972; Kendall
and Stuart, 1977). When the number n becomes a Poisson
random variable, the demonstration follows a similar rea-
soning. We reproduce here the main steps for the sake of
completeness.

The characteristic function of p(z), in terms of its cumu-
lants jr, Eq. (B.3), is

p̂ðxÞ ¼
Z 1

�1
eixzpðzÞdz ¼ exp �x2

2
þ
X1
r¼3

jr
ðixÞr

r!

" #
. ðB:6Þ

In order to invert this cf, ex2=2p̂ðxÞ is expanded in powers of
x and the series’ terms are collected in powers of 1=

ffiffiffiffiffi
ns

p
.

This method leads to the following expansion up to order
n�3=2s :

p̂ðxÞ ¼ e�x2=2 1þ j3

3!
ðixÞ3 þ j4

4!
ðixÞ4 þ j2

3

2!3!2
ðixÞ6

� 	
þOðn�3=2s Þ


 �
.

ðB:7Þ

According to the cumulant values (Eq. (B.3)) the term con-
taining j3 in this development is of order n�1=2s whereas the
terms inside the square brackets are of order n�1s . This
expansion can be readily inverted term by term because
the Fourier transform of the rth derivative of the standard-
ized Gaussian is

Z 1

�1
eixzGðrÞðzÞdz ¼ ð�ixÞre�x2=2; ðB:8Þ

and the rth derivative of G(z) is related to the Hermite poly-
nomial Her(z) according to

GðrÞðzÞ ¼ 1ffiffiffiffiffiffi
2p
p dr

dzr
e�z

2=2 ¼ ð�1ÞrHerðzÞGðzÞ ðB:9Þ

(Abramowitz and Stegun, 1972). Consequently, as ns goes to
infinity, p(z) can be expanded as

pðzÞ � GðzÞ 1þ a3
3!

He3ðzÞ
1ffiffiffiffiffi
ns

p þ a4
4!

He4ðzÞ þ
10a23
6!

He6ðzÞ
� 	

1

ns




þO n�3=2s

� �
; ðB:10Þ

where the coefficients ar are defined by Eq. (B.4). Several
comments are necessary at this point. First, when
ns!1, the function p(z) converges to G(z), a Gaussian
pdf with zero mean and unit variance, in agreement with
the central limit theorem discussed above. For finite ns,
the following (higher order) terms give corrections to
the normal limiting behavior. Note, however, that the
expansion for p(z) is asymptotic in the sense that the ra-
tio between the series and p(z) converges to 1 as ns!1.
For finite ns the series may even diverge (e.g., Blinnikov
and Moessner, 1998). However, the Edgeworth expansion,
when truncated at a given order, yields a representation
of p(z) that improves as ns grows. Secondly, the expansion
of f(q) can be obtained from Eq. (B.10) taking into ac-
count the relation

fðqÞ ¼ 1

rQ
pðzÞ

����
z¼ðq�lQ Þ=rQ

; ðB:11Þ

which is a consequence of the relation between z and Q (Eq.
(B.1)). Thirdly, the Hermite polynomials of even order are
symmetric about z = 0 whereas the rest, with odd indexes,
are asymmetric (Abramowitz and Stegun, 1972). This fea-
ture implies that the first correction to the normal behavior,
of order 1=

ffiffiffiffiffi
ns
p

, introduces an asymmetry into the density of
the estimator Q. Finally, note that the original drop size dis-
tribution only appears through the function fd(D) used to
calculate the moments hhki in the coefficients ar (Eq.
(B.4)). Since we model rainfall as a marked point process,
it is interesting to mention that the properties of the point
process (Poisson) are entirely contained in ns, whereas the
properties of the marks are completely included in the coef-
ficients ar.

Appendix C. Expansion of the median

The median is defined asZ Q50

�1
fðqÞdq ¼

Z 1

Q50

fðqÞdq ¼ 1

2
. ðC:1Þ

After the change of variables z = (q � lQ)/rQ, we obtain the
following equation for z0 = (Q50 � lQ)/rQ,Z z0

�1
pðzÞdz ¼

Z 1

z0

pðzÞdz. ðC:2Þ

Introduction of the Edgeworth expansion, Eq. (B.10), into
this equation yields the following equation for z0 (to order
n�3=2s ):

ez2
0
=2erfðz0=

ffiffiffi
2
p
Þ ¼ 2a3

3!
ffiffiffiffiffiffi
2p
p He2ðz0Þ

1ffiffiffiffiffi
ns

p

þ 2a4

4!
ffiffiffiffiffiffi
2p
p He3ðz0Þ þ

20a23
6!

ffiffiffiffiffiffi
2p
p He5ðz0Þ

� 	
1

ns

þ Oðn�3=2s Þ;
ðC:3Þ

where erf(z) is the error function (Abramowitz and Stegun,
1972)

erfðzÞ ¼ 2ffiffiffi
p
p

Z z

0

e�t
2

dt. ðC:4Þ

The solution to Eq. (C.3) can be obtained perturbationally
by expanding z0 in powers of 1=

ffiffiffiffiffi
ns

p
,

z0 ¼
b1ffiffiffiffiffi
ns
p þ b2

ns
þ Oðn�3=2s Þ; ðC:5Þ

for ns!1. Note that z0 converges to 0 when ns!1 be-
cause f(q) becomes Gaussian in this limit and therefore
hQi = Q50, which implies z0 = 0. After substituting the small
z expansion of erf(z) (Abramowitz and Stegun, 1972)

erfðzÞ ¼ 2ffiffiffi
p
p e�z

2
zþ 2

3
z3 þ Oðz5Þ

� 	
; ðC:6Þ

the left-hand side of Eq. (C.3) can be expanded in powers of
1=

ffiffiffiffiffi
ns
p

according to
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ez2
0
=2erfðz0=

ffiffiffi
2
p
Þ ¼ 2ffiffiffiffiffiffi

2p
p b1ffiffiffiffiffi

ns
p þ b2

ns
þ Oðn�3=2s Þ

� 	
. ðC:7Þ

To the order considered, n�3=2s , the first term on the right-
hand side of Eq. (C.3) gives the contribution

2a3

3!
ffiffiffiffiffiffi
2p
p He2ðz0Þ

1ffiffiffiffiffi
ns

p ¼ � 2ffiffiffiffiffiffi
2p
p a3

3!
ffiffiffiffiffi
ns

p þ Oðn�3=2s Þ ðC:8Þ

and the rest of the terms does not contribute to this order.
Equating the expansions given by Eqs. (C.7) and (C.8), we
obtain b1 = �a3/3! and b2 = 0. Therefore, the solution to
the equation for z0 is

z0 ¼ �
a3

3!
ffiffiffiffiffi
ns

p þ Oðn�3=2s Þ; ðC:9Þ

which recalling the meaning of z0 and the fact that

rQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nshh2i

q
(Eq. (A.12)), yields

Q 50 ¼ hQi �
1

3!

hh3i
hh2i
þ Oðn�1s Þ. ðC:10Þ

The expression for ar (Eq. (B.4)) for r = 3 has been used to
obtain this result. Another approach to obtain the same
expression would have been the so-called Cornish–Fisher
expansion (Abramowitz and Stegun, 1972; Kendall and
Stuart, 1977). However, we have used the perturbational
method to show an application of the Edgeworth expansion.
Appendix D. The expected number of drops
sampled

Many of the studies devoted to the drop size distribution
(DSD) have analyzed the parameterization of this function
using global rainfall variables as parameters. Since Marshall
and Palmer (1948), it has been customary to use just one
variable as a parameter to describe the variation of the rain-
drop size distribution (provided the type of rain does not
change). The rain rate is the variable most often used as a
reference, although any other would apply. In this way,
we could write the DSD as N(D,R) to explicitly point out that
it depends both on the diameter and on the reference vari-
able, which we take as the rain rate R. It has been shown
that most DSD expressions proposed in the literature can
be written as the scaling law (Sempere Torres et al.,
1994, 1998)

NðD;RÞ ¼ RagðD=RbÞ; ðD:1Þ

where a and b are two exponents and g(x) is the function
that characterizes the DSD shape (see Uijlenhoet et al.,
2003a,b for recent applications of this formalism). Both
the exponents and the function g are independent of R. This
formulation implies that the drop concentration, NT, reads

NT ¼ Raþb
Z 1

0

gðxÞdx ¼ CVR
aþb; ðD:2Þ

and that the probability density function of the drop diam-
eters, p(D) = N(D,R)/NT, scales as

pðDÞ ¼ R�b~gðD=RbÞ; ðD:3Þ

where ~gðxÞ ¼ gðxÞ=CV and CV was defined in Eq. (D.2) (Uij-
lenhoet et al., 2003a).
The expression for the drop concentration, Eq. (D.2), al-
lows us to write the expected number of drops measured by
a disdrometric instrument of volume integrating type as a
function of the rain rate as

ns ¼ V sNT ¼ CVV sR
aþb; ðD:4Þ

where Vs is the sampling volume. Therefore, the number of
drops sampled grows as a power of the rain rate. For a time
integrating instrument, the same behavior is obtained pro-
vided the drop terminal velocity depends on a power of
the diameter,

vðDÞ ¼ aDb. ðD:5Þ

In the power-law model of Atlas and Ulbrich (1977), based
on the data of Gunn and Kinzer (1949),
a = 3.78 m s�1 mm�b, b = 0.67, D is expressed in mm, and
v in m s�1. The arrival rate computed using this model and
Eq. (6) reads

k ¼ Raþbð1þbÞ
Z 1

0

axbgðxÞdx ¼ CAR
aþbð1þbÞ; ðD:6Þ

when v(D) is the power law Eq. (D.5) and the DSD is given by
Eq. (D.1). This expression can be simplified further by taking
into account the fact that the exponents a and b satisfy the
equation

aþ bð4þ bÞ ¼ 1; ðD:7Þ

as required by the self-consistency of the expression for
N(D,R) (Sempere Torres et al., 1994, 1998). Thus, the expo-
nent of R in the expression for k becomes 1 � 3b and the ex-
pected number of drops sampled by a time integrating
instrument is

ns ¼ kSt ¼ CAStR
1�3b. ðD:8Þ

The expression for ns as a function of R allows us to estimate
the range of rain rates for which the sampling fluctuations
are of concern. We will concentrate on the RD-69 disdrom-
eter (Joss and Waldvogel, 1967), which has a sampling sur-
face of 50 cm2 and a sampling time of 60 s. In addition to
these properties, the raindrop size distribution N(D), or
even better NA(D), must be provided to calculate the arrival
rate k. We consider three different cases:

1. The Marshall and Palmer distribution (Eq. (16)), with
N0 = 0.08 cm�4, K = 41R�0.21 cm�1, and D in cm, thought
to be representative for stratiform conditions. Note that
a = 0, b = 0.21 and b = 0.67 do not satisfy Eq. (D.7) and
that as a result the Marshall–Palmer distribution is not
self-consistent (Uijlenhoet and Stricker, 1999; Uijlen-
hoet, 2001). From now on the units of the rain rate R
are mm h�1. When the arrival rate is computed with this
DSD, the following result is reached:

k1 ¼ 0:259R0:35 drops cm�2 s�1. ðD:9Þ

This expression was obtained without considering any
maximum diameter, because it can be shown that the ef-
fect of the diameter truncation on the calculation of k is
less than 1% for R < 250 mm h�1.

2. The exponential DSD proposed by Sekhon and Srivastava
(1971) for thunderstorm (convective) conditions. In this
distribution the N0-factor (Eq. (16)) depends on R accord-
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ing to N0 = 0.07R0.37 cm�4. The parameter K in this case
reads K = 38R�0.14 cm�1. The value of the arrival rate
obtained with this drop size distribution is

k2 ¼ 0:257R0:60 drops cm�2 s�1. ðD:10Þ

3. The ‘intense rainfall’ DSD of Willis and Tattelman (1989).
This distribution has the shape of a gamma function and
reads

NðD;RÞ ¼ 50:6R0:3 D

R0:153

� �2:16

exp �56:8 D

R0:153

� �
ðD:11Þ

with D in cm and N(D,R) in cm�4. The arrival rate in this
case reads

k3 ¼ 0:0831R0:556 drops cm�2 s�1. ðD:12Þ

Fig. 6 presents a comparison of these theoretical expres-
sions with two experimental datasets.
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Wirth, E., Zoltán, C., Székely, C., 1983. On a sampling error in
hailpad measurements. J. Clim. Appl. Meteorol. 22, 2100–
2102.

Wong, R.K.W., Chidambaram, N., 1985. Gamma size distribution
and stochastic sampling errors. J. Clim. Appl. Meteorol. 24,
568–579.

Zawadzki, I., 1995. Is rain fractal? In: Kundzewicz, Z.W. (Ed.),
New Uncertainty Concepts in Hydrology and Water
Resources. Cambridge University Press, Cambridge, pp.
104–108.


	app12
	Analytical solutions to sampling effects in drop size distribution measurements during stationary rainfall: Estimation of bulk rainfall variables
	Introduction
	Statistical model
	Poisson hypothesis
	Mathematical formulation

	General formalism
	Sampling distributions
	The median of Q
	Rain rate dependence of sampling distributions
	Conclusions
	Acknowledgments
	Characteristic function
	Edgeworth expansion
	Expansion of the median
	The expected number of drops sampled
	References


